Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2013, Vol. 7 Issue (4) : 452-461    https://doi.org/10.1007/s11684-013-0304-0
RESEARCH ARTICLE
The role of RAS effectors in BCR/ABL induced chronic myelogenous leukemia
Jessica Fredericks, Ruibao Ren()
State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
 Download: PDF(393 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BCR/ABL is the causative agent of chronic myelogenous leukemia (CML). Through structure/function analysis, several protein motifs have been determined to be important for the development of leukemogenesis. Tyrosine177 of BCR is a Grb2 binding site required for BCR/ABL-induced CML in mice. In the current study, we use a mouse bone marrow transduction/transplantation system to demonstrate that addition of oncogenic NRAS (NRASG12D) to a vector containing a BCR/ABLY177F mutant “rescues” the CML phenotype rapidly and efficiently. To further narrow down the pathways downstream of RAS that are responsible for this rescue effect, we utilize well-characterized RAS effector loop mutants and determine that the RAL pathway is important for rapid induction of CML. Inhibition of this pathway by a dominant negative RAL is capable of delaying disease progression. Results from the present study support the notion of RAL inhibition as a potential therapy for BCR/ABL-induced CML.

Keywords BCR/ABL      chronic myelogenous leukemia (CML)      RAS      RAL     
Corresponding Author(s): Ren Ruibao,Email:ren@brandeis.edu   
Issue Date: 05 December 2013
 Cite this article:   
Jessica Fredericks,Ruibao Ren. The role of RAS effectors in BCR/ABL induced chronic myelogenous leukemia[J]. Front Med, 2013, 7(4): 452-461.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-013-0304-0
https://academic.hep.com.cn/fmd/EN/Y2013/V7/I4/452
Fig.1  Expression of BCR/ABL plus oncogenic NRASG12D induces CML-like MPD. (A) Schematic representation of retroviral MSCV constructs used in a mouse BMT experiment. (B) Kaplan-Meier analysis: cumulative survival of mice receiving each of the MSCV constructs. BM was infected with matched viral titers of 4×10 TU to 5×10 TU per construct. (C) Representative FACS analysis of BM harvested post-mortem. Also shown is analysis of a lymph node tumor found in one mouse. Mac-1/Gr-1 staining for myeloid cells, B220/CD19 staining for B cells, Thy1.2/CD3? staining for T cells, and c-Kit staining for immature cells.
Fig.2  Percentage of GFP positive cells in the peripheral blood and cumulative survival. (A) Peripheral blood of mice expressing the effector domain mutants of NRAS, NRASG12D, and vector control were examined for relative proportions of GFP-positive cells. Plotted is the average percentage of GFP cells at day 14. (B) Cumulative survival curves of mice transplanted with NRASD12/35S, NRASD12/37G, NRASD12/40C, NRASD12, and vector control were generated using Kaplan-Meier survival analysis. The graph shown above represents the status of the mice as of day 56 post-BMT. Mice receiving the NRAS effector loop mutant infected BM remained alive through 3 months of observation.
Fig.3  NRAS effector loop mutants can induce CML-like MPD in the background of BCR/ABL. (A) Relative protein expression of BCR/ABL and NRASG12D proteins. 32D cells sorted to>98% GFP. α-Abl (Ab3) antibody was used to probe for BCR/ABL fusion proteins as well as c-Abl. myc-tagged NRAS proteins were visualized by probing with α-myc (9B11) antibody. Dynamin was used as a loading control. (B) Survival as determined using Kaplan-Meier analysis. Viral titers were well matched between all constructs (2×10 TU to 3×10 TU).
Fig.4  The RAL pathway has an important function in BCR/ABL-mediated leukemogenesis. (A) MSCV retroviral constructs expressing DN RAL in the presence of wild-type BCR/ABL or a constitutively active RALGDS in the presence of BCR/ABL. (B) Relative survival as determined using Kaplan-Meier analysis. (C) Survival curve of mice expressing a DN RALB in the presence of BCR/ABL (<0.0001).
1 Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243(5405): 290-293
doi: 10.1038/243290a0 pmid:4126434
2 Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 1984; 36(1): 93-99
doi: 10.1016/0092-8674(84)90077-1 pmid:6319012
3 McWhirter JR, Galasso DL, Wang JY. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol Cell Biol 1993; 13(12): 7587-7595
pmid:8246975
4 Zhang X, Subrahmanyam R, Wong R, Gross AW, Ren R. The NH(2)-terminal coiled-coil domain and tyrosine 177 play important roles in induction of a myeloproliferative disease in mice by Bcr-Abl. Mol Cell Biol 2001; 21(3): 840-853
doi: 10.1128/MCB.21.3.840-853.2001 pmid:11154271
5 Cortez D, Kadlec L, Pendergast AM. Structural and signaling requirements for BCR-ABL-mediated transformation and inhibition of apoptosis. Mol Cell Biol 1995; 15(10): 5531-5541
pmid:7565705
6 Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 1990; 247(4946): 1079-1082
doi: 2408149" target="_blank">10.1126/science. pmid:2408149 pmid:2408149
7 He Y, Wertheim JA, Xu L, Miller JP, Karnell FG, Choi JK, Ren R, Pear WS. The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood 2002; 99(8): 2957-2968
doi: 10.1182/blood.V99.8.2957 pmid:11929787
8 Million RP, Harakawa N, Roumiantsev S, Varticovski L, Van Etten RA. A direct binding site for Grb2 contributes to transformation and leukemogenesis by the Tel-Abl (ETV6-Abl) tyrosine kinase. Mol Cell Biol 2004; 24(11): 4685-4695
doi: 10.1128/MCB.24.11.4685-4695.2004 pmid:15143164
9 Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K, Gesbert F, Iwasaki H, Li S, Van Etten RA, Gu H, Griffin JD, Neel BG. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 2002; 1(5): 479-492
doi: 10.1016/S1535-6108(02)00074-0 pmid:12124177
10 Goga A, McLaughlin J, Afar DE, Saffran DC, Witte ON. Alternative signals to RAS for hematopoietic transformation by the BCR-ABL oncogene. Cell 1995; 82(6): 981-988
doi: 10.1016/0092-8674(95)90277-5 pmid:7553858
11 Million RP, Van Etten RA. The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood 2000; 96(2): 664-670
pmid:10887132
12 Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ, Der CJ. Increasing complexity of Ras signaling. Oncogene 1998; 17(11 11 Reviews): 1395-1413
doi: 10.1038/sj.onc.1202174 pmid:9779987
13 Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood 2000; 96(10): 3343-3356
pmid:11071626
14 White MA, Nicolette C, Minden A, Polverino A, Van Aelst L, Karin M, Wigler MH. Multiple Ras functions can contribute to mammalian cell transformation. Cell 1995; 80(4): 533-541
doi: 10.1016/0092-8674(95)90507-3 pmid:7867061
15 Campbell PM, Singh A, Williams FJ, Frantz K, Ulkü AS, Kelley GG, Der CJ. Genetic and pharmacologic dissection of Ras effector utilization in oncogenesis. Methods Enzymol 2006; 407: 195-217
doi: 10.1016/S0076-6879(05)07017-5 pmid:16757325
16 Leicht DT, Balan V, Kaplun A, Singh-Gupta V, Kaplun L, Dobson M, Tzivion G. Raf kinases: function, regulation and role in human cancer. Biochim Biophys Acta 2007; 1773(8): 1196-1212
doi: 10.1016/j.bbamcr.2007.05.001 pmid:17555829
17 Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007; 26(22): 3291-3310
doi: 10.1038/sj.onc.1210422 pmid:17496923
18 Rodriguez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Das P, Waterfield MD, Ridley A, Downward J. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 1997; 89(3): 457-467
doi: 10.1016/S0092-8674(00)80226-3 pmid:9150145
19 Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 2003; 3(1): 11-22
doi: 10.1038/nrc969 pmid:12509763
20 Albright CF, Giddings BW, Liu J, Vito M, Weinberg RA. Characterization of a guanine nucleotide dissociation stimulator for a ras-related GTPase. EMBO J 1993; 12(1): 339-347
pmid:8094051
21 Feig LA. Ral-GTPases: approaching their 15 minutes of fame. Trends Cell Biol 2003; 13(8): 419-425
doi: 10.1016/S0962-8924(03)00152-1 pmid:12888294
22 White MA, Vale T, Camonis JH, Schaefer E, Wigler MH. A role for the Ral guanine nucleotide dissociation stimulator in mediating Ras-induced transformation. J Biol Chem 1996; 271(28): 16439-16442
doi: 10.1074/jbc.271.28.16439 pmid:8663585
23 Urano T, Emkey R, Feig LA. Ral-GTPases mediate a distinct downstream signaling pathway from Ras that facilitates cellular transformation. EMBO J 1996; 15(4): 810-816
pmid:8631302
24 Lim KH, O’Hayer K, Adam SJ, Kendall SD, Campbell PM, Der CJ, Counter CM. Divergent roles for RalA and RalB in malignant growth of human pancreatic carcinoma cells. Curr Biol 2006; 16(24): 2385-2394
doi: 10.1016/j.cub.2006.10.023 pmid:17174914
25 Lim KH, Baines AT, Fiordalisi JJ, Shipitsin M, Feig LA, Cox AD, Der CJ, Counter CM. Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell 2005; 7(6): 533-545
doi: 10.1016/j.ccr.2005.04.030 pmid:15950903
26 Chien Y, White MA. RAL GTPases are linchpin modulators of human tumour-cell proliferation and survival. EMBO Rep 2003; 4(8): 800-806
doi: 10.1038/sj.embor.embor899 pmid:12856001
27 Parikh C, Subrahmanyam R, Ren R. Oncogenic NRAS rapidly and efficiently induces CMML- and AML-like diseases in mice. Blood 2006; 108(7): 2349-2357
doi: 10.1182/blood-2004-08-009498 pmid:16763213
28 Zhang X, Ren R. Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood 1998; 92(10): 3829-3840
pmid:9808576
29 Tchevkina E, Agapova L, Dyakova N, Martinjuk A, Komelkov A, Tatosyan A. The small G-protein RalA stimulates metastasis of transformed cells. Oncogene 2005; 24(3): 329-335
doi: 10.1038/sj.onc.1208094 pmid:15467745
30 Omidvar N, Pearn L, Burnett AK, Darley RL. Ral is both necessary and sufficient for the inhibition of myeloid differentiation mediated by Ras. Mol Cell Biol 2006; 26(10): 3966-3975
doi: 10.1128/MCB.26.10.3966-3975.2006 pmid:16648489
31 Pear WS, Nolan GP, Scott ML, Baltimore D. Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci USA 1993; 90(18): 8392-8396
doi: 10.1073/pnas.90.18.8392 pmid:7690960
32 Gross AW, Zhang X, Ren R. Bcr-Abl with an SH3 deletion retains the ability to induce a myeloproliferative disease in mice, yet c-Abl activated by an SH3 deletion induces only lymphoid malignancy. Mol Cell Biol 1999; 19(10): 6918-6928
pmid:10490629
33 Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC, Pendergast AM, Bronson R, Aster JC, Scott ML, Baltimore D. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 1998; 92(10): 3780-3792
pmid:9808572
34 Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247(4944): 824-830
doi: 2406902" target="_blank">10.1126/science. pmid:2406902 pmid:2406902
35 Joneson T, White MA, Wigler MH, Bar-Sagi D. Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of RAS. Science 1996; 271(5250): 810-812
doi: 10.1126/science.271.5250.810 pmid:8628998
36 Hinoi T, Kishida S, Koyama S, Ikeda M, Matsuura Y, Kikuchi A. Post-translational modifications of Ras and Ral are important for the action of Ral GDP dissociation stimulator. J Biol Chem 1996; 271(33): 19710-19716
doi: 10.1074/jbc.271.33.19710 pmid:8702675
37 Matsubara K, Kishida S, Matsuura Y, Kitayama H, Noda M, Kikuchi A. Plasma membrane recruitment of RalGDS is critical for Ras-dependent Ral activation. Oncogene 1999; 18(6): 1303-1312
doi: 10.1038/sj.onc.1202425 pmid:10022812
38 Plett PA, Frankovitz SM, Orschell CM. Distribution of marrow repopulating cells between bone marrow and spleen early after transplantation. Blood 2003; 102(6): 2285-2291
doi: 10.1182/blood-2002-12-3742 pmid:12775569
39 Fei J, Li Y, Zhu X, Luo X. miR-181a post-transcriptionally downregulates oncogenic RalA and contributes to growth inhibition and apoptosis in chronic myelogenous leukemia (CML). PLoS ONE 2012; 7(3): e32834
doi: 10.1371/journal.pone.0032834 pmid:22442671
40 Zhu X, Li Y, Luo X, Fei J. Inhibition of small GTPase RalA regulates growth and arsenic-induced apoptosis in chronic myeloid leukemia (CML) cells. Cell Signal 2012; 24(6): 1134-1140
doi: 10.1016/j.cellsig.2012.01.016 pmid:22330069
41 Chu S, Li L, Singh H, Bhatia R. BCR-tyrosine 177 plays an essential role in Ras and Akt activation and in human hematopoietic progenitor transformation in chronic myelogenous leukemia. Cancer Res 2007; 67(14): 7045-7053
doi: 10.1158/0008-5472.CAN-06-4312 pmid:17638918
42 de Bruyn KM, de Rooij J, Wolthuis RM, Rehmann H, Wesenbeek J, Cool RH, Wittinghofer AH, Bos JL. RalGEF2, a pleckstrin homology domain containing guanine nucleotide exchange factor for Ral. J Biol Chem 2000; 275(38): 29761-29766
doi: 10.1074/jbc.M001160200 pmid:10889189
43 Shao H, Andres DA. A novel RalGEF-like protein, RGL3, as a candidate effector for rit and Ras. J Biol Chem 2000; 275(35): 26914-26924
pmid:10869344
44 Wolthuis RM, Bos JL. Ras caught in another affair: the exchange factors for Ral. Curr Opin Genet Dev 1999; 9(1): 112-117
doi: 10.1016/S0959-437X(99)80016-1 pmid:10072355
45 González-García A, Pritchard CA, Paterson HF, Mavria G, Stamp G, Marshall CJ. RalGDS is required for tumor formation in a model of skin carcinogenesis. Cancer Cell 2005; 7(3): 219-226
doi: 10.1016/j.ccr.2005.01.029 pmid:15766660
[1] Rongmeng Jiang, Bing Han, Chang Dou, Fei Zhou, Bin Cao, Xingwang Li. Analysis of antibiotic usage for viral community-acquired pneumonia in adults[J]. Front. Med., 2021, 15(1): 139-143.
[2] Baokai Dou, Shichun Li, Luyao Wei, Lixin Wang, Shiguo Zhu, Zhengtao Wang, Zunji Ke, Kaixian Chen, Zhifei Wang. Astragaloside IV suppresses post-ischemic natural killer cell infiltration and activation in the brain: involvement of histone deacetylase inhibition[J]. Front. Med., 2021, 15(1): 79-90.
[3] Yun Tan, Feng Liu, Xiaoguang Xu, Yun Ling, Weijin Huang, Zhaoqin Zhu, Mingquan Guo, Yixiao Lin, Ziyu Fu, Dongguo Liang, Tengfei Zhang, Jian Fan, Miao Xu, Hongzhou Lu, Saijuan Chen. Durability of neutralizing antibodies and T-cell response post SARS-CoV-2 infection[J]. Front. Med., 2020, 14(6): 746-751.
[4] Baiwan Zhou, Dongmei An, Fenglai Xiao, Running Niu, Wenbin Li, Wei Li, Xin Tong, Graham J Kemp, Dong Zhou, Qiyong Gong, Du Lei. Machine learning for detecting mesial temporal lobe epilepsy by structural and functional neuroimaging[J]. Front. Med., 2020, 14(5): 630-641.
[5] Jiechao Ma, Yang Song, Xi Tian, Yiting Hua, Rongguo Zhang, Jianlin Wu. Survey on deep learning for pulmonary medical imaging[J]. Front. Med., 2020, 14(4): 450-469.
[6] Li Ni, Ling Zhou, Min Zhou, Jianping Zhao, Dao Wen Wang. Combination of western medicine and Chinese traditional patent medicine in treating a family case of COVID-19[J]. Front. Med., 2020, 14(2): 210-214.
[7] Yulu Wang, Dan Hu, Yanling Wu, Tianlei Ying. Recent advances in “universal” influenza virus antibodies: the rise of a hidden trimeric interface in hemagglutinin globular head[J]. Front. Med., 2020, 14(2): 149-159.
[8] Qian Wang, Linqi Zhang. Broadly neutralizing antibodies and vaccine design against HIV-1 infection[J]. Front. Med., 2020, 14(1): 30-42.
[9] Yuan Gao, Zhilei Wang, Jinfa Tang, Xiaoyi Liu, Wei Shi, Nan Qin, Xiaoyan Wang, Yu Pang, Ruisheng Li, Yaming Zhang, Jiabo Wang, Ming Niu, Zhaofang Bai, Xiaohe Xiao. New incompatible pair of TCM: Epimedii Folium combined with Psoraleae Fructus induces idiosyncratic hepatotoxicity under immunological stress conditions[J]. Front. Med., 2020, 14(1): 68-80.
[10] Tung Huynh, Ke-Qin Hu. Direct acting antiviral-induced dynamic reduction of serum α fetoprotein in hepatitis C patients without hepatocellular carcinoma[J]. Front. Med., 2019, 13(6): 658-666.
[11] Xiaolin Fan, Yanzhen Xiong, Yuan Wang. A reignited debate over the cell(s) of origin for glioblastoma and its clinical implications[J]. Front. Med., 2019, 13(5): 531-539.
[12] Won-Mo Jung, In-Soo Park, Ye-Seul Lee, Chang-Eop Kim, Hyangsook Lee, Dae-Hyun Hahm, Hi-Joon Park, Bo-Hyoung Jang, Younbyoung Chae. Characterization of hidden rules linking symptoms and selection of acupoint using an artificial neural network model[J]. Front. Med., 2019, 13(1): 112-120.
[13] Chaoran Dou, Qin Li, Tao Ying, Yulin Yan, Xia Wang, Bing Hu. Determining “abnormal” levator hiatus distensibility using three-dimensional transperineal ultrasound in Chinese women[J]. Front. Med., 2018, 12(5): 572-579.
[14] Fang Fang, Weihua Xiao, Zhigang Tian. Challenges of NK cell-based immunotherapy in the new era[J]. Front. Med., 2018, 12(4): 440-450.
[15] Meijuan Zheng, Haoyu Sun, Zhigang Tian. Natural killer cells in liver diseases[J]. Front. Med., 2018, 12(3): 269-279.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed