Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2014, Vol. 8 Issue (1) : 68-78    https://doi.org/10.1007/s11684-014-0308-4
REVIEW
Genetic evidence in planar cell polarity signaling pathway in human neural tube defects
Chunquan Cai1, Ouyan Shi2()
1. Department of Surgery, Tianjin Children’s Hospital, Tianjin 300074, China; 2. School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
 Download: PDF(222 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Neural tube defects (NTDs) are a group of birth anomalies having a profound physical, emotional, and financial effects on families and communities. Their etiology is complex, involving environmental and genetic factors that interact to modulate the incidence and severity of the developing phenotype. The planar cell polarity (PCP) pathway controls the process of convergent extension (CE) during gastrulation and neural tube closure and has been implicated in the pathogenesis of NTDs in animal models and human cohorts. This review summarizes the cumulative results of recent studies on PCP signaling pathway and human NTDs. These results demonstrate that PCP gene alterations contribute to the etiology of human NTDs.

Keywords planar cell polarity      neural tube defects      rare mutations     
Corresponding Author(s): Shi Ouyan,Email:shiouy@tijmu.edu.cn   
Issue Date: 26 April 2014
 Cite this article:   
Chunquan Cai,Ouyan Shi. Genetic evidence in planar cell polarity signaling pathway in human neural tube defects[J]. Front Med, 2014, 8(1): 68-78.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-014-0308-4
https://academic.hep.com.cn/fmd/EN/Y2014/V8/I1/68
Fig.1  Diagrammatic representation of PCP signaling pathway in a mammalian cell. Black arrows indicate the signaling pathway necessary for establishment of PCP. Known biochemical interactions are indicated by blue arrows and genetic interactions are shown by red arrows. Ankdr6 is the mammalian homolog of Diego which in interacts with Fz, Vang and Pk, but has not been studied in vertebrates.
GeneMutationPhenotypeGenderCohortReference
VANGL1V239ICaudal regression1 femaleItalian and French[54]
R274QMyelomeningocele1 female[54]
M328TMyelomeningocele1 female[54]
S83LTight filum terminale with tethered cord2 female;1 maleItalian and American[55]
F153STight filum terminale with tethered cord1 female[55]
R181QMyelomeningocele1 male[55]
L202FMyelomeningocele1 female[55]
A404SCaudal regression1 male[55]
R173HNot available1 maleSlovakian, Romanian and German[57]
R186HSpinal lipoma and tethered cord1 female[57]
G205RLumbosacral meningomyelocele1 male[57]
VANGL2S84FHoloprosencephaly1 femaleChinese[58]
R353CAnencephaly1 male[58]
F437SAnencephaly1 male[58]
R135WMyelomeningocele1 maleItalian and American[59]
R177HDiastematomyelia1 female[59]
L242V1 lumbar myeolocystocele;1 myelomeningoceleBoth female[59]
T247MLipoma of the filum terminalis1 male[59]
R270HFibrolipoma of the filum terminalis1 male[59]
R482HCaudal agenesis and tethered cord1 female[59]
FZD6R405QMyelomeningocele1 female;1 maleItalian and Canada[66]
R511CMyelomeningocele1 female[66]
R511HCaudal regression1 male[66]
C615XMeningocele1 female[66]
C*20T(3′UTR)Myelomeningocele1 male[66]
CELSR1A773VCraniorachischisis1 unknownAmerican, English and French[68]
R2312PCraniorachischisis1 unknown[68]
R2438QCraniorachischisis1 unknown[68]
N2739TCraniorachischisis1 unknown[68]
S2964LCraniorachischisis2 unknown[68]
P2983ACraniorachischisis2 unknown[68]
R541WMyelomeningocele1 unknownItalian and Canada[69]
V551MLipomyelocele1 unknown[69]
Q834XMyelomeningocele1 unknown[69]
R836CLipoma1 unknown[69]
V1008LTight filum terminale1 unknown[69]
D1401GMyelomeningocele1 unknown[69]
T1443PLipomyelomeningocele1 unknown[69]
R1456QCaudal agenesis1 unknown[69]
R1526WMyelomeningocele1 unknown[69]
R1835CMyelomeningocele1 unknown[69]
R2121CLipomyelomeningocele1 unknown[69]
S2190LLipoma1 unknown[69]
A2228VLipoma1 unknown[69]
R2359CLipomyelocele1 unknown[69]
S2963_T2966delCaudal agenesis1 unknown[69]
DVL2A53VLipoma1 femaleItalian and Canada[75]
E620XCaudal agenesis and tethered cord1 female[75]
Y667CMyelomeningocele1 female[75]
A111VLipoma and tethered cord1 female[75]
R596WMeningocele1 female[75]
S358FLipoma1 female[75]
DVL3I353VCaudal agenesis1 male[75]
I384VLipoma1 male[75]
A641TMyelomeningocele1 female[75]
PRICKLE1I69TDiastematomyelia1 femaleItalian and American[81]
N81HMyelomeningocele1 male[81]
T275MMyelomeningocele,1 unknown[81]
V550MMyelomeningocele1 male[81]
R682CMyelomeningocele1 male[81]
S739FMyelomeningocele1 male[81]
D771NCaudal agenesis1 male[81]
FUZP39SMyelomeningocele1 unknownItalian[84]
G140ECaudal regression1 unknown[84]
S142TMyelomeningocele1 unknown[84]
D354YMyelomeningocele1 female[84]
R404QHemimyelomeningocele1 male[84]
SCRIBP454SCraniorachischisis1 unknownAmerican, English and French[68]
R1535QCraniorachischisis1 unknown[68]
DACT1R45WCraniorachischisis1 femaleChinese[90]
D142GCraniorachischisis1 female[90]
N356KCraniorachischisis1 female[90]
V702GClosed spina bifida1 female[90]
T808KEncephalocele1 female[90]
Tab.1  Mutations of PCP genes found in human neural tube defects
1 Beaudin AE, Stover PJ. Insights into metabolic mechanisms underlying folate-responsive neural tube defects: a minireview. Birth Defects Res A Clin Mol Teratol 2009; 85(4): 274-284
doi: 10.1002/bdra.20553 pmid:19180567
2 De Marco P, Calevo MG, Moroni A, Merello E, Raso A, Finnell RH, Zhu H, Andreussi L, Cama A, Capra V. Reduced folate carrier polymorphism (80A—>G) and neural tube defects. Eur J Hum Genet 2003; 11(3): 245-252
doi: 10.1038/sj.ejhg.5200946 pmid:12673279
3 O’Leary VB, Pangilinan F, Cox C, Parle-McDermott A, Conley M, Molloy AM, Kirke PN, Mills JL, Brody LC, Scott JM; Members of the Birth Defects Research Group. Reduced folate carrier polymorphisms and neural tube defect risk. Mol Genet Metab 2006; 87(4): 364-369
doi: 10.1016/j.ymgme.2005.09.024 pmid: PMID:16343969
4 De Marco P, Merello E, Calevo MG, Mascelli S, Raso A, Cama A, Capra V. Evaluation of a methylenetetrahydrofolate-dehydrogenase 1958G>A polymorphism for neural tube defect risk. J Hum Genet 2006; 51(2): 98-103
doi: 10.1007/s10038-005-0329-6 pmid:16315005
5 Kibar Z, Capra V, Gros P. Toward understanding the genetic basis of neural tube defects. Clin Genet 2007; 71(4): 295-310
doi: 10.1111/j.1399-0004.2007.00793.x pmid:17470131
6 van der Linden IJ, Afman LA, Heil SG, Blom HJ. Genetic variation in genes of folate metabolism and neural-tube defect risk. Proc Nutr Soc 2006; 65(2): 204-215
doi: 10.1079/PNS2006495 pmid:16672082
7 Bassuk AG, Kibar Z. Genetic basis of neural tube defects. Semin Pediatr Neurol 2009; 16(3): 101-110
doi: 10.1016/j.spen.2009.06.001 pmid:19778707
8 De Marco P, Merello E, Cama A, Kibar Z, Capra V. Human neural tube defects: genetic causes and prevention. Biofactors 2011; 37(4): 261-268
doi: 10.1002/biof.170 pmid:21674647
9 Rufener S, Ibrahim M, Parmar HA. Imaging of congenital spine and spinal cord malformations. Neuroimaging Clin N Am 2011; 21(3): 659-676, viii
doi: 10.1016/j.nic.2011.05.011 pmid:21807317
10 Greene ND, Copp AJ. Development of the vertebrate central nervous system: formation of the neural tube. Prenat Diagn 2009; 29(4): 303-311
doi: 10.1002/pd.2206 pmid:19206138
11 Catala M. Genetic control of caudal development. Clin Genet 2002; 61(2): 89-96
doi: 10.1034/j.1399-0004.2002.610202.x pmid:11940082
12 Colas JF, Schoenwolf GC. Towards a cellular and molecular understanding of neurulation. Dev Dyn 2001; 221(2): 117-145
doi: 10.1002/dvdy.1144 pmid:11376482
13 Copp AJ, Greene ND, Murdoch JN. The genetic basis of mammalian neurulation. Nat Rev Genet 2003; 4(10): 784-793
doi: 10.1038/nrg1181 pmid:13679871
14 Juriloff DM, Harris MJ, Tom C, MacDonald KB. Normal mouse strains differ in the site of initiation of closure of the cranial neural tube. Teratology 1991; 44(2): 225-233
doi: 10.1002/tera.1420440211 pmid:1925982
15 Van Allen MI, Kalousek DK, Chernoff GF, Juriloff D, Harris M, McGillivray BC, Yong SL, Langlois S, MacLeod PM, Chitayat D, Friedman JM, Wilson RD, McFadden D, Pantzar J, Ritchie S, Hall JG. Evidence for multi-site closure of the neural tube in humans. Am J Med Genet 1993; 47(5): 723-743
doi: 10.1002/ajmg.1320470528 pmid:8267004
16 Nakatsu T, Uwabe C, Shiota K. Neural tube closure in humans initiates at multiple sites: evidence from human embryos and implications for the pathogenesis of neural tube defects. Anat Embryol (Berl) 2000; 201(6): 455-466
doi: 10.1007/s004290050332 pmid:10909899
17 O’Rahilly R, Müller F. The two sites of fusion of the neural folds and the two neuropores in the human embryo. Teratology 2002; 65(4): 162-170
doi: 10.1002/tera.10007 pmid:11948562
18 Rossi A, Cama A, Piatelli G, Ravegnani M, Biancheri R, Tortori-Donati P. Spinal dysraphism: MR imaging rationale. J Neuroradiol 2004; 31(1): 3-24
doi: 10.1016/S0150-9861(04)96875-7 pmid:15026728
19 Vieira AR, Castillo Taucher S. Maternal age and neural tube defects: evidence for a greater effect in spina bifida than in anencephaly. Rev Med Chil 2005; 133(1): 62-70 (in Spanish)
pmid:15768151
20 Njamnshi AK, Djientcheu VP, Lekoubou A, Guemse M, Obama MT, Mbu R, Takongmo S, Kago I. Neural tube defects are rare among black Americans but not in sub-Saharan black Africans: the case of Yaounde-Cameroon. J Neurol Sci 2008; 270(1-2): 13-17
doi: 10.1016/j.jns.2008.01.010 pmid:18295800
21 Grewal J, Carmichael SL, Song J, Shaw GM. Neural tube defects: an analysis of neighbourhood- and individual-level socio-economic characteristics. Paediatr Perinat Epidemiol 2009; 23(2): 116-124
doi: 10.1111/j.1365-3016.2008.00992.x pmid:19159398
22 Moretti ME, Bar-Oz B, Fried S, Koren G. Maternal hyperthermia and the risk for neural tube defects in offspring: systematic review and meta-analysis. Epidemiology 2005; 16(2): 216-219
doi: 10.1097/01.ede.0000152903.55579.15 pmid:15703536
23 Loeken MR. Current perspectives on the causes of neural tube defects resulting from diabetic pregnancy. Am J Med Genet C Semin Med Genet 2005; 135C(1): 77-87
doi: 10.1002/ajmg.c.30056 pmid:15800853
24 Ray JG, Wyatt PR, Vermeulen MJ, Meier C, Cole DE. Greater maternal weight and the ongoing risk of neural tube defects after folic acid flour fortification. Obstet Gynecol 2005; 105(2): 261-265
doi: 10.1097/01.AOG.0000151988.84346.3e pmid:15684149
25 De Wals P, Tairou F, Van Allen MI, Uh SH, Lowry RB, Sibbald B, Evans JA, Van den Hof MC, Zimmer P, Crowley M, Fernandez B, Lee NS, Niyonsenga T. Reduction in neural-tube defects after folic acid fortification in Canada. N Engl J Med 2007; 357(2): 135-142
doi: 10.1056/NEJMoa067103 pmid:17625125
26 Cogram P, Hynes A, Dunlevy LPE, Greene NDE, Copp AJ. Specific isoforms of protein kinase C are essential for prevention of folate-resistant neural tube defects by inositol. Hum Mol Genet 2004; 13(1): 7-14
doi: 10.1093/hmg/ddh003 pmid:14613966
27 Gurvich N, Berman MG, Wittner BS, Gentleman RC, Klein PS, Green JB. Association of valproate-induced teratogenesis with histone deacetylase inhibition in vivo. FASEB J 2005; 19(9): 1166-1168
pmid:15901671
28 Menegola E, Di Renzo F, Broccia ML, Prudenziati M, Minucci S, Massa V, Giavini E. Inhibition of histone deacetylase activity on specific embryonic tissues as a new mechanism for teratogenicity. Birth Defects Res B Dev Reprod Toxicol 2005; 74(5): 392-398
doi: 10.1002/bdrb.20053 pmid:16193500
29 Brender JD, Felkner M, Suarez L, Canfield MA, Henry JP. Maternal pesticide exposure and neural tube defects in Mexican Americans. Ann Epidemiol 2010; 20(1): 16-22
doi: 10.1016/j.annepidem.2009.09.011 pmid:20006272
30 Alwan S, Reefhuis J, Rasmussen SA, Olney RS, Friedman JM; National Birth Defects Prevention Study. Use of selective serotonin-reuptake inhibitors in pregnancy and the risk of birth defects. N Engl J Med 2007; 356(26): 2684-2692
doi: 10.1056/NEJMoa066584 pmid:17596602
31 Harris MJ, Juriloff DM. An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure. Birth Defects Res A Clin Mol Teratol 2010; 88(8): 653-669
doi: 10.1002/bdra.20676 pmid:20740593
32 Bayly R, Axelrod JD. Pointing in the right direction: new developments in the field of planar cell polarity. Nat Rev Genet 2011; 12(6): 385-391
doi: 10.1038/nrg2956 pmid:21502960
33 Goodrich LV, Strutt D. Principles of planar polarity in animal development. Development 2011; 138(10): 1877-1892
doi: 10.1242/dev.054080 pmid:21521735
34 Gray RS, Roszko I, Solnica-Krezel L. Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. Dev Cell 2011; 21(1): 120-133
doi: 10.1016/j.devcel.2011.06.011 pmid:21763613
35 Henderson DJ, Chaudhry B. Getting to the heart of planar cell polarity signaling. Birth Defects Res A Clin Mol Teratol 2011; 91(6): 460-467
doi: 10.1002/bdra.20792 pmid:21538810
36 Heisenberg CP, Tada M, Rauch GJ, Saúde L, Concha ML, Geisler R, Stemple DL, Smith JC, Wilson SW. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 2000; 405(6782): 76-81
doi: 10.1038/35011068 pmid:10811221
37 Wallingford JB, Rowning BA, Vogeli KM, Rothb?cher U, Fraser SE, Harland RM. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 2000; 405(6782): 81-85
doi: 10.1038/35011077 pmid:10811222
38 Kibar Z, Vogan KJ, Groulx N, Justice MJ, Underhill DA, Gros P, Gros P. Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail. Nat Genet 2001; 28(3): 251-255
doi: 10.1038/90081 pmid:11431695
39 Murdoch JN, Doudney K, Paternotte C, Copp AJ, Stanier P. Severe neural tube defects in the loop-tail mouse result from mutation of Lpp1, a novel gene involved in floor plate specification. Hum Mol Genet 2001; 10(22): 2593-2601
doi: 10.1093/hmg/10.22.2593 pmid:11709546
40 Tree DR, Ma D, Axelrod JD. A three-tiered mechanism for regulation of planar cell polarity. Semin Cell Dev Biol 2002; 13(3): 217-224
doi: 10.1016/S1084-9521(02)00042-3 pmid:12137730
41 Axelrod JD. Progress and challenges in understanding planar cell polarity signaling. Semin Cell Dev Biol 2009; 20(8): 964-971
doi: 10.1016/j.semcdb.2009.08.001 pmid:19665570
42 Ma D, Yang CH, McNeill H, Simon MA, Axelrod JD. Fidelity in planar cell polarity signalling. Nature 2003; 421(6922): 543-547
doi: 10.1038/nature01366 pmid:12540853
43 Zallen JA. Planar polarity and tissue morphogenesis. Cell 2007; 129(6): 1051-1063
doi: 10.1016/j.cell.2007.05.050 pmid: PMID:17574020
44 Jones C, Chen P. Planar cell polarity signaling in vertebrates. Bioessays 2007; 29(2): 120-132
doi: 10.1002/bies.20526 pmid:17226800
45 Greene ND, Stanier P, Copp AJ. Genetics of human neural tube defects. Hum Mol Genet 2009; 18(R2): R113-R129
doi: 10.1093/hmg/ddp347 pmid:19808787
46 Lawrence PA, Struhl G, Casal J. Planar cell polarity: one or two pathways? Nat Rev Genet 2007; 8(7): 555-563
doi: 10.1038/nrg2125 pmid:17563758
47 Lapébie P, Borchiellini C, Houliston E. Dissecting the PCP pathway: one or more pathways?: Does a separate Wnt-Fz-Rho pathway drive morphogenesis? Bioessays 2011; 33(10): 759-768
doi: 10.1002/bies.201100023 pmid: PMID:21919026
48 Chen WS, Antic D, Matis M, Logan CY, Povelones M, Anderson GA, Nusse R, Axelrod JD. Asymmetric homotypic interactions of the atypical cadherin flamingo mediate intercellular polarity signaling. Cell 2008; 133(6): 1093-1105
doi: 10.1016/j.cell.2008.04.048 pmid:18555784
49 Strutt D, Strutt H. Differential activities of the core planar polarity proteins during Drosophila wing patterning. Dev Biol 2007; 302(1): 181-194
doi: 10.1016/j.ydbio.2006.09.026 pmid:17045581
50 Lawrence PA, Casal J, Struhl G. Cell interactions and planar polarity in the abdominal epidermis of Drosophila. Development 2004; 131(19): 4651-4664
doi: 10.1242/dev.01351 pmid:15329345
51 Amonlirdviman K, Khare NA, Tree DR, Chen WS, Axelrod JD, Tomlin CJ. Mathematical modeling of planar cell polarity to understand domineering nonautonomy. Science 2005; 307(5708): 423-426
doi: 10.1126/science.1105471 pmid:15662015
52 Casal J, Lawrence PA, Struhl G. Two separate molecular systems, Dachsous/Fat and Starry night/Frizzled, act independently to confer planar cell polarity. Development 2006; 133(22): 4561-4572
doi: 10.1242/dev.02641 pmid:17075008
53 Katoh Y, Katoh M. Comparative genomics on Vangl1 and Vangl2 genes. Int J Oncol 2005; 26(5): 1435-1440
pmid:15809738
54 Kibar Z, Torban E, McDearmid JR, Reynolds A, Berghout J, Mathieu M, Kirillova I, De Marco P, Merello E, Hayes JM, Wallingford JB, Drapeau P, Capra V, Gros P. Mutations in VANGL1 associated with neural-tube defects. N Engl J Med 2007; 356(14): 1432-1437
doi: 10.1056/NEJMoa060651 pmid:17409324
55 Kibar Z, Bosoi CM, Kooistra M, Salem S, Finnell RH, De Marco P, Merello E, Bassuk AG, Capra V, Gros P. Novel mutations in VANGL1 in neural tube defects. Hum Mutat 2009; 30(7): E706-E715
doi: 10.1002/humu.21026 pmid:19319979
56 Reynolds A, McDearmid JR, Lachance S, De Marco P, Merello E, Capra V, Gros P, Drapeau P, Kibar Z. VANGL1 rare variants associated with neural tube defects affect convergent extension in zebrafish. Mech Dev 2010; 127(7-8): 385-392
doi: 10.1016/j.mod.2009.12.002 pmid:20043994
57 Bartsch O, Kirmes I, Thiede A, Lechno S, Gocan H, Florian IS, Haaf T, Zechner U, Sabova L, Horn F. Novel VANGL1 Gene Mutations in 144 Slovakian, Romanian and German Patients with Neural Tube Defects. Mol Syndromol 2012; 3(2): 76-81
pmid:23326252
58 Lei YP, Zhang T, Li H, Wu BL, Jin L, Wang HY. VANGL2 mutations in human cranial neural-tube defects. N Engl J Med 2010; 362(23): 2232-2235
doi: 10.1056/NEJMc0910820 pmid:20558380
59 Kibar Z, Salem S, Bosoi CM, Pauwels E, De Marco P, Merello E, Bassuk AG, Capra V, Gros P. Contribution of VANGL2 mutations to isolated neural tube defects. Clin Genet 2011; 80(1): 76-82
doi: 10.1111/j.1399-0004.2010.01515.x pmid:20738329
60 Schulte G, Bryja V. The Frizzled family of unconventional G-protein-coupled receptors. Trends Pharmacol Sci 2007; 28(10): 518-525
doi: 10.1016/j.tips.2007.09.001 pmid:17884187
61 Wang Y, Guo N, Nathans J. The role of Frizzled3 and Frizzled6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells. J Neurosci 2006; 26(8): 2147-2156
doi: 10.1523/JNEUROSCI.4698-05.2005 pmid:16495441
62 Wang Y, Zhang J, Mori S, Nathans J. Axonal growth and guidance defects in Frizzled3 knock-out mice: a comparison of diffusion tensor magnetic resonance imaging, neurofilament staining, and genetically directed cell labeling. J Neurosci 2006; 26(2): 355-364
doi: 10.1523/JNEUROSCI.3221-05.2006 pmid:16407530
63 Yu H, Smallwood PM, Wang Y, Vidaltamayo R, Reed R, Nathans J. Frizzled 1 and frizzled 2 genes function in palate, ventricular septum and neural tube closure: general implications for tissue fusion processes. Development 2010; 137(21): 3707-3717
doi: 10.1242/dev.052001 pmid:20940229
64 Sala CF, Formenti E, Terstappen GC, Caricasole A. Identification, gene structure, and expression of human frizzled-3 (FZD3). Biochem Biophys Res Commun 2000; 273(1): 27-34
doi: 10.1006/bbrc.2000.2882 pmid:10873558
65 Tokuhara M, Hirai M, Atomi Y, Terada M, Katoh M. Molecular cloning of human Frizzled-6. Biochem Biophys Res Commun 1998; 243(2): 622-627
doi: 10.1006/bbrc.1998.8143 pmid:9480858
66 De Marco P, Merello E, Rossi A, Piatelli G, Cama A, Kibar Z, Capra V. FZD6 is a novel gene for human neural tube defects. Hum Mutat 2012; 33(2): 384-390
doi: 10.1002/humu.21643 pmid:22045688
67 Takeichi M. The cadherin superfamily in neuronal connections and interactions. Nat Rev Neurosci 2007; 8(1): 11-20
doi: 10.1038/nrn2043 pmid:17133224
68 Robinson A, Escuin S, Doudney K, Vekemans M, Stevenson RE, Greene ND, Copp AJ, Stanier P. Mutations in the planar cell polarity genes CELSR1 and SCRIB are associated with the severe neural tube defect craniorachischisis. Hum Mutat 2012; 33(2): 440-447
doi: 10.1002/humu.21662 pmid:22095531
69 Allache R, De Marco P, Merello E, Capra V, Kibar Z. Role of the planar cell polarity gene CELSR1 in neural tube defects and caudal agenesis. Birth Defects Res A Clin Mol Teratol 2012; 94(3): 176-181
doi: 10.1002/bdra.23002 pmid:22371354
70 Capelluto DG, Kutateladze TG, Habas R, Finkielstein CV, He X, Overduin M. The DIX domain targets dishevelled to actin stress fibres and vesicular membranes. Nature 2002; 419(6908): 726-729
doi: 10.1038/nature01056 pmid:12384700
71 Wong HC, Bourdelas A, Krauss A, Lee HJ, Shao Y, Wu D, Mlodzik M, Shi DL, Zheng J. Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Mol Cell 2003; 12(5): 1251-1260
doi: 10.1016/S1097-2765(03)00427-1 pmid:14636582
72 Wong HC, Mao J, Nguyen JT, Srinivas S, Zhang W, Liu B, Li L, Wu D, Zheng J. Structural basis of the recognition of the dishevelled DEP domain in the Wnt signaling pathway. Nat Struct Biol 2000; 7(12): 1178-1184
doi: 10.1038/82047 pmid:11101902
73 Wang J, Hamblet NS, Mark S, Dickinson ME, Brinkman BC, Segil N, Fraser SE, Chen P, Wallingford JB, Wynshaw-Boris A. Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development 2006; 133(9): 1767-1778
doi: 10.1242/dev.02347 pmid:16571627
74 Etheridge SL, Ray S, Li S, Hamblet NS, Lijam N, Tsang M, Greer J, Kardos N, Wang J, Sussman DJ, Chen P, Wynshaw-Boris A. Murine dishevelled 3 functions in redundant pathways with dishevelled 1 and 2 in normal cardiac outflow tract, cochlea, and neural tube development. PLoS Genet 2008; 4(11): e1000259
doi: 10.1371/journal.pgen.1000259 pmid:19008950
75 De Marco P, Merello E, Consales A, Piatelli G, Cama A, Kibar Z, Capra V. Genetic analysis of disheveled 2 and disheveled 3 in human neural tube defects. J Mol Neurosci 2013; 49(3): 582-588
doi: 10.1007/s12031-012-9871-9 pmid:22892949
76 Carreira-Barbosa F, Concha ML, Takeuchi M, Ueno N, Wilson SW, Tada M. Prickle 1 regulates cell movements during gastrulation and neuronal migration in zebrafish. Development 2003; 130(17): 4037-4046
doi: 10.1242/dev.00567 pmid:12874125
77 Takeuchi M, Nakabayashi J, Sakaguchi T, Yamamoto TS, Takahashi H, Takeda H, Ueno N. The prickle-related gene in vertebrates is essential for gastrulation cell movements. Curr Biol 2003; 13(8): 674-679
doi: 10.1016/S0960-9822(03)00245-8 pmid:12699625
78 Veeman MT, Slusarski DC, Kaykas A, Louie SH, Moon RT. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr Biol 2003; 13(8): 680-685
doi: 10.1016/S0960-9822(03)00240-9 pmid:12699626
79 Wen S, Zhu H, Lu W, Mitchell LE, Shaw GM, Lammer EJ, Finnell RH. Planar cell polarity pathway genes and risk for spina bifida. Am J Med Genet A 2010; 152A(2): 299-304
doi: 10.1002/ajmg.a.33230 pmid:20101694
80 Tao H, Manak JR, Sowers L, Mei X, Kiyonari H, Abe T, Dahdaleh NS, Yang T, Wu S, Chen S, Fox MH, Gurnett C, Montine T, Bird T, Shaffer LG, Rosenfeld JA, McConnell J, Madan-Khetarpal S, Berry-Kravis E, Griesbach H, Saneto RP, Scott MP, Antic D, Reed J, Boland R, Ehaideb SN, El-Shanti H, Mahajan VB, Ferguson PJ, Axelrod JD, Lehesjoki AE, Fritzsch B, Slusarski DC, Wemmie J, Ueno N, Bassuk AG. Mutations in prickle orthologs cause seizures in flies, mice, and humans. Am J Hum Genet 2011; 88(2): 138-149
doi: 10.1016/j.ajhg.2010.12.012 pmid:21276947
81 Bosoi CM, Capra V, Allache R, Trinh VQ, De Marco P, Merello E, Drapeau P, Bassuk AG, Kibar Z. Identification and characterization of novel rare mutations in the planar cell polarity gene PRICKLE1 in human neural tube defects. Hum Mutat 2011; 32(12): 1371-1375
doi: 10.1002/humu.21589 pmid:21901791
82 Gray RS, Abitua PB, Wlodarczyk BJ, Szabo-Rogers HL, Blanchard O, Lee I, Weiss GS, Liu KJ, Marcotte EM, Wallingford JB, Finnell RH. The planar cell polarity effector Fuz is essential for targeted membrane trafficking, ciliogenesis and mouse embryonic development. Nat Cell Biol 2009; 11(10): 1225-1232
doi: 10.1038/ncb1966 pmid:19767740
83 Heydeck W, Zeng H, Liu A. Planar cell polarity effector gene Fuzzy regulates cilia formation and Hedgehog signal transduction in mouse. Dev Dyn 2009; 238(12): 3035-3042
doi: 10.1002/dvdy.22130 pmid:19877275
84 Seo JH, Zilber Y, Babayeva S, Liu J, Kyriakopoulos P, De Marco P, Merello E, Capra V, Gros P, Torban E. Mutations in the planar cell polarity gene, Fuzzy, are associated with neural tube defects in humans. Hum Mol Genet 2011; 20(22): 4324-4333
doi: 10.1093/hmg/ddr359 pmid:21840926
85 Murdoch JN, Henderson DJ, Doudney K, Gaston-Massuet C, Phillips HM, Paternotte C, Arkell R, Stanier P, Copp AJ. Disruption of scribble (Scrb1) causes severe neural tube defects in the circletail mouse. Hum Mol Genet 2003; 12(2): 87-98
doi: 10.1093/hmg/ddg014 pmid:12499390
86 Cheyette BN, Waxman JS, Miller JR, Takemaru K, Sheldahl LC, Khlebtsova N, Fox EP, Earnest T, Moon RT. Dapper, a Dishevelled-associated antagonist of beta-catenin and JNK signaling, is required for notochord formation. Dev Cell 2002; 2(4): 449-461
doi: 10.1016/S1534-5807(02)00140-5 pmid:11970895
87 Suriben R, Kivim?e S, Fisher DA, Moon RT, Cheyette BN. Posterior malformations in Dact1 mutant mice arise through misregulated Vangl2 at the primitive streak. Nat Genet 2009; 41(9): 977-985
doi: 10.1038/ng.435 pmid:19701191
88 Wen J, Chiang YJ, Gao C, Xue H, Xu J, Ning Y, Hodes RJ, Gao X, Chen YG. Loss of Dact1 disrupts planar cell polarity signaling by altering dishevelled activity and leads to posterior malformation in mice. J Biol Chem 2010; 285(14): 11023-11030
doi: 10.1074/jbc.M109.085381 pmid:20145239
89 Yang X, Cheyette BN. SEC14 and spectrin domains 1 (Sestd1) and Dapper antagonist of catenin 1 (Dact1) scaffold proteins cooperatively regulate the Van Gogh-like 2 (Vangl2) four-pass transmembrane protein and planar cell polarity (PCP) pathway during embryonic development in mice. J Biol Chem 2013; 288(28): 20111-20120
doi: 10.1074/jbc.M113.465427 pmid:23696638
90 Shi Y, Ding Y, Lei YP, Yang XY, Xie GM, Wen J, Cai CQ, Li H, Chen Y, Zhang T, Wu BL, Jin L, Chen YG, Wang HY. Identification of novel rare mutations of DACT1 in human neural tube defects. Hum Mutat 2012; 33(10): 1450-1455
doi: 10.1002/humu.22121 pmid:22610794
[1] Yuqin Men,Aizhen Zhang,Liwen Zhang,Yecheng Jin,Zhishuo Wang,Jing Zhao,Xiaolin Yu,Jian Zhang,Jiangang Gao. Loss of liver kinase B1 causes planar polarity defects in cochlear hair cells in mice[J]. Front. Med., 2016, 10(4): 481-489.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed