Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2014, Vol. 8 Issue (2) : 201-216    https://doi.org/10.1007/s11684-014-0324-4
REVIEW
Generation and repair of AID-initiated DNA lesions in B lymphocytes
Zhangguo Chen,Jing H. Wang()
Integrated Department of Immunology, University of Colorado Anschutz Medical Campus and National Jewish Health, Denver, CO 80206, USA
 Download: PDF(440 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Activation-induced deaminase (AID) initiates the secondary antibody diversification process in B lymphocytes. In mammalian B cells, this process includes somatic hypermutation (SHM) and class switch recombination (CSR), both of which require AID. AID induces U:G mismatch lesions in DNA that are subsequently converted into point mutations or DNA double stranded breaks during SHM/CSR. In a physiological context, AID targets immunoglobulin (Ig) loci to mediate SHM/CSR. However, recent studies reveal genome-wide access of AID to numerous non-Ig loci. Thus, AID poses a threat to the genome of B cells if AID-initiated DNA lesions cannot be properly repaired. In this review, we focus on the molecular mechanisms that regulate the specificity of AID targeting and the repair pathways responsible for processing AID-initiated DNA lesions.

Keywords class switch recombination      somatic hypermutation      activation-induced deaminase      DNA repair      genomic instability     
Corresponding Author(s): Jing H. Wang   
Just Accepted Date: 01 May 2014   Issue Date: 21 May 2014
 Cite this article:   
Zhangguo Chen,Jing H. Wang. Generation and repair of AID-initiated DNA lesions in B lymphocytes[J]. Front. Med., 2014, 8(2): 201-216.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-014-0324-4
https://academic.hep.com.cn/fmd/EN/Y2014/V8/I2/201
Fig.1  SHM and CSR at the Igh locus. The genomic configuration of rearranged mouse Igh locus is shown. AID introduces point mutations into variable (V) region exon during SHM. During CSR, AID induces DNA double strand breaks (DSBs) to donor Sμ and a downstream acceptor S region, with Sγ1 as an example. Broken S regions are rejoined via NHEJ pathway while intervening DNA is excised as a circle. Transcription is required for both SHM/CSR with promoters delineated for both V and S regions. Upon CSR, originally expressed Cμ exons are replaced by Cγ1 exons so that naïve IgM+ B cells switch to antigen experienced IgG1+ B cells. Vertical arrows: point mutations.
Fig.2  Processing of AID-initiated DNA lesions. AID deaminates C residue and converts it into Uracil (U). AID-initiated U:G mismatch can be processed via several different pathways. (1) General replication machinery can interpret U as T and pair it with A during subsequent replication. This pathway leads to typical C→T or G→A transition mutations at C:G base pair. (2) U:G mismatches can be recognized by UNG, together with error-prone repair, leading to transition or transversion mutations at C:G base pair. (3) MMR recognition of U:G mismatches and error-prone repair result in mutations at A:T base pair. (4) After MMR or UNG recognition, error-free repair can also correct the U:G mismatch lesions and result in the absence of mutations.
1 GaneshK, NeubergerMS. The relationship between hypothesis and experiment in unveiling the mechanisms of antibody gene diversification. FASEB J2011; 25(4): 1123–1132
doi: 10.1096/fj.11-0402ufm pmid: 21454370
2 KatoL, StanlieA, BegumNA, KobayashiM, AidaM, HonjoT. An evolutionary view of the mechanism for immune and genome diversity. J Immunol2012; 188(8): 3559–3566
doi: 10.4049/jimmunol.1102397 pmid: 22492685
3 WangJH. The role of activation-induced deaminase in antibody diversification and genomic instability. Immunol Res2013; 55(1-3): 287–297
doi: 10.1007/s12026-012-8369-4 pmid: 22956489
4 MuramatsuM, KinoshitaK, FagarasanS, YamadaS, ShinkaiY, HonjoT. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell2000; 102(5): 553–563
doi: 10.1016/S0092-8674(00)00078-7 pmid: 11007474
5 Di NoiaJM, NeubergerMS. Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem2007; 76(1): 1–22
doi: 10.1146/annurev.biochem.76.061705.090740 pmid: 17328676
6 ChahwanR, EdelmannW, ScharffMD, RoaS. AIDing antibody diversity by error-prone mismatch repair. Semin Immunol2012; 24(4): 293–300
doi: 10.1016/j.smim.2012.05.005 pmid: 22703640
7 ChaudhuriJ, BasuU, ZarrinA, YanC, FrancoS, PerlotT, VuongB, WangJ, PhanRT, DattaA, ManisJ, AltFW. Evolution of the immunoglobulin heavy chain class switch recombination mechanism. Adv Immunol2007; 94: 157–214
doi: 10.1016/S0065-2776(06)94006-1 pmid: 17560275
8 StavnezerJ. Complex regulation and function of activation-induced cytidine deaminase. Trends Immunol2011; 32(5): 194–201
doi: 10.1016/j.it.2011.03.003 pmid: 21493144
9 AltFW, ZhangY, MengFL, GuoC, SchwerB. Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell2013; 152(3): 417–429
doi: 10.1016/j.cell.2013.01.007 pmid: 23374339
10 DanielJA, NussenzweigA. The AID-induced DNA damage response in chromatin. Mol Cell2013; 50(3): 309–321
doi: 10.1016/j.molcel.2013.04.017 pmid: 23664375
11 NussenzweigA, NussenzweigMC. Origin of chromosomal translocations in lymphoid cancer. Cell2010; 141(1): 27–38
doi: 10.1016/j.cell.2010.03.016 pmid: 20371343
12 JungD, AltFW. Unraveling V(D)J recombination; insights into gene regulation. Cell2004; 116(2): 299–311
doi: 10.1016/S0092-8674(04)00039-X pmid: 14744439
13 HackneyJA, MisaghiS, SengerK, GarrisC, SunY, LorenzoMN, ZarrinAA. DNA targets of AID evolutionary link between antibody somatic hypermutation and class switch recombination. Adv Immunol2009; 101: 163–189
doi: 10.1016/S0065-2776(08)01005-5 pmid: 19231595
14 ChaudhuriJ, AltFW. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol2004; 4(7): 541–552
doi: 10.1038/nri1395 pmid: 15229473
15 BoboilaC, AltFW, SchwerB. Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks. Adv Immunol2012; 116: 1–49
doi: 10.1016/B978-0-12-394300-2.00001-6 pmid: 23063072
16 FuYX, ChaplinDD. Development and maturation of secondary lymphoid tissues. Annu Rev Immunol1999; 17(1): 399–433
doi: 10.1146/annurev.immunol.17.1.399 pmid: 10358764
17 HonjoT, KinoshitaK, MuramatsuM. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu Rev Immunol2002; 20(1): 165–196
doi: 10.1146/annurev.immunol.20.090501.112049 pmid: 11861601
18 MacLennanIC. Germinal centers. Annu Rev Immunol1994; 12(1): 117–139
doi: 10.1146/annurev.iy.12.040194.001001 pmid: 8011279
19 MacLennanIC, ToellnerKM, CunninghamAF, SerreK, SzeDM, ZúñigaE, CookMC, VinuesaCG. Extrafollicular antibody responses. Immunol Rev2003; 194(1): 8–18
doi: 10.1034/j.1600-065X.2003.00058.x pmid: 12846803
20 StavnezerJ, GuikemaJE, SchraderCE. Mechanism and regulation of class switch recombination. Annu Rev Immunol2008; 26(1): 261–292
doi: 10.1146/annurev.immunol.26.021607.090248 pmid: 18370922
21 NagaokaH, MuramatsuM, YamamuraN, KinoshitaK, HonjoT. Activation-induced deaminase (AID)-directed hypermutation in the immunoglobulin Smu region: implication of AID involvement in a common step of class switch recombination and somatic hypermutation. J Exp Med2002; 195(4): 529–534
doi: 10.1084/jem.20012144 pmid: 11854365
22 Reina-San-MartinB, DifilippantonioS, HanitschL, MasilamaniRF, NussenzweigA, NussenzweigMC. H2AX is required for recombination between immunoglobulin switch regions but not for intra-switch region recombination or somatic hypermutation. J Exp Med2003; 197(12): 1767–1778
doi: 10.1084/jem.20030569 pmid: 12810694
23 ShafferAL, RosenwaldA, HurtEM, GiltnaneJM, LamLT, PickeralOK, StaudtLM. Signatures of the immune response. Immunity2001; 15(3): 375–385
doi: 10.1016/S1074-7613(01)00194-7 pmid: 11567628
24 LiangG, KitamuraK, WangZ, LiuG, ChowdhuryS, FuW, KouraM, WakaeK, HonjoT, MuramatsuM. RNA editing of hepatitis B virus transcripts by activation-induced cytidine deaminase. Proc Natl Acad Sci USA2013; 110(6): 2246–2251
doi: 10.1073/pnas.1221921110 pmid: 23341589
25 NeubergerMS, HarrisRS, Di NoiaJ, Petersen-MahrtSK. Immunity through DNA deamination. Trends Biochem Sci2003; 28(6): 305–312
doi: 10.1016/S0968-0004(03)00111-7 pmid: 12826402
26 BransteitterR, PhamP, ScharffMD, GoodmanMF. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci USA2003; 100(7): 4102–4107
doi: 10.1073/pnas.0730835100 pmid: 12651944
27 ChaudhuriJ, KhuongC, AltFW. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature2004; 430(7003): 992–998
doi: 10.1038/nature02821 pmid: 15273694
28 ChaudhuriJ, TianM, KhuongC, ChuaK, PinaudE, AltFW. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature2003; 422(6933): 726–730
doi: 10.1038/nature01574 pmid: 12692563
29 DickersonSK, MarketE, BesmerE, PapavasiliouFN. AID mediates hypermutation by deaminating single stranded DNA. J Exp Med2003; 197(10): 1291–1296
doi: 10.1084/jem.20030481 pmid: 12756266
30 PhamP, BransteitterR, PetruskaJ, GoodmanMF. Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature2003; 424(6944): 103–107
doi: 10.1038/nature01760 pmid: 12819663
31 RamiroAR, StavropoulosP, JankovicM, NussenzweigMC. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat Immunol2003; 4(5): 452–456
doi: 10.1038/ni920 pmid: 12692548
32 SohailA, KlapaczJ, SamaranayakeM, UllahA, BhagwatAS. Human activation-induced cytidine deaminase causes transcription-dependent, strand-biased C to U deaminations. Nucleic Acids Res2003; 31(12): 2990–2994
doi: 10.1093/nar/gkg464 pmid: 12799424
33 TianM, AltFW. Transcription-induced cleavage of immunoglobulin switch regions by nucleotide excision repair nucleases in vitro. J Biol Chem2000; 275(31): 24163–24172
doi: 10.1074/jbc.M003343200 pmid: 10811812
34 YuK, ChedinF, HsiehCL, WilsonTE, LieberMR. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol2003; 4(5): 442–451
doi: 10.1038/ni919 pmid: 12679812
35 MasukataH, TomizawaJ. A mechanism of formation of a persistent hybrid between elongating RNA and template DNA. Cell1990; 62(2): 331–338
doi: 10.1016/0092-8674(90)90370-T pmid: 1695550
36 LeeDY, ClaytonDA. Properties of a primer RNA-DNA hybrid at the mouse mitochondrial DNA leading-strand origin of replication. J Biol Chem1996; 271(39): 24262–24269
doi: 10.1074/jbc.271.39.24262 pmid: 8798672
37 MartomoSA, YangWW, GearhartPJ. A role for Msh6 but not Msh3 in somatic hypermutation and class switch recombination. J Exp Med2004; 200(1): 61–68
doi: 10.1084/jem.20040691 pmid: 15238605
38 NeubergerMS, RadaC. Somatic hypermutation: activation-induced deaminase for C/G followed by polymerase eta for A/T. J Exp Med2007; 204(1): 7–10
doi: 10.1084/jem.20062409 pmid: 17190841
39 RadaC, Di NoiaJM, NeubergerMS. Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. Mol Cell2004; 16(2): 163–171
doi: 10.1016/j.molcel.2004.10.011 pmid: 15494304
40 RadaC, EhrensteinMR, NeubergerMS, MilsteinC. Hot spot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting. Immunity1998; 9(1): 135–141
doi: 10.1016/S1074-7613(00)80595-6 pmid: 9697843
41 RadaC, WilliamsGT, NilsenH, BarnesDE, LindahlT, NeubergerMS. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr Biol2002; 12(20): 1748–1755
doi: 10.1016/S0960-9822(02)01215-0 pmid: 12401169
42 ShenHM, TanakaA, BozekG, NicolaeD, StorbU. Somatic hypermutation and class switch recombination in Msh6(-/-)Ung(-/-) double-knockout mice. J Immunol2006; 177(8): 5386–5392
pmid: 17015724
43 XueK, RadaC, NeubergerMS. The in vivo pattern of AID targeting to immunoglobulin switch regions deduced from mutation spectra in msh2-/-ung-/- mice. J Exp Med2006; 203(9): 2085–2094
doi: 10.1084/jem.20061067 pmid: 16894013
44 GuikemaJE, LinehanEK, TsuchimotoD, NakabeppuY, StraussPR, StavnezerJ, SchraderCE. APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination. J Exp Med2007; 204(12): 3017–3026
doi: 10.1084/jem.20071289 pmid: 18025127
45 SabouriZ, OkazakiIM, ShinkuraR, BegumN, NagaokaH, TsuchimotoD, NakabeppuY, HonjoT. Apex2 is required for efficient somatic hypermutation but not for class switch recombination of immunoglobulin genes. Int Immunol2009; 21(8): 947–955
doi: 10.1093/intimm/dxp061 pmid: 19556307
46 SchraderCE1, GuikemaJE, WuX, StavnezerJ. The roles of APE1, APE2, DNA polymerase beta and mismatch repair in creating S region DNA breaks during antibody class switch. Philos Trans R Soc Lond B Biol Sci, 2009. 364(1517) 645–652
pmid: 19010771
47 LudwigDL, MacInnesMA, TakiguchiY, PurtymunPE, HenrieM, FlanneryM, MenesesJ, PedersenRA, ChenDJ. A murine AP-endonuclease gene-targeted deficiency with post-implantation embryonic progression and ionizing radiation sensitivity. Mutat Res1998; 409(1): 17–29
doi: 10.1016/S0921-8777(98)00039-1 pmid: 9806499
48 XanthoudakisS, SmeyneRJ, WallaceJD, CurranT. The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice. Proc Natl Acad Sci USA1996; 93(17): 8919–8923
doi: 10.1073/pnas.93.17.8919 pmid: 8799128
49 MasaniS, HanL, YuK. Apurinic/apyrimidinic endonuclease 1 is the essential nuclease during immunoglobulin class switch recombination. Mol Cell Biol2013; 33(7): 1468–1473
doi: 10.1128/MCB.00026-13 pmid: 23382073
50 ChahwanR, van OersJM, AvdievichE, ZhaoC, EdelmannW, ScharffMD, RoaS. The ATPase activity of MLH1 is required to orchestrate DNA double-strand breaks and end processing during class switch recombination. J Exp Med2012; 209(4): 671–678
doi: 10.1084/jem.20111531 pmid: 22451719
51 LongerichS, BasuU, AltF, StorbU. AID in somatic hypermutation and class switch recombination. Curr Opin Immunol2006; 18(2): 164–174
doi: 10.1016/j.coi.2006.01.008 pmid: 16464563
52 OdegardVH, SchatzDG. Targeting of somatic hypermutation. Nat Rev Immunol2006; 6(8): 573–583
doi: 10.1038/nri1896 pmid: 16868548
53 LiuM, DukeJL, RichterDJ, VinuesaCG, GoodnowCC, KleinsteinSH, SchatzDG. Two levels of protection for the B cell genome during somatic hypermutation. Nature2008; 451(7180): 841–845
doi: 10.1038/nature06547 pmid: 18273020
54 PasqualucciL, MigliazzaA, FracchiollaN, WilliamC, NeriA, BaldiniL, ChagantiRS, KleinU, KüppersR, RajewskyK, Dalla-FaveraR. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc Natl Acad Sci USA1998; 95(20): 11816–11821
doi: 10.1073/pnas.95.20.11816 pmid: 9751748
55 ShenHM, PetersA, BaronB, ZhuX, StorbU. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science1998; 280(5370): 1750–1752
doi: 10.1126/science.280.5370.1750 pmid: 9624052
56 PengHZ, DuMQ, KoulisA, AielloA, DoganA, PanLX, IsaacsonPG. Nonimmunoglobulin gene hypermutation in germinal center B cells. Blood1999; 93(7): 2167–2172
pmid: 10090923
57 StorbU, ShenHM, MichaelN, KimN. Somatic hypermutation of immunoglobulin and non-immunoglobulin genes. Philos Trans R Soc Lond B Biol Sci2001; 356(1405): 13–19
doi: 10.1098/rstb.2000.0743 pmid: 11205325
58 GordonMS, KanegaiCM, DoerrJR, WallR. Somatic hypermutation of the B cell receptor genes B29 (Igβ, CD79b) and mb1 (Igα, CD79a). Proc Natl Acad Sci USA2003; 100(7): 4126–4131
doi: 10.1073/pnas.0735266100 pmid: 12651942
59 DelkerRK, FugmannSD, PapavasiliouFN. A coming-of-age story: activation-induced cytidine deaminase turns 10. Nat Immunol2009; 10(11): 1147–1153
doi: 10.1038/ni.1799 pmid: 19841648
60 RogozinIB, KolchanovNA. Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochim Biophys Acta1992; 1171(1): 11–18
doi: 10.1016/0167-4781(92)90134-L pmid: 1420357
61 RogozinIB, PavlovYI, BebenekK, MatsudaT, KunkelTA. Somatic mutation hotspots correlate with DNA polymerase eta error spectrum. Nat Immunol2001; 2(6): 530–536
doi: 10.1038/88732 pmid: 11376340
62 KlotzEL, HackettJ Jr, StorbU. Somatic hypermutation of an artificial test substrate within an Igκ transgene. J Immunol1998; 161(2): 782–790
pmid: 9670955
63 StorbU, KlotzEL, HackettJ Jr, KageK, BozekG, MartinTE. A hypermutable insert in an immunoglobulin transgene contains hotspots of somatic mutation and sequences predicting highly stable structures in the RNA transcript. J Exp Med1998; 188(4): 689–698
doi: 10.1084/jem.188.4.689 pmid: 9705951
64 MichaelN, MartinTE, NicolaeD, KimN, PadjenK, ZhanP, NguyenH, PinkertC, StorbU. Effects of sequence and structure on the hypermutability of immunoglobulin genes. Immunity2002; 16(1): 123–134
doi: 10.1016/S1074-7613(02)00261-3 pmid: 11825571
65 YélamosJ, KlixN, GoyenecheaB, LozanoF, ChuiYL, González FernándezA, PannellR, NeubergerMS, MilsteinC. Targeting of non-Ig sequences in place of the V segment by somatic hypermutation. Nature1995; 376(6537): 225–229
doi: 10.1038/376225a0 pmid: 7617031
66 JollyCJ, NeubergerMS. Somatic hypermutation of immunoglobulin κ transgenes: association of mutability with demethylation. Immunol Cell Biol2001; 79(1): 18–22
doi: 10.1046/j.1440-1711.2001.00968.x pmid: 11168618
67 ChenZ, ViboolsittiseriSS, O’ConnorBP, WangJH. Target DNA sequence directly regulates the frequency of activation-induced deaminase-dependent mutations. J Immunol2012; 189(8): 3970–3982
doi: 10.4049/jimmunol.1200416 pmid: 22962683
68 MutoT, OkazakiIM, YamadaS, TanakaY, KinoshitaK, MuramatsuM, NagaokaH, HonjoT. Negative regulation of activation-induced cytidine deaminase in B cells. Proc Natl Acad Sci USA2006; 103(8): 2752–2757
doi: 10.1073/pnas.0510970103 pmid: 16477013
69 WangL, WuerffelR, FeldmanS, KhamlichiAA, KenterAL. S region sequence, RNA polymerase II, and histone modifications create chromatin accessibility during class switch recombination. J Exp Med2009; 206(8): 1817–1830
doi: 10.1084/jem.20081678 pmid: 19596805
70 PavriR, GazumyanA, JankovicM, Di VirgilioM, KleinI, Ansarah-SobrinhoC, ReschW, YamaneA, Reina San-MartinB, BarretoV, NielandTJ, RootDE, CasellasR, NussenzweigMC. Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell2010; 143(1): 122–133
doi: 10.1016/j.cell.2010.09.017 pmid: 20887897
71 StanlieA, AidaM, MuramatsuM, HonjoT, BegumNA. Histone3 lysine4 trimethylation regulated by the facilitates chromatin transcription complex is critical for DNA cleavage in class switch recombination. Proc Natl Acad Sci USA2010; 107(51): 22190–22195
doi: 10.1073/pnas.1016923108 pmid: 21139053
72 DanielJA, SantosMA, WangZ, ZangC, SchwabKR, JankovicM, FilsufD, ChenHT, GazumyanA, YamaneA, ChoYW, SunHW, GeK, PengW, NussenzweigMC, CasellasR, DresslerGR, ZhaoK, NussenzweigA. PTIP promotes chromatin changes critical for immunoglobulin class switch recombination. Science2010; 329(5994): 917–923
doi: 10.1126/science.1187942 pmid: 20671152
73 Jeevan-RajBP, RobertI, HeyerV, PageA, WangJH, CammasF, AltFW, LossonR, Reina-San-MartinB. Epigenetic tethering of AID to the donor switch region during immunoglobulin class switch recombination. J Exp Med2011; 208(8): 1649–1660
doi: 10.1084/jem.20110118 pmid: 21746811
74 YamaneA, ReschW, KuoN, KuchenS, LiZ, SunHW, RobbianiDF, McBrideK, NussenzweigMC, CasellasR. Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nat Immunol2011; 12(1): 62–69
doi: 10.1038/ni.1964 pmid: 21113164
75 BetzAG, MilsteinC, González-FernándezA, PannellR, LarsonT, NeubergerMS. Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell1994; 77(2): 239–248
doi: 10.1016/0092-8674(94)90316-6 pmid: 8168132
76 InlayMA, GaoHH, OdegardVH, LinT, SchatzDG, XuY. Roles of the Igκ light chain intronic and 3′ enhancers in Igk somatic hypermutation. J Immunol2006; 177(2): 1146–1151
pmid: 16818772
77 KothapalliNR, FugmannSD. Targeting of AID-mediated sequence diversification to immunoglobulin genes. Curr Opin Immunol2011; 23(2): 184–189
doi: 10.1016/j.coi.2010.12.009 pmid: 21295456
78 PerlotT, AltFW, BassingCH, SuhH, PinaudE. Elucidation of IgH intronic enhancer functions via germ-line deletion. Proc Natl Acad Sci USA2005; 102(40): 14362–14367
doi: 10.1073/pnas.0507090102 pmid: 16186486
79 FukitaY, JacobsH, RajewskyK. Somatic hypermutation in the heavy chain locus correlates with transcription. Immunity1998; 9(1): 105–114
doi: 10.1016/S1074-7613(00)80592-0 pmid: 9697840
80 KothapalliNR, ColluraKM, NortonDD, FugmannSD. Separation of mutational and transcriptional enhancers in Ig genes. J Immunol2011; 187(6): 3247–3255
doi: 10.4049/jimmunol.1101568 pmid: 21844395
81 KothapalliNR, NortonDD, FugmannSD. Classical Mus musculus Igκ enhancers support transcription but not high level somatic hypermutation from a V-lambda promoter in chicken DT40 cells. PLoS ONE2011; 6(4): e18955
doi: 10.1371/journal.pone.0018955 pmid: 21533098
82 StorbU, PetersA, KlotzE, KimN, ShenHM, HackettJ, RogersonB, MartinTE. Cis-acting sequences that affect somatic hypermutation of Ig genes. Immunol Rev1998; 162(1): 153–160
doi: 10.1111/j.1600-065X.1998.tb01438.x pmid: 9602361
83 KodgireP, MukkawarP, RatnamS, MartinTE, StorbU. Changes in RNA polymerase II progression influence somatic hypermutation of Ig-related genes by AID. J Exp Med2013; 210(7): 1481–1492
doi: 10.1084/jem.20121523 pmid: 23752228
84 AidaM, HamadN, StanlieA, BegumNA, HonjoT. Accumulation of the FACT complex, as well as histone H3.3, serves as a target marker for somatic hypermutation. Proc Natl Acad Sci USA2013; 110(19): 7784–7789
doi: 10.1073/pnas.1305859110 pmid: 23610419
85 MorvanCL, PinaudE, DecourtC, CuvillierA, CognéM. The immunoglobulin heavy-chain locus hs3b and hs4 3′ enhancers are dispensable for VDJ assembly and somatic hypermutation. Blood2003; 102(4): 1421–1427
doi: 10.1182/blood-2002-12-3827 pmid: 12714490
86 RouaudP, Vincent-FabertC, SaintamandA, FiancetteR, MarquetM, RobertI, Reina-San-MartinB, PinaudE, CognéM, DenizotY. The IgH 3′ regulatory region controls somatic hypermutation in germinal center B cells. J Exp Med2013; 210(8): 1501–1507
doi: 10.1084/jem.20130072 pmid: 23825188
87 McDonaldJJ, AlinikulaJ, BuersteddeJM, SchatzDG. A critical context-dependent role for E boxes in the targeting of somatic hypermutation. J Immunol2013; 191(4): 1556–1566
doi: 10.4049/jimmunol.1300969 pmid: 23836058
88 KohlerKM, McDonaldJJ, DukeJL, ArakawaH, TanS, KleinsteinSH, BuersteddeJM, SchatzDG. Identification of core DNA elements that target somatic hypermutation. J Immunol2012; 189(11): 5314–5326
doi: 10.4049/jimmunol.1202082 pmid: 23087403
89 BlagodatskiA, BatrakV, SchmidlS, SchoetzU, CaldwellRB, ArakawaH, BuersteddeJM. A cis-acting diversification activator both necessary and sufficient for AID-mediated hypermutation. PLoS Genet2009; 5(1): e1000332
doi: 10.1371/journal.pgen.1000332 pmid: 19132090
90 KothapalliN, NortonDD, FugmannSD. Cutting edge: a cis-acting DNA element targets AID-mediated sequence diversification to the chicken Ig light chain gene locus. J Immunol2008; 180(4): 2019–2023
pmid: 18250404
91 TanakaA, ShenHM, RatnamS, KodgireP, StorbU. Attracting AID to targets of somatic hypermutation. J Exp Med2010; 207(2): 405–415
doi: 10.1084/jem.20090821 pmid: 20100870
92 GazumyanA, BothmerA, KleinIA, NussenzweigMC, McBrideKM. Activation-induced cytidine deaminase in antibody diversification and chromosome translocation. Adv Cancer Res2012; 113: 167–190
doi: 10.1016/B978-0-12-394280-7.00005-1 pmid: 22429855
93 KüppersR, Dalla-FaveraR. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene2001; 20(40): 5580–5594
doi: 10.1038/sj.onc.1204640 pmid: 11607811
94 JanzS. Myc translocations in B cell and plasma cell neoplasms. DNA Repair (Amst)2006; 5(9-10): 1213–1224
doi: 10.1016/j.dnarep.2006.05.017 pmid: 16815105
95 KüppersR. Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer2005; 5(4): 251–262
doi: 10.1038/nrc1589 pmid: 15803153
96 ShenHM, MichaelN, KimN, StorbU. The TATA binding protein, c-Myc and survivin genes are not somatically hypermutated, while Ig and BCL6 genes are hypermutated in human memory B cells. Int Immunol2000; 12(7): 1085–1093
doi: 10.1093/intimm/12.7.1085 pmid: 10882420
97 CaladoDP, SasakiY, GodinhoSA, PellerinA, KöchertK, SleckmanBP, de AlboránIM, JanzM, RodigS, RajewskyK. The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers. Nat Immunol2012; 13(11): 1092–1100
doi: 10.1038/ni.2418 pmid: 23001146
98 ShilohY. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer2003; 3(3): 155–168
doi: 10.1038/nrc1011 pmid: 12612651
99 ShilohY, ZivY. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol2013; 14(4): 197–210
doi: 10.1038/nrm3546
100 BassingCH, AltFW. H2AX may function as an anchor to hold broken chromosomal DNA ends in close proximity. Cell Cycle2004; 3(2): 149–153
doi: 10.4161/cc.3.2.684 pmid: 14712078
101 FrancoS, AltFW, ManisJP. Pathways that suppress programmed DNA breaks from progressing to chromosomal breaks and translocations. DNA Repair (Amst)2006; 5(9-10): 1030–1041
doi: 10.1016/j.dnarep.2006.05.024 pmid: 16934538
102 RogakouEP, PilchDR, OrrAH, IvanovaVS, BonnerWM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem1998; 273(10): 5858–5868
doi: 10.1074/jbc.273.10.5858 pmid: 9488723
103 ChapmanJR, BarralP, VannierJB, BorelV, StegerM, Tomas-LobaA, SartoriAA, AdamsIR, BatistaFD, BoultonSJ. RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol Cell2013; 49(5): 858–871
doi: 10.1016/j.molcel.2013.01.002 pmid: 23333305
104 Di VirgilioM, CallenE, YamaneA, ZhangW, JankovicM, GitlinAD, FeldhahnN, ReschW, OliveiraTY, ChaitBT, NussenzweigA, CasellasR, RobbianiDF, NussenzweigMC. Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching. Science2013; 339(6120): 711–715
doi: 10.1126/science.1230624 pmid: 23306439
105 Escribano-DíazC, OrthweinA, Fradet-TurcotteA, XingM, YoungJT, TkáčJ, CookMA, RosebrockAP, MunroM, CannyMD, XuD, DurocherD. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell2013; 49(5): 872–883
doi: 10.1016/j.molcel.2013.01.001 pmid: 23333306
106 FrancoS, GostissaM, ZhaS, LombardDB, MurphyMM, ZarrinAA, YanC, TepsupornS, MoralesJC, AdamsMM, LouZ, BassingCH, ManisJP, ChenJ, CarpenterPB, AltFW. H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. Mol Cell2006; 21(2): 201–214
doi: 10.1016/j.molcel.2006.01.005 pmid: 16427010
107 RamiroAR, JankovicM, CallenE, DifilippantonioS, ChenHT, McBrideKM, EisenreichTR, ChenJ, DickinsRA, LoweSW, NussenzweigA, NussenzweigMC. Role of genomic instability and p53 in AID-induced c-myc-Igh translocations. Nature2006; 440(7080): 105–109
doi: 10.1038/nature04495 pmid: 16400328
108 ManisJP, MoralesJC, XiaZ, KutokJL, AltFW, CarpenterPB. 53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination. Nat Immunol2004; 5(5): 481–487
doi: 10.1038/ni1067 pmid: 15077110
109 WardIM, Reina-San-MartinB, OlaruA, MinnK, TamadaK, LauJS, CascalhoM, ChenL, NussenzweigA, LivakF, NussenzweigMC, ChenJ. 53BP1 is required for class switch recombination. J Cell Biol2004; 165(4): 459–464
doi: 10.1083/jcb.200403021 pmid: 15159415
110 Reina-San-MartinB, ChenJ, NussenzweigA, NussenzweigMC. Enhanced intra-switch region recombination during immunoglobulin class switch recombination in 53BP1-/- B cells. Eur J Immunol2007; 37(1): 235–239
doi: 10.1002/eji.200636789 pmid: 17183606
111 BothmerA, RobbianiDF, Di VirgilioM, BuntingSF, KleinIA, FeldhahnN, BarlowJ, ChenHT, BosqueD, CallenE, NussenzweigA, NussenzweigMC. Regulation of DNA end joining, resection, and immunoglobulin class switch recombination by 53BP1. Mol Cell2011; 42(3): 319–329
doi: 10.1016/j.molcel.2011.03.019 pmid: 21549309
112 BothmerA, RobbianiDF, FeldhahnN, GazumyanA, NussenzweigA, NussenzweigMC. 53BP1 regulates DNA resection and the choice between classical and alternative end joining during class switch recombination. J Exp Med2010; 207(4): 855–865
doi: 10.1084/jem.20100244 pmid: 20368578
113 ChapmanJR, TaylorMR, BoultonSJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell2012; 47(4): 497–510
doi: 10.1016/j.molcel.2012.07.029 pmid: 22920291
114 BothmerA, RommelPC, GazumyanA, PolatoF, ReczekCR, MuellenbeckMF, SchaetzleinS, EdelmannW, ChenPL, BroshRM Jr, CasellasR, LudwigT, BaerR, NussenzweigA, NussenzweigMC, RobbianiDF. Mechanism of DNA resection during intrachromosomal recombination and immunoglobulin class switching. J Exp Med2013; 210(1): 115–123
doi: 10.1084/jem.20121975 pmid: 23254285
115 StavnezerJ, BjörkmanA, DuL, CagigiA, Pan-HammarströmQ. Mapping of switch recombination junctions, a tool for studying DNA repair pathways during immunoglobulin class switching. Adv Immunol2010; 108: 45–109
doi: 10.1016/B978-0-12-380995-7.00003-3 pmid: 21056729
116 LieberMR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem2010; 79(1): 181–211
doi: 10.1146/annurev.biochem.052308.093131 pmid: 20192759
117 LieberMR, GuJ, LuH, ShimazakiN, TsaiAG. Nonhomologous DNA end joining (NHEJ) and chromosomal translocations in humans. Subcell Biochem2010; 50: 279–296
doi: 10.1007/978-90-481-3471-7_14 pmid: 20012587
118 WeinstockDM, RichardsonCA, ElliottB, JasinM. Modeling oncogenic translocations: distinct roles for double-strand break repair pathways in translocation formation in mammalian cells. DNA Repair (Amst)2006; 5(9-10): 1065–1074
doi: 10.1016/j.dnarep.2006.05.028 pmid: 16815104
119 WestSC. Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol2003; 4(6): 435–445
doi: 10.1038/nrm1127 pmid: 12778123
120 SymingtonLS, GautierJ. Double-strand break end resection and repair pathway choice. Annu Rev Genet2011; 45(1): 247–271
doi: 10.1146/annurev-genet-110410-132435 pmid: 21910633
121 CallenE, Di VirgilioM, KruhlakMJ, Nieto-SolerM, WongN, ChenHT, FaryabiRB, PolatoF, SantosM, StarnesLM, WesemannDR, LeeJE, TubbsA, SleckmanBP, DanielJA, GeK, AltFW, Fernandez-CapetilloO, NussenzweigMC, NussenzweigA. 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions. Cell2013; 153(6): 1266–1280
doi: 10.1016/j.cell.2013.05.023 pmid: 23727112
122 RooneyS, ChaudhuriJ, AltFW. The role of the non-homologous end-joining pathway in lymphocyte development. Immunol Rev2004; 200(1): 115–131
doi: 10.1111/j.0105-2896.2004.00165.x pmid: 15242400
123 RothDB. Restraining the V(D)J recombinase. Nat Rev Immunol2003; 3(8): 656–666
doi: 10.1038/nri1152 pmid: 12974480
124 YanCT, BoboilaC, SouzaEK, FrancoS, HickernellTR, MurphyM, GumasteS, GeyerM, ZarrinAA, ManisJP, RajewskyK, AltFW. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature2007; 449(7161): 478–482
doi: 10.1038/nature06020 pmid: 17713479
125 WangJH, GostissaM, YanCT, GoffP, HickernellT, HansenE, DifilippantonioS, WesemannDR, ZarrinAA, RajewskyK, NussenzweigA, AltFW. Mechanisms promoting translocations in editing and switching peripheral B cells. Nature2009; 460(7252): 231–236
doi: 10.1038/nature08159 pmid: 19587764
126 BoboilaC, YanC, WesemannDR, JankovicM, WangJH, ManisJ, NussenzweigA, NussenzweigM, AltFW. Alternative end-joining catalyzes class switch recombination in the absence of both Ku70 and DNA ligase 4. J Exp Med2010; 207(2): 417–427
doi: 10.1084/jem.20092449 pmid: 20142431
127 BoboilaC, JankovicM, YanCT, WangJH, WesemannDR, ZhangT, FazeliA, FeldmanL, NussenzweigA, NussenzweigM, AltFW. Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70. Proc Natl Acad Sci USA2010; 107(7): 3034–3039
doi: 10.1073/pnas.0915067107 pmid: 20133803
128 DifilippantonioMJ, PetersenS, ChenHT, JohnsonR, JasinM, KanaarR, RiedT, NussenzweigA. Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification. J Exp Med2002; 196(4): 469–480
doi: 10.1084/jem.20020851 pmid: 12186839
129 RooneyS, SekiguchiJ, WhitlowS, EckersdorffM, ManisJP, LeeC, FergusonDO, AltFW. Artemis and p53 cooperate to suppress oncogenic N-myc amplification in progenitor B cells. Proc Natl Acad Sci USA2004; 101(8): 2410–2415
doi: 10.1073/pnas.0308757101 pmid: 14983023
130 WangJH, AltFW, GostissaM, DattaA, MurphyM, AlimzhanovMB, CoakleyKM, RajewskyK, ManisJP, YanCT. Oncogenic transformation in the absence of Xrcc4 targets peripheral B cells that have undergone editing and switching. J Exp Med2008; 205(13): 3079–3090
doi: 10.1084/jem.20082271 pmid: 19064702
131 ZhuC, MillsKD, FergusonDO, LeeC, ManisJ, FlemingJ, GaoY, MortonCC, AltFW. Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell2002; 109(7): 811–821
doi: 10.1016/S0092-8674(02)00770-5 pmid: 12110179
132 McVeyM, LeeSE. MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet2008; 24(11): 529–538
doi: 10.1016/j.tig.2008.08.007 pmid: 18809224
133 DerianoL, StrackerTH, BakerA, PetriniJH, RothDB. Roles for NBS1 in alternative nonhomologous end-joining of V(D)J recombination intermediates. Mol Cell2009; 34(1): 13–25
doi: 10.1016/j.molcel.2009.03.009 pmid: 19362533
134 DinkelmannM, SpehalskiE, StonehamT, BuisJ, WuY, SekiguchiJM, FergusonDO. Multiple functions of MRN in end-joining pathways during isotype class switching. Nat Struct Mol Biol2009; 16(8): 808–813
doi: 10.1038/nsmb.1639 pmid: 19633670
135 RassE, GrabarzA, PloI, GautierJ, BertrandP, LopezBS. Role of Mre11 in chromosomal nonhomologous end joining in mammalian cells. Nat Struct Mol Biol2009; 16(8): 819–824
doi: 10.1038/nsmb.1641 pmid: 19633668
136 XieA, KwokA, ScullyR. Role of mammalian Mre11 in classical and alternative nonhomologous end joining. Nat Struct Mol Biol2009; 16(8): 814–818
doi: 10.1038/nsmb.1640 pmid: 19633669
137 Lee-TheilenM, MatthewsAJ, KellyD, ZhengS, ChaudhuriJ. CtIP promotes microhomology-mediated alternative end joining during class-switch recombination. Nat Struct Mol Biol2011; 18(1): 75–79
doi: 10.1038/nsmb.1942 pmid: 21131982
138 ZhangY, JasinM. An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat Struct Mol Biol2011; 18(1): 80–84
doi: 10.1038/nsmb.1940 pmid: 21131978
139 Della-MariaJ, ZhouY, TsaiMS, KuhnleinJ, CarneyJP, PaullTT, TomkinsonAE. Human Mre11/human Rad50/Nbs1 and DNA ligase IIIalpha/XRCC1 protein complexes act together in an alternative nonhomologous end joining pathway. J Biol Chem2011; 286(39): 33845–33853
doi: 10.1074/jbc.M111.274159 pmid: 21816818
140 SaribasakH, MaulRW, CaoZ, McClureRL, YangW, McNeillDR, WilsonDM 3rd, GearhartPJ. XRCC1 suppresses somatic hypermutation and promotes alternative nonhomologous end joining in Igh genes. J Exp Med2011; 208(11): 2209–2216
doi: 10.1084/jem.20111135 pmid: 21967769
141 SimsekD, BrunetE, WongSY, KatyalS, GaoY, McKinnonPJ, LouJ, ZhangL, LiJ, RebarEJ, GregoryPD, HolmesMC, JasinM. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS Genet2011; 7(6): e1002080
doi: 10.1371/journal.pgen.1002080 pmid: 21655080
142 CaldecottKW. XRCC1 and DNA strand break repair. DNA Repair (Amst)2003; 2(9): 955–969
doi: 10.1016/S1568-7864(03)00118-6 pmid: 12967653
143 BoboilaC, OksenychV, GostissaM, WangJH, ZhaS, ZhangY, ChaiH, LeeCS, JankovicM, SaezLM, NussenzweigMC, McKinnonPJ, AltFW, SchwerB. Robust chromosomal DNA repair via alternative end-joining in the absence of X-ray repair cross-complementing protein 1 (XRCC1). Proc Natl Acad Sci USA2012; 109(7): 2473–2478
doi: 10.1073/pnas.1121470109 pmid: 22308491
144 JungD, GiallourakisC, Mostoslavs kyR, AltFW. Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol2006; 24(1): 541–570
doi: 10.1146/annurev.immunol.23.021704.115830 pmid: 16551259
145 WangJH. Mechanisms and impacts of chromosomal translocations in cancers. Front Med2012; 6(3): 263–274
doi: 10.1007/s11684-012-0215-5 pmid: 22865120
146 RamiroAR, JankovicM, EisenreichT, DifilippantonioS, Chen-KiangS, MuramatsuM, HonjoT, NussenzweigA, NussenzweigMC. AID is required for c-myc/IgH chromosome translocations in vivo. Cell2004; 118(4): 431–438
doi: 10.1016/j.cell.2004.08.006 pmid: 15315756
147 PasqualucciL, NeumeisterP, GoossensT, NanjangudG, ChagantiRS, KüppersR, Dalla-FaveraR. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature2001; 412(6844): 341–346
doi: 10.1038/35085588 pmid: 11460166
148 OhnoH. Pathogenetic and clinical implications of non-immunoglobulin; BCL6 translocations in B-cell non-Hodgkin’s lymphoma. J Clin Exp Hematop2006; 46(2): 43–53
doi: 10.3960/jslrt.46.43 pmid: 17142954
149 BertrandP, BastardC, MaingonnatC, JardinF, MaisonneuveC, CourelMN, RuminyP, PicquenotJM, TillyH. Mapping of MYC breakpoints in 8q24 rearrangements involving non-immunoglobulin partners in B-cell lymphomas. Leukemia2007; 21(3): 515–523
doi: 10.1038/sj.leu.2404529 pmid: 17230227
150 RobbianiDF, BothmerA, CallenE, Reina-San-MartinB, DorsettY, DifilippantonioS, BollandDJ, ChenHT, CorcoranAE, NussenzweigA, NussenzweigMC. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell2008; 135(6): 1028–1038
doi: 10.1016/j.cell.2008.09.062 pmid: 19070574
151 RobbianiDF, BuntingS, FeldhahnN, BothmerA, CampsJ, DeroubaixS, McBrideKM, KleinIA, StoneG, EisenreichTR, RiedT, NussenzweigA, NussenzweigMC. AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol Cell2009; 36(4): 631–641
doi: 10.1016/j.molcel.2009.11.007 pmid: 19941823
152 ChiarleR, ZhangY, FrockRL, LewisSM, MolinieB, HoYJ, MyersDR, ChoiVW, CompagnoM, MalkinDJ, NeubergD, MontiS, GiallourakisCC, GostissaM, AltFW. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell2011; 147(1): 107–119
doi: 10.1016/j.cell.2011.07.049 pmid: 21962511
153 KleinIA, ReschW, JankovicM, OliveiraT, YamaneA, NakahashiH, Di VirgilioM, BothmerA, NussenzweigA, RobbianiDF, CasellasR, NussenzweigMC. Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell2011; 147(1): 95–106
doi: 10.1016/j.cell.2011.07.048 pmid: 21962510
154 StaszewskiO, BakerRE, UcherAJ, MartierR, StavnezerJ, GuikemaJE. Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig Loci in activated B cells. Mol Cell2011; 41(2): 232–242
doi: 10.1016/j.molcel.2011.01.007 pmid: 21255732
155 MuramatsuM, SankaranandVS, AnantS, SugaiM, KinoshitaK, DavidsonNO, HonjoT. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem1999; 274(26): 18470–18476
doi: 10.1074/jbc.274.26.18470 pmid: 10373455
156 CrouchEE, LiZ, TakizawaM, Fichtner-FeiglS, GourziP, MontañoC, FeigenbaumL, WilsonP, JanzS, PapavasiliouFN, CasellasR. Regulation of AID expression in the immune response. J Exp Med2007; 204(5): 1145–1156
doi: 10.1084/jem.20061952 pmid: 17452520
157 GourziP, LeonovaT, PapavasiliouFN. A role for activation-induced cytidine deaminase in the host response against a transforming retrovirus. Immunity2006; 24(6): 779–786
doi: 10.1016/j.immuni.2006.03.021 pmid: 16782033
158 SzczylikC, SkorskiT, NicolaidesNC, ManzellaL, MalaguarneraL, VenturelliD, GewirtzAM, CalabrettaB. Selective inhibition of leukemia cell proliferation by BCR-ABL antisense oligodeoxynucleotides. Science1991; 253(5019): 562–565
doi: 10.1126/science. pmid: 1857987
159 Van EttenRA, JacksonP, BaltimoreD. The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell1989; 58(4): 669–678
doi: 10.1016/0092-8674(89)90102-5 pmid: 2670246
160 Quintás-CardamaA, CortesJ. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood2009; 113(8): 1619–1630
doi: 10.1182/blood-2008-03-144790 pmid: 18827185
161 FeldhahnN, HenkeN, MelchiorK, DuyC, SohBN, KleinF, von LevetzowG, GiebelB, LiA, HofmannWK, JumaaH, MüschenM. Activation-induced cytidine deaminase acts as a mutator in BCR-ABL1-transformed acute lymphoblastic leukemia cells. J Exp Med2007; 204(5): 1157–1166
doi: 10.1084/jem.20062662 pmid: 17485517
162 KlemmL, DuyC, IacobucciI, KuchenS, von LevetzowG, FeldhahnN, HenkeN, LiZ, HoffmannTK, KimYM, HofmannWK, JumaaH, GroffenJ, HeisterkampN, MartinelliG, LieberMR, CasellasR, MüschenM. The B cell mutator AID promotes B lymphoid blast crisis and drug resistance in chronic myeloid leukemia. Cancer Cell2009; 16(3): 232–245
doi: 10.1016/j.ccr.2009.07.030 pmid: 19732723
163 GruberTA, ChangMS, SpostoR, MüschenM. Activation-induced cytidine deaminase accelerates clonal evolution in BCR-ABL1-driven B-cell lineage acute lymphoblastic leukemia. Cancer Res2010; 70(19): 7411–7420
doi: 10.1158/0008-5472.CAN-10-1438 pmid: 20876806
164 YoshikawaK, OkazakiIM, EtoT, KinoshitaK, MuramatsuM, NagaokaH, HonjoT. AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science2002; 296(5575): 2033–2036
doi: 10.1126/science.1071556 pmid: 12065838
165 OkazakiIM, HiaiH, KakazuN, YamadaS, MuramatsuM, KinoshitaK, HonjoT. Constitutive expression of AID leads to tumorigenesis. J Exp Med2003; 197(9): 1173–1181
doi: 10.1084/jem.20030275 pmid: 12732658
166 MorrisDS, TomlinsSA, MontieJE, ChinnaiyanAM. The discovery and application of gene fusions in prostate cancer. BJU Int2008; 102(3): 276–282
doi: 10.1111/j.1464-410X.2008.07665.x pmid: 18422767
167 ManoH. Non-solid oncogenes in solid tumors: EML4-ALK fusion genes in lung cancer. Cancer Sci2008; 99(12): 2349–2355
doi: 10.1111/j.1349-7006.2008.00972.x pmid: 19032370
168 LinC, YangL, TanasaB, HuttK, JuBG, OhgiK, ZhangJ, RoseDW, FuXD, GlassCK, RosenfeldMG. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell2009; 139(6): 1069–1083
doi: 10.1016/j.cell.2009.11.030 pmid: 19962179
169 MatsumotoY, MarusawaH, KinoshitaK, EndoY, KouT, MorisawaT, AzumaT, OkazakiIM, HonjoT, ChibaT. Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nat Med2007; 13(4): 470–476
doi: 10.1038/nm1566 pmid: 17401375
170 MuñozDP, LeeEL, TakayamaS, CoppéJP, HeoSJ, BoffelliD, Di NoiaJM, MartinDI. Activation-induced cytidine deaminase (AID) is necessary for the epithelial-mesenchymal transition in mammary epithelial cells. Proc Natl Acad Sci USA2013; 110(32): E2977–E2986
doi: 10.1073/pnas.1301021110 pmid: 23882083
171 KumarR, DiMennaL, SchrodeN, LiuTC, FranckP, Muñoz-DescalzoS, HadjantonakisAK, ZarrinAA, ChaudhuriJ, ElementoO, EvansT. AID stabilizes stem-cell phenotype by removing epigenetic memory of pluripotency genes. Nature2013; 500(7460): 89–92
doi: 10.1038/nature12299 pmid: 23803762
172 BhutaniN, DeckerMN, BradyJJ, BussatRT, BurnsDM, CorbelSY, BlauHM. A critical role for AID in the initiation of reprogramming to induced pluripotent stem cells. FASEB J2013; 27(3): 1107–1113
doi: 10.1096/fj.12-222125 pmid: 23212122
173 PoppC, DeanW, FengS, CokusSJ, AndrewsS, PellegriniM, JacobsenSE, ReikW. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature2010; 463(7284): 1101–1105
doi: 10.1038/nature08829 pmid: 20098412
174 BhutaniN, BradyJJ, DamianM, SaccoA, CorbelSY, BlauHM. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature2010; 463(7284): 1042–1047
doi: 10.1038/nature08752 pmid: 20027182
175 HogenbirkMA, HeidemanMR, VeldsA, van den BerkPC, KerkhovenRM, van SteenselB, JacobsH. Differential programming of B cells in AID deficient mice. PLoS ONE2013; 8(7): e69815
doi: 10.1371/journal.pone.0069815 pmid: 23922811
176 HogenbirkMA, VeldsA, KerkhovenRM, JacobsH. Reassessing genomic targeting of AID. Nat Immunol2012; 13(9): 797–798, author reply 798–800
doi: 10.1038/ni.2367 pmid: 22910380
177 VuongBQ, LeeM, KabirS, IrimiaC, MacchiaruloS, McKnightGS, ChaudhuriJ. Specific recruitment of protein kinase A to the immunoglobulin locus regulates class-switch recombination. Nat Immunol2009; 10(4): 420–426
doi: 10.1038/ni.1708 pmid: 19234474
178 BasuU, ChaudhuriJ, AlpertC, DuttS, RanganathS, LiG, SchrumJP, ManisJP, AltFW. The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature2005; 438(7067): 508–511
doi: 10.1038/nature04255 pmid: 16251902
179 ChengHL, VuongBQ, BasuU, FranklinA, SchwerB, AstaritaJ, PhanRT, DattaA, ManisJ, AltFW, ChaudhuriJ. Integrity of the AID serine-38 phosphorylation site is critical for class switch recombination and somatic hypermutation in mice. Proc Natl Acad Sci USA2009; 106(8): 2717–2722
doi: 10.1073/pnas.0812304106 pmid: 19196992
180 HakimO, ReschW, YamaneA, KleinI, Kieffer-KwonKR, JankovicM, OliveiraT, BothmerA, VossTC, Ansarah-SobrinhoC, MatheE, LiangG, CobellJ, NakahashiH, RobbianiDF, NussenzweigA, HagerGL, NussenzweigMC, CasellasR. DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes. Nature2012; 484(7392): 69–74
pmid: 22314321
181 RochaPP, MicsinaiM, KimJR, HewittSL, SouzaPP, TrimarchiT, StrinoF, ParisiF, KlugerY, SkokJA. Close proximity to Igh is a contributing factor to AID-mediated translocations. Mol Cell2012; 47(6): 873–885
doi: 10.1016/j.molcel.2012.06.036 pmid: 22864115
182 ZhangY, McCordRP, HoYJ, LajoieBR, HildebrandDG, SimonAC, BeckerMS, AltFW, DekkerJ. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell2012; 148(5): 908–921
doi: 10.1016/j.cell.2012.02.002 pmid: 22341456
183 GramlichHS, ReisbigT, SchatzDG. AID-targeting and hypermutation of non-immunoglobulin genes does not correlate with proximity to immunoglobulin genes in germinal center B cells. PLoS ONE2012; 7(6): e39601
doi: 10.1371/journal.pone.0039601 pmid: 22768095
[1] Yi Liang,Qisheng Feng,Jian Hong,Futuo Feng,Yi Sang,Wenrong Hu,Miao Xu,Roujun Peng,Tiebang Kang,Jinxin Bei,Yixin Zeng. Tumor growth and metastasis can be inhibited by maintaining genomic stability in cancer cells[J]. Front. Med., 2015, 9(1): 57-62.
[2] Jing H. Wang. Mechanisms and impacts of chromosomal translocations in cancers[J]. Front Med, 2012, 6(3): 263-274.
[3] Zhifeng Wang, Fengli Wang, Tieshan Tang, Caixia Guo. The role of PARP1 in the DNA damage response and its application in tumor therapy[J]. Front Med, 2012, 6(2): 156-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed