Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2014, Vol. 8 Issue (4) : 477-483    https://doi.org/10.1007/s11684-014-0346-y
RESEARCH ARTICLE
Gender differences in the relationship between plasma lipids and fasting plasma glucose in non-diabetic urban Chinese population: a cross-section study
Jie Zheng1,Yuzhen Gao2,Yuejuan Jing3,Xiaoshuang Zhou3,4,Yuanyuan Shi3,4,Yanhong Li3,4,Lihua Wang3,4,Ruiying Wang2,Maolian Li2,Chuanshi Xiao5,Yafeng Li3,4,*(),Rongshan Li4,6,*()
1. School of Nursing, Shanxi Medical University, Taiyuan 030001 China
2. Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
3. Department of Nephrology and Hemodialysis Center, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
4. Shanxi Renal Disease Research Institution, Taiyuan 030001, China
5. Department of Cardiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
6. Department of Nephrology and Hemodialysis Center, Shanxi Provincial People’s Hospital, Taiyuan 030012, China
 Download: PDF(108 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The association between dyslipidemia and elevated fasting glucose in type 2 diabetes is well known. In non-diabetes, whether this association still exists, and whether dyslipidemia is an independent risk factor for high fasting plasma glucose (FPG) levels are not clear. This cross-sectional study recruited 3460 non-diabetic Chinese subjects (1027 men, and 2433 women, aged 35–75 years old) who participated in a health survey. Men and women were classified into tertiles by levels of plasma lipids respectively. In women, the prevalence of impaired fasting glucose (IFG) was decreased with increased HDL-C. A stepwise increase in HDL-C was associated with decreasing FPG levels (lowest tertiles, FPG: 5.376±0.018; middle tertiles, 5.324±0.018; highest tertiles, 5.276±0.018 mmol/L; P=0.001). Reversely, FPG levels increased from lowest tertiles to highest tertiles of LDL-C, TC, and TG. we found that women in the first tertile with lower HDL-C level had a 1.75-fold increase in risk of IFG compared with non-diabetic women in the third tertile with higher HDL-C level (OR: 1.75; 95% CI: 1.20--2.56). In men, no significant association was found. We took age, BMI, waist/hip ratio, education, smoking, alcohol drinking, and physical exercise as adjusted variables. In Chinese non-diabetic women, dyslipidemia is independently associated with high levels of FPG; TG, HDL-C, and LDL-C are predictors of IFG independent of BMI and waist/hip ratio.

Keywords dyslipidemia      plasma lipids      plasma fasting glucose      impaired fasting glucose      non-diabetes     
Corresponding Author(s): Yafeng Li   
Online First Date: 15 July 2014    Issue Date: 18 December 2014
 Cite this article:   
Jie Zheng,Yuzhen Gao,Yuejuan Jing, et al. Gender differences in the relationship between plasma lipids and fasting plasma glucose in non-diabetic urban Chinese population: a cross-section study[J]. Front. Med., 2014, 8(4): 477-483.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-014-0346-y
https://academic.hep.com.cn/fmd/EN/Y2014/V8/I4/477
Characteristics Male (n = 1027) Female (n = 2433)
1st (n = 343) 2nd (n = 342) 3rd (n = 342) Ptrend 1st (n = 811) 2nd (n = 811) 3rd (n = 811) Ptrend
Mean±SD
Age 57.3±10.9 57.5±10.6 59.3±11.0 0.013 56.0±10.4 56.4±10.6 55.3±10.9 0.103
SBP (mmHg) 125.0±17.9 124.7±18.9 124.2±19.8 0.847 125.6±20.3 124.9±20.0 121.3±20.1 <0.001
DBP (mmHg) 80.9±9.9 79.8±10.2 78.6±10.6 0.016 78.3±10.4 77.8±10.1 76.2±9.7 <0.001
BMI (kg/m2) 26.2±3.2 25.4±3.1 23.9±3.3 <0.001 26.1±3.3 25.3±3.4 24.0±3.6 <0.001
WHR 0.93±0.05 0.92±0.05 0.90±0.06 <0.001 0.88±0.06 0.86±0.06 0.84±0.06 <0.001
TC (mmol/L) 4.63±0.82 5.09±0.80 5.26±0.95 <0.001 4.87±0.87 5.28±0.94 5.51±1.02 <0.001
TG (mmol/L) 2.39±1.81 2.03±1.34 1.59±1.56 <0.001 2.37±1.50 1.89±1.22 1.43±1.06 <0.001
HDL-C (mmol/L) 0.98±0.09 1.21±0.06 1.57±0.24 <0.001 1.10±0.11 1.36±0.07 1.73±0.23 <0.001
LDL-C (mmol/L) 2.69±0.61 2.97±0.57 2.89±0.71 <0.001 2.74±0.66 2.98±0.68 2.98±0.76 <0.001
FPG (mmol/L) 5.39±0.54 5.38±0.55 5.34±0.56 0.523 5.41±0.54 5.33±0.53 5.23±0.48 <0.001
n (%)
Smoking status 0.151 0.274
Never 111 (32.4) 137 (40.1) 132 (38.6) 786 (96.9) 798 (98.4) 790 (97.4)
Former 66 (19.2) 59 (17.3) 71 (20.8) 6 (0.7) 4 (0.5) 8 (1.0)
Current 16 6(48.4) 146 (42.7) 139 (40.6) 19 (2.3) 9 (1.1) 13 (1.6)
Drinking status 0.068 0.309
Never 168 (49.0) 186 (54.4) 160 (46.8) 794 (97.9) 799 (98.5) 793 (97.8)
Former 41 (12.0) 32 (9.4) 27 (7.9) 4 (0.5) 5 (0.6) 2 (0.2)
Current 134 (39.1) 124 (36.3/()e) 155 (45.3) 13 (1.6) 7 (0.9) 16 (2.0)
Physical exercise 0.003 0.709
Seldom 137 (39.9) 122 (35.7) 104 (30.4) 296 (36.5) 285 (35.1) 283 (34.9)
Occasional 57 (16.6) 54 (15.8) 39 (11.4) 123 (15.2) 118 (14.5) 136 (16.8)
Always 149 (43.4) 166 (48.5) 199 (58.2) 392 (48.3) 408 (50.3) 392 (48.3)
Education 0.021 0.003
≤Primary education 2 (0.6) 3 (0.9) 6 (1.8) 45 (5.5) 33 (4.1) 31 (3.8)
<Bachelor degree 235 (68.5) 256 (74.9) 265 (77.5) 640 (78.9) 645 (79.5) 602 (74.2)
≥Bachelor degree 106 (30.9) 83 (24.3) 71 (20.8) 126 (15.5) 133 (16.4) 178 (21.9)
IFG 38 (11.1) 38 (11.1) 34 (9.9) 0.853 100 (12.3) 69 (8.5) 45 (5.5) <0.001
Tab.1  Gender-specific baseline characteristics of the 3460 non-diabetic subjects categorized into tertiles by HDL-C level
Male Female
FPG (mmol/L)(Mean±SEM) Ptrend Pairwise comparisons (P) FPG (mmol/L)(Mean±SEM) Ptrend Pairwise comparisons (P)
1st 2nd 1st 2nd
HDL-C
1st T 5.370±0.030 0.961 5.376±0.018 0.001
2nd T 5.375±0.029 0.902 5.324±0.018 0.036
3rd T 5.363±0.030 0.876 0.779 5.276±0.018 <0.001 0.056
LDL-C
1st T 5.355±0.030 0.735 5.287±0.018 0.001
2nd T 5.365±0.029 0.806 5.307±0.018 0.442
3rd T 5.387±0.030 0.444 0.593 5.378±0.018 <0.001 0.004
TC
1st T 5.362±0.029 0.724 5.273±0.018 <0.001
2nd T 5.357±0.029 0.920 5.323±0.018 0.048
3rd T 5.388±0.029 0.523 0.457 5.379±0.018 <0.001 0.026
TG
1st T 5.340±0.030 0.412 5.266±0.018 <0.001
2nd T 5.369±0.029 0.502 5.304±0.018 0.132
3rd T 5.398±0.030 0.183 0.475 5.405±0.018 <0.001 <0.001
Tab.2  Sex-specific adjusted mean of fasting glucose among categories of lipid
women
β t P
Age 0.155 6.576 <0.001
BMI 0.105 4.647 <0.001
WHR 0.093 3.879 <0.001
TC -0.002 -0.038 0.969
TG 0.070 2.537 0.011
HDL-C -0.074 -2.757 0.006
LDL-C 0.119 2.185 0.029
Smoking -0.034 -1.749 0.080
Drinking <0.001 -0.009 0.992
Exercise -0.033 -1.596 0.111
Education -0.016 -0.769 0.442
Tab.3  Independent factors associated with FPG in woman non-diabetes in multivariable linear regression models
Men Women
OR 95%CI OR 95%CI
HDL-C
3rd T 1.00 Ref. 1.00 Ref.
2nd T 1.06 0.64–1.76 1.27 0.85–1.89
1st T 0.94 0.56–1.59 1.75 1.20–2.56
Ptrend 0.897 0.012
LDL-C
1st T 1.00 Ref. 1.00 Ref.
2nd T 0.89 0.53–1.49 1.10 0.75–1.62
3rd T 1.07 0.66–1.76 1.42 0.98–2.05
Ptrend 0.754 0.133
TC
1st T 1.00 Ref. 1.00 Ref.
2nd T 0.74 0.45–1.24 1.03 0.70–1.51
3rd T 0.96 0.60–1.56 1.43 0.99–2.06
Ptrend 0.471 0.079
TG
1st T 1.00 Ref. 1.00 Ref.
2nd T 1.16 0.68–1.97 0.98 0.64–1.48
3rd T 1.41 0.83–2.39 1.61 1.09–2.36
Ptrend 0.434 0.005
Tab.4  ORs of IFG according to plasma lipids concentration among men and women
1 Mooradian AD. Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab2009; 5(3): 150-159
https://doi.org/10.1038/ncpendmet1066 pmid: 19229235
2 Chahil TJ, Ginsberg HN. Diabetic dyslipidemia. Endocrinol Metab Clin North Am2006; 35(3): 491-510, vii-viii
https://doi.org/10.1016/j.ecl.2006.06.002 pmid: 16959582
3 Taskinen MR. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia2003; 46(6): 733-749
https://doi.org/10.1007/s00125-003-1111-y pmid: 12774165
4 Del Pilar Solano M, Goldberg RB. Management of diabetic dyslipidemia. Endocrinol Metab Clin North Am2005; 34(1): 1-25, v
https://doi.org/10.1016/j.ecl.2005.01.001 pmid: 15752919
5 Krauss RM, Siri PW. Dyslipidemia in type 2 diabetes. Med Clin North Am2004; 88(4): 897-909, x
https://doi.org/10.1016/j.mcna.2004.04.004 pmid: 15308384
6 [No authors listed]. UK Prospective Diabetes Study 27. Plasma lipids and lipoproteins at diagnosis of NIDDM by age and sex. Diabetes Care1997; 20(11): 1683-1687
https://doi.org/10.2337/diacare.20.11.1683 pmid: 9353608
7 Kannel WB. Lipids, diabetes, and coronary heart disease: insights from the Framingham Study. Am Heart J1985; 110(5): 1100-1107
https://doi.org/10.1016/0002-8703(85)90224-8 pmid: 4061265
8 Haffner SM, Stern MP, Hazuda HP, Mitchell BD, Patterson JK. Cardiovascular risk factors in confirmed prediabetic individuals. Does the clock for coronary heart disease start ticking before the onset of clinical diabetes? JAMA1990; 263(21): 2893-2898
https://doi.org/10.1001/jama.1990.03440210043030 pmid: 2338751
9 Haffner SM, Miettinen H, Stern MP. Relatively more atherogenic coronary heart disease risk factors in prediabetic women than in prediabetic men. Diabetologia1997; 40(6): 711-717
https://doi.org/10.1007/s001250050738 pmid: 9222652
10 Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med1998; 15(7): 539-553
https://doi.org/10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S pmid: 9686693
11 Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ; National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; National High Blood Pressure Education Program Coordinating Committee.. The Seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC7 report. JAMA2003; 289(19): 2560-2572
https://doi.org/10.1001/jama.289.19.2560 pmid: 12748199
12 Haffner SM. Insulin resistance, inflammation, and the prediabetic state. Am J Cardiol2003; 92(4 4A): 18J-26J
https://doi.org/10.1016/S0002-9149(03)00612-X pmid: 12957323
13 Festa A, Hanley AJ, Tracy RP, D’Agostino R Jr, Haffner SM. Inflammation in the prediabetic state is related to increased insulin resistance rather than decreased insulin secretion. Circulation2003; 108(15): 1822-1830
https://doi.org/10.1161/01.CIR.0000091339.70120.53 pmid: 14517163
14 Mooradian AD, Albert SG, Haas MJ. Low serum high-density lipoprotein cholesterol in obese subjects with normal serum triglycerides: the role of insulin resistance and inflammatory cytokines. Diabetes Obes Metab2007; 9(3): 441-443
https://doi.org/10.1111/j.1463-1326.2006.00636.x pmid: 17391174
15 Mooradian AD, Haas MJ, Wehmeier KR, Wong NC. Obesity-related changes in high-density lipoprotein metabolism. Obesity (Silver Spring)2008; 16(6): 1152-1160
https://doi.org/10.1038/oby.2008.202 pmid: 18388903
16 Drew BG, Duffy SJ, Formosa MF, Natoli AK, Henstridge DC, Penfold SA, Thomas WG, Mukhamedova N, de Courten B, Forbes JM, Yap FY, Kaye DM, van Hall G, Febbraio MA, Kemp BE, Sviridov D, Steinberg GR, Kingwell BA. High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation2009; 119(15): 2103-2111
https://doi.org/10.1161/CIRCULATIONAHA.108.843219 pmid: 19349317
17 Mooradian AD, Haas MJ, Wong NC. Transcriptional control of apolipoprotein A-I gene expression in diabetes. Diabetes2004; 53(3): 513-520
https://doi.org/10.2337/diabetes.53.3.513 pmid: 14988232
18 Beers A, Haas MJ, Wong NC, Mooradian AD. Inhibition of apolipoprotein AI gene expression by tumor necrosis factor alpha: roles for MEK/ERK and JNK signaling. Biochemistry2006; 45(7): 2408-2413
https://doi.org/10.1021/bi0518040 pmid: 16475830
19 Manson JE, Colditz GA, Stampfer MJ, Willett WC, Krolewski AS, Rosner B, Arky RA, Speizer FE, Hennekens CH. A prospective study of maturity-onset diabetes mellitus and risk of coronary heart disease and stroke in women. Arch Intern Med1991; 151(6): 1141-1147
https://doi.org/10.1001/archinte.1991.00400060077013 pmid: 2043016
20 Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care1993; 16(2): 434-444
https://doi.org/10.2337/diacare.16.2.434 pmid: 8432214
21 Gaziano JM, Buring JE, Breslow JL, Goldhaber SZ, Rosner B, VanDenburgh M, Willett W, Hennekens CH. Moderate alcohol intake, increased levels of high-density lipoprotein and its subfractions, and decreased risk of myocardial infarction. N Engl J Med1993; 329(25): 1829-1834
https://doi.org/10.1056/NEJM199312163292501 pmid: 8247033
22 Englund Ogge L, Brohall G, Behre CJ, Schmidt C, Fagerberg B. Alcohol consumption in relation to metabolic regulation, inflammation, and adiponectin in 64-year-old Caucasian women: a population-based study with a focus on impaired glucose regulation. Diabetes Care2006; 29(4): 908-913
https://doi.org/10.2337/diacare.29.04.06.dc05-1782 pmid: 16567836
23 O’Keefe JH, Gheewala NM, O’Keefe JO. Dietary strategies for improving post-prandial glucose, lipids, inflammation, and cardiovascular health. J Am Coll Cardiol2008; 51(3): 249-255
https://doi.org/10.1016/j.jacc.2007.10.016 pmid: 18206731
24 Bi?rklund M, van Rees A, Mensink RP, Onning G. Changes in serum lipids and postprandial glucose and insulin concentrations after consumption of beverages with beta-glucans from oats or barley: a randomised dose-controlled trial. Eur J Clin Nutr2005; 59(11): 1272-1281
https://doi.org/10.1038/sj.ejcn.1602240 pmid: 16015250
[1] SUN Mingxiao, WANG Yao, CHI Jiamin. Modulatory effect on dyslipidemia and anti-atherosclerotic function of in newly diagnosed type 2 diabetes patients[J]. Front. Med., 2008, 2(2): 174-177.
[2] YAO Hua, SUN Yuping, LI Qing, YAO Wenhai, WANG Qiuyun, HU Jing, ABUDUREHEMAN Gulibaha, TUO Ling, JIANG Yan. The correlated study of hyperuricemia and metabolic syndromes among males of Han ethnicity in the Xinjiang Uygur Autonomous Region, China[J]. Front. Med., 2008, 2(1): 108-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed