Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2015, Vol. 9 Issue (2) : 173-186    https://doi.org/10.1007/s11684-015-0384-0
REVIEW
Metformin and metabolic diseases: a focus on hepatic aspects
Juan Zheng1,2,*(),Shih-Lung Woo1,Xiang Hu1,2,Rachel Botchlett1,Lulu Chen2,Yuqing Huo3,Chaodong Wu1,*()
1. Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
2. Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
3. Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
 Download: PDF(493 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Metformin has been widely used as a first-line anti-diabetic medicine for the treatment of type 2 diabetes (T2D). As a drug that primarily targets the liver, metformin suppresses hepatic glucose production (HGP), serving as the main mechanism by which metformin improves hyperglycemia of T2D. Biochemically, metformin suppresses gluconeogenesis and stimulates glycolysis. Metformin also inhibits glycogenolysis, which is a pathway that critically contributes to elevated HGP. While generating beneficial effects on hyperglycemia, metformin also improves insulin resistance and corrects dyslipidemia in patients with T2D. These beneficial effects of metformin implicate a role for metformin in managing non-alcoholic fatty liver disease. As supported by the results from both human and animal studies, metformin improves hepatic steatosis and suppresses liver inflammation. Mechanistically, the beneficial effects of metformin on hepatic aspects are mediated through both adenosine monophosphate-activated protein kinase (AMPK)-dependent and AMPK-independent pathways. In addition, metformin is generally safe and may also benefit patients with other chronic liver diseases.

Keywords metformin      diabetes      hepatic steatosis      inflammatory response      insulin resistance     
Corresponding Author(s): Juan Zheng,Chaodong Wu   
Just Accepted Date: 14 January 2015   Online First Date: 11 February 2015    Issue Date: 22 May 2015
 Cite this article:   
Juan Zheng,Shih-Lung Woo,Xiang Hu, et al. Metformin and metabolic diseases: a focus on hepatic aspects[J]. Front. Med., 2015, 9(2): 173-186.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-015-0384-0
https://academic.hep.com.cn/fmd/EN/Y2015/V9/I2/173
Fig.1  MOA: metformin for type 2 diabetes. Metformin targets hepatocytes and acts through both AMPK-dependent and AMPK-independent pathways to suppress hepatic glucose production (HGP), thereby improving hyperglycemia of type 2 diabetes. Metformin also inhibits hepatic lipogensis and stimulates liver fatty acid oxidation, thereby correcting dyslipidemia and improving insulin resistance. See text for details.
Fig.2  MOA: metformin for NAFLD. In hepatocytes, metformin suppresses lipogenesis and stimulates fatty acid oxidation, thereby decreasing hepatocyte production of palmitate. This improves hepatic steatosis and, in turn, decreases fat deposition-associated macrophage (Kupffer cell) proinflammatory activation. In both hepatocytes and macrophages, metformin inhibits inflammatory signaling to suppress the production of proinflammatory cytokines. This contributes to suppression of liver inflammation. See text for details.
1 Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, Peters AL, Tsapas A, Wender R, Matthews DR. Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2012; 55(6): 1577–1596
https://doi.org/10.1007/s00125-012-2534-0 pmid: 22526604
2 Mazza A, Fruci B, Garinis GA, Giuliano S, Malaguarnera R, Belfiore A. The role of metformin in the management of NAFLD. Exp Diabetes Res 2012; 2012: 716404
https://doi.org/10.1155/2012/716404 pmid: 22194737
3 Cahova M, Drahota Z, Oliarnyk O, Cervinkova Z, Kucera O, Dankova H, Kazdova L. The effect of metformin on liver mitochondria and lipid metabolism in NAFLD. Diabetologia 2010; 53 (Suppl 1): S304
4 Valsamakis G, Lois K, Kumar S, Mastorakos G. Metabolic and other effects of pioglitazone as an add-on therapy to metformin in the treatment of polycystic ovary syndrome (PCOS). Hormones (Athens)2013; 12(3): 363–378
pmid: 24121378
5 Chen S, Zhou J, Xi M, Jia Y, Wong Y, Zhao J, Ding L, Zhang J, Wen A. Pharmacogenetic variation and metformin response. Curr Drug Metab 2013; 14(10): 1070–1082
https://doi.org/10.2174/1389200214666131211153933 pmid: 24329113
6 Nies AT, Koepsell H, Damme K, Schwab M. Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handbook Exp Pharmacol 2011; 201(201): 105–167
https://doi.org/10.1007/978-3-642-14541-4_3 pmid: 21103969
7 Takane H, Shikata E, Otsubo K, Higuchi S, Ieiri I. Polymorphism in human organic cation transporters and metformin action. Pharmacogenomics 2008; 9(4): 415–422
https://doi.org/10.2217/14622416.9.4.415 pmid: 18384255
8 Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, Furlong TJ, Greenfield JR, Greenup LC, Kirkpatrick CM, Ray JE, Timmins P, Williams KM. Clinical pharmacokinetics of metformin. Clin Pharmacokinet 2011; 50(2): 81–98
https://doi.org/10.2165/11534750-000000000-00000 pmid: 21241070
9 Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108(8): 1167–1174
https://doi.org/10.1172/JCI13505 pmid: 11602624
10 Paneni F. 2013 ESC/EASD guidelines on the management of diabetes and cardiovascular disease: established knowledge and evidence gaps. Diab Vasc Dis Res 2014; 11(1): 5–10
https://doi.org/10.1177/1479164113512859 pmid: 24254974
11 Adler AI, Shaw EJ, Stokes T, Ruiz F, Guideline Development G. Newer agents for blood glucose control in type 2 diabetes: summary of NICE guidance. BMJ 2009; 338: b1668
https://doi.org/10.1136/bmj.b1668 pmid: 19465464
12 Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B; American Diabetes Association; European Association for Study of Diabetes. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2009; 32(1): 193–203
https://doi.org/10.2337/dc08-9025 pmid: 18945920
13 UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998; 352(9131): 854–865
https://doi.org/10.1016/S0140-6736(98)07037-8 pmid: 9742977
14 Calvert JW, Gundewar S, Jha S, Greer JJ, Bestermann WH, Tian R, Lefer DJ. Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 2008; 57(3): 696–705
https://doi.org/10.2337/db07-1098 pmid: 18083782
15 Paiva M, Riksen NP, Davidson SM, Hausenloy DJ, Monteiro P, Gon?alves L, Providência L, Rongen GA, Smits P, Mocanu MM, Yellon DM. Metformin prevents myocardial reperfusion injury by activating the adenosine receptor. J Cardiovasc Pharmacol 2009; 53(5): 373–378
https://doi.org/10.1097/FJC.0b013e31819fd4e7 pmid: 19295441
16 Rena G, Pearson ER, Sakamoto K. Molecular mechanism of action of metformin: old or new insights? Diabetologia 2013; 56(9): 1898–1906
https://doi.org/10.1007/s00125-013-2991-0 pmid: 23835523
17 Chu CA, Wiernsperger N, Muscato N, Knauf M, Neal DW, Cherrington AD. The acute effect of metformin on glucose production in the conscious dog is primarily attributable to inhibition of glycogenolysis. Metabolism 2000; 49(12): 1619–1626
https://doi.org/10.1053/meta.2000.18561 pmid: 11145127
18 Silva FMD, da Silva MHRA, Bracht A, Eller GJ, Constantin RP, Yamamoto NS. Effects of metformin on glucose metabolism of perfused rat livers. Mol Cell Biochem 2010; 340(1–2): 283–289
https://doi.org/10.1007/s11010-010-0429-2 pmid: 20217188
19 Heishi M, Ichihara J, Teramoto R, Itakura Y, Hayashi K, Ishikawa H, Gomi H, Sakai J, Kanaoka M, Taiji M, Kimura T. Global gene expression analysis in liver of obese diabetic db/db mice treated with metformin. Diabetologia 2006; 49(7): 1647–1655
https://doi.org/10.1007/s00125-006-0271-y pmid: 16752183
20 He L, Sabet A, Djedjos S, Miller R, Sun X, Hussain MA, Radovick S, Wondisford FE. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 2009; 137(4): 635–646
https://doi.org/10.1016/j.cell.2009.03.016 pmid: 19450513
21 Da Silva D, Zancan P, Coelho WS, Gomez LS, Sola-Penna M. Metformin reverses hexokinase and 6-phosphofructo-1-kinase inhibition in skeletal muscle, liver and adipose tissues from streptozotocin-induced diabetic mouse. Arch Biochem Biophys 2010; 496(1): 53–60
https://doi.org/10.1016/j.abb.2010.01.013 pmid: 20117072
22 Lage R, Diéguez C, Vidal-Puig A, López M. AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol Med 2008; 14(12): 539–549
https://doi.org/10.1016/j.molmed.2008.09.007 pmid: 18977694
23 Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M, Cantley LC. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 2005; 310(5754): 1642–1646
https://doi.org/10.1126/science.1120781 pmid: 16308421
24 Foretz M, Hébrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G, Sakamoto K, Andreelli F, Viollet B. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 2010; 120(7): 2355–2369
https://doi.org/10.1172/JCI40671 pmid: 20577053
25 Hardie DG. Neither LKB1 nor AMPK are the direct targets of metformin. Gastroenterology 2006; 131(3): 973, author reply 974–975
https://doi.org/10.1053/j.gastro.2006.07.032 pmid: 16952573
26 Emami Riedmaier A, Fisel P, Nies AT, Schaeffeler E, Schwab M. Metformin and cancer: from the old medicine cabinet to pharmacological pitfalls and prospects. Trends Pharmacol Sci 2013; 34(2): 126–135
https://doi.org/10.1016/j.tips.2012.11.005 pmid: 23277337
27 Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 2000; 348(Pt 3): 607–614
https://doi.org/10.1042/0264-6021:3480607 pmid: 10839993
28 Ebert BL, Firth JD, Ratcliffe PJ. Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct Cis-acting sequences. J Biol Chem 1995; 270(49): 29083–29089
https://doi.org/10.1074/jbc.270.49.29083 pmid: 7493931
29 Foretz M, Viollet B. Regulation of hepatic metabolism by AMPK. J Hepatol 2011; 54(4): 827–829
https://doi.org/10.1016/j.jhep.2010.09.014 pmid: 21163246
30 Luo Q, Hu D, Hu S, Yan M, Sun Z, Chen F. In vitro and in vivo anti-tumor effect of metformin as a novel therapeutic agent in human oral squamous cell carcinoma. BMC Cancer 2012; 12(1): 517
https://doi.org/10.1186/1471-2407-12-517 pmid: 23151022
31 Zhang J, Gao Z, Yin J, Quon MJ, Ye J. S6K directly phosphorylates IRS-1 on Ser-270 to promote insulin resistance in response to TNF-α signaling through IKK2. J Biol Chem 2008; 283(51): 35375–35382
https://doi.org/10.1074/jbc.M806480200 pmid: 18952604
32 Ouyang J, Parakhia RA, Ochs RS. Metformin activates AMP kinase through inhibition of AMP deaminase. J Biol Chem 2011; 286(1): 1–11
https://doi.org/10.1074/jbc.M110.121806 pmid: 21059655
33 Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 2013; 494(7436): 256–260
https://doi.org/10.1038/nature11808 pmid: 23292513
34 Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond)2012; 122(6): 253–270
https://doi.org/10.1042/CS20110386 pmid: 22117616
35 Pavlovi? D, Koci? R, Koci? G, Jevtovi? T, Radenkovi? S, Miki? D, Stojanovi? M, Djordjevi? PB. Effect of four-week metformin treatment on plasma and erythrocyte antioxidative defense enzymes in newly diagnosed obese patients with type 2 diabetes. Diabetes Obes Metab 2000; 2(4): 251–256
https://doi.org/10.1046/j.1463-1326.2000.00089.x pmid: 11225659
36 Esteghamati A, Eskandari D, Mirmiranpour H, Noshad S, Mousavizadeh M, Hedayati M, Nakhjavani M. Effects of metformin on markers of oxidative stress and antioxidant reserve in patients with newly diagnosed type 2 diabetes: a randomized clinical trial. Clin Nutr 2013; 32(2): 179–185
https://doi.org/10.1016/j.clnu.2012.08.006 pmid: 22963881
37 Bonnefont-Rousselot D, Raji B, Walrand S, Gardès-Albert M, Jore D, Legrand A, Peynet J, Vasson MP. An intracellular modulation of free radical production could contribute to the beneficial effects of metformin towards oxidative stress. Metabolism 2003; 52(5): 586–589
https://doi.org/10.1053/meta.2003.50093 pmid: 12759888
38 Kane DA, Anderson EJ, Price JW 3rd, Woodlief TL, Lin CT, Bikman BT, Cortright RN, Neufer PD. Metformin selectively attenuates mitochondrial H2O2 emission without affecting respiratory capacity in skeletal muscle of obese rats. Free Radic Biol Med 2010; 49(6): 1082–1087
https://doi.org/10.1016/j.freeradbiomed.2010.06.022 pmid: 20600832
39 Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, Gomes AP, Ward TM, Minor RK, Blouin MJ, Schwab M, Pollak M, Zhang Y, Yu Y, Becker KG, Bohr VA, Ingram DK, Sinclair DA, Wolf NS, Spindler SR, Bernier M, de Cabo R. Metformin improves healthspan and lifespan in mice. Nat Commun 2013; 4: 2192
https://doi.org/10.1038/ncomms3192 pmid: 23900241
40 Nelson LE, Valentine RJ, Cacicedo JM, Gauthier MS, Ido Y, Ruderman NB. A novel inverse relationship between metformin-triggered AMPK-SIRT1 signaling and p53 protein abundance in high glucose-exposed HepG2 cells. Am J Physiol Cell Physiol 2012; 303(1): C4–C13
https://doi.org/10.1152/ajpcell.00296.2011 pmid: 22378745
41 Um JH, Yang S, Yamazaki S, Kang H, Viollet B, Foretz M, Chung JH. Activation of 5′-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2. J Biol Chem 2007; 282(29): 20794–20798
https://doi.org/10.1074/jbc.C700070200 pmid: 17525164
42 Barnea M, Haviv L, Gutman R, Chapnik N, Madar Z, Froy O. Metformin affects the circadian clock and metabolic rhythms in a tissue-specific manner. Biochim Biophys Acta 2012; 1822(11): 1796–1806
https://doi.org/10.1016/j.bbadis.2012.08.005 pmid: 22968146
43 Caton PW, Kieswich J, Yaqoob MM, Holness MJ, Sugden MC. Metformin opposes impaired AMPK and SIRT1 function and deleterious changes in core clock protein expression in white adipose tissue of genetically-obese db/db mice. Diabetes Obes Metab 2011; 13(12): 1097–1104
https://doi.org/10.1111/j.1463-1326.2011.01466.x pmid: 21733059
44 Liu HY, Han J, Cao SY, Hong T, Zhuo D, Shi J, Liu Z, Cao W. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J Biol Chem 2009; 284(45): 31484–31492
https://doi.org/10.1074/jbc.M109.033936 pmid: 19758991
45 Noh BK, Lee JK, Jun HJ, Lee JH, Jia Y, Hoang MH, Kim JW, Park KH, Lee SJ. Restoration of autophagy by puerarin in ethanol-treated hepatocytes via the activation of AMP-activated protein kinase. Biochem Biophys Res Commun 2011; 414(2): 361–366
https://doi.org/10.1016/j.bbrc.2011.09.077 pmid: 21964292
46 Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M, Sanyal AJ. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 2012; 55(6): 2005–2023
https://doi.org/10.1002/hep.25762 pmid: 22488764
47 Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 2010; 52(5): 1836–1846
https://doi.org/10.1002/hep.24001 pmid: 21038418
48 Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther 2011; 34(3): 274–285
https://doi.org/10.1111/j.1365-2036.2011.04724.x pmid: 21623852
49 Wattacheril J, Chalasani N. Nonalcoholic fatty liver disease (NAFLD): is it really a serious condition? Hepatology 2012; 56(4): 1580–1584
https://doi.org/10.1002/hep.26031 pmid: 23038652
50 Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology 1998; 114(4): 842–845
https://doi.org/10.1016/S0016-5085(98)70599-2 pmid: 9547102
51 Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 2004; 114(2): 147–152
https://doi.org/10.1172/JCI200422422 pmid: 15254578
52 Fabbrini E, Mohammed BS, Magkos F, Korenblat KM, Patterson BW, Klein S. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology 2008; 134(2): 424–431
https://doi.org/10.1053/j.gastro.2007.11.038 pmid: 18242210
53 Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, Osterreicher CH, Takahashi H, Karin M. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 2010; 140(2): 197–208
https://doi.org/10.1016/j.cell.2009.12.052 pmid: 20141834
54 Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini R, Natale S, Vanni E, Villanova N, Melchionda N, Rizzetto M. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 2003; 37(4): 917–923
https://doi.org/10.1053/jhep.2003.50161 pmid: 12668987
55 Woo SL, Xu H, Li H, Zhao Y, Hu X, Zhao J, Guo X, Guo T, Botchlett R, Qi T, Pei Y, Zheng J, Xu Y, An X, Chen L, Chen L, Li Q, Xiao X, Huo Y, Wu C. Metformin ameliorates hepatic steatosis and inflammation without altering adipose phenotype in diet-induced obesity. PLoS ONE 2014; 9(3): e91111
https://doi.org/10.1371/journal.pone.0091111 pmid: 24638078
56 Kita Y, Takamura T, Misu H, Ota T, Kurita S, Takeshita Y, Uno M, Matsuzawa-Nagata N, Kato K, Ando H, Fujimura A, Hayashi K, Kimura T, Ni Y, Otoda T, Miyamoto K, Zen Y, Nakanuma Y, Kaneko S. Metformin prevents and reverses inflammation in a non-diabetic mouse model of nonalcoholic steatohepatitis. PLoS ONE 2012; 7(9): e43056
https://doi.org/10.1371/journal.pone.0043056 pmid: 23028442
57 Carlson CA, Kim KH. Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. J Biol Chem 1973; 248(1): 378–380
pmid: 4692841
58 Beg ZH, Allmann DW, Gibson DM. Modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity with cAMP and wth protein fractions of rat liver cytosol. Biochem Biophys Res Commun 1973; 54(4): 1362–1369
https://doi.org/10.1016/0006-291X(73)91137-6 pmid: 4356818
59 Hardie DG. AMP-activated protein kinase: a key regulator of energy balance with many roles in human disease. J Intern Med 2014; 276(6): 543–559
https://doi.org/10.1111/joim.12268 pmid: 24824502
60 Stumvoll M, H?ring HU, Matthaei S. Metformin. Endocr Res 2007; 32(1–2): 39–57
https://doi.org/10.1080/07435800701743828 pmid: 18271504
61 Lin HZ, Yang SQ, Chuckaree C, Kuhajda F, Ronnet G, Diehl AM. Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat Med 2000; 6(9): 998–1003
https://doi.org/10.1038/79697 pmid: 10973319
62 Zang M, Zuccollo A, Hou X, Nagata D, Walsh K, Herscovitz H, Brecher P, Ruderman NB, Cohen RA. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J Biol Chem 2004; 279(46): 47898–47905
https://doi.org/10.1074/jbc.M408149200 pmid: 15371448
63 Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY, Gao B, Wierzbicki M, Verbeuren TJ, Shaw RJ, Cohen RA, Zang M. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 2011; 13(4): 376–388
https://doi.org/10.1016/j.cmet.2011.03.009 pmid: 21459323
64 Jia L, Vianna CR, Fukuda M, Berglund ED, Liu C, Tao C, Sun K, Liu T, Harper MJ, Lee CE, Lee S, Scherer PE, Elmquist JK. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nat Commun 2014; 5: 3878
https://doi.org/10.1038/ncomms4878 pmid: 24815961
65 Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat Med 2005; 11(2): 183–190
https://doi.org/10.1038/nm1166 pmid: 15685173
66 Guo X, Li H, Xu H, Halim V, Zhang W, Wang H, Ong KT, Woo SL, Walzem RL, Mashek DG, Dong H, Lu F, Wei L, Huo Y, Wu C. Palmitoleate induces hepatic steatosis but suppresses liver inflammatory response in mice. PLoS ONE 2012; 7(6): e39286
https://doi.org/10.1371/journal.pone.0039286 pmid: 22768070
67 Huo Y, Guo X, Li H, Xu H, Halim V, Zhang W, Wang H, Fan YY, Ong KT, Woo SL, Chapkin RS, Mashek DG, Chen Y, Dong H, Lu F, Wei L, Wu C. Targeted overexpression of inducible 6-phosphofructo-2-kinase in adipose tissue increases fat deposition but protects against diet-induced insulin resistance and inflammatory responses. J Biol Chem 2012; 287(25): 21492–21500
https://doi.org/10.1074/jbc.M112.370379 pmid: 22556414
68 Deng ZB, Liu Y, Liu C, Xiang X, Wang J, Cheng Z, Shah SV, Zhang S, Zhang L, Zhuang X, Michalek S, Grizzle WE, Zhang HG. Immature myeloid cells induced by a high-fat diet contribute to liver inflammation. Hepatology 2009; 50(5): 1412–1420
https://doi.org/10.1002/hep.23148 pmid: 19708080
69 Dong Z, Wei H, Sun R, Tian Z. The roles of innate immune cells in liver injury and regeneration. Cell Mol Immunol 2007; 4(4): 241–252
pmid: 17764614
70 Su GL. Lipopolysaccharides in liver injury: molecular mechanisms of Kupffer cell activation. Am J Physiol Gastrointest Liver Physiol 2002; 283(2): G256–G265
pmid: 12121871
71 Fan J, Zhong L, Wang G, . The role of Kupffer cells in non-alcoholic steatohepatitis of rats chronically fed with high-fat diet. Chin J Hepatol (Zhonghua Gan Zang Bing Za Zhi )2001; 9(1): 16–18 (in Chinese)
72 Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, Wallace M. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol 2007; 47(4): 571–579
https://doi.org/10.1016/j.jhep.2007.04.019 pmid: 17644211
73 Salminen A, Hyttinen JM, Kaarniranta K. AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan. J Mol Med (Berl)2011; 89(7): 667–676
https://doi.org/10.1007/s00109-011-0748-0 pmid: 21431325
74 El-Mir MY, Nogueira V, Fontaine E, Avéret N, Rigoulet M, Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 2000; 275(1): 223–228
https://doi.org/10.1074/jbc.275.1.223 pmid: 10617608
75 Marchesini G, Brizi M, Bianchi G, Tomassetti S, Zoli M, Melchionda N. Metformin in non-alcoholic steatohepatitis. Lancet 2001; 358(9285): 893–894
https://doi.org/10.1016/S0140-6736(01)06042-1 pmid: 11567710
76 Nair S, Diehl AM, Wiseman M, Farr GH Jr, Perrillo RP. Metformin in the treatment of non-alcoholic steatohepatitis: a pilot open label trial. Aliment Pharmacol Ther 2004; 20(1): 23–28
https://doi.org/10.1111/j.1365-2036.2004.02025.x pmid: 15225167
77 Uygun A, Kadayifci A, Isik AT, Ozgurtas T, Deveci S, Tuzun A, Yesilova Z, Gulsen M, Dagalp K. Metformin in the treatment of patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2004; 19(5): 537–544
https://doi.org/10.1111/j.1365-2036.2004.01888.x pmid: 14987322
78 Loomba R, Lutchman G, Kleiner DE, Ricks M, Feld JJ, Borg BB, Modi A, Nagabhyru P, Sumner AE, Liang TJ, Hoofnagle JH. Clinical trial: pilot study of metformin for the treatment of non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2009; 29(2): 172–182
https://doi.org/10.1111/j.1365-2036.2008.03869.x pmid: 18945255
79 Bugianesi E, Gentilcore E, Manini R, Natale S, Vanni E, Villanova N, David E, Rizzetto M, Marchesini G. A randomized controlled trial of metformin versus vitamin E or prescriptive diet in nonalcoholic fatty liver disease. Am J Gastroenterol 2005; 100(5): 1082–1090
https://doi.org/10.1111/j.1572-0241.2005.41583.x pmid: 15842582
80 Duseja A, Das A, Dhiman RK, Chawla YK, Thumburu KT, Bhadada S, Bhansali A. Metformin is effective in achieving biochemical response in patients with nonalcoholic fatty liver disease (NAFLD) not responding to lifestyle interventions. Ann Hepatol 2007; 6(4): 222–226
pmid: 18007551
81 de Oliveira CP, Stefano JT, de Siqueira ER, . Combination of N-acetylcysteine and metformin improves histological steatosis and fibrosis in patients with non-alcoholic steatohepatitis. Hepatol Res 2008; 38(2): 159–165
82 Haukeland JW, Konopski Z, Eggesb? HB, von Volkmann HL, Raschpichler G, Bj?ro K, Haaland T, L?berg EM, Birkeland K. Metformin in patients with non-alcoholic fatty liver disease: a randomized, controlled trial. Scand J Gastroenterol 2009; 44(7): 853–860
https://doi.org/10.1080/00365520902845268 pmid: 19811343
83 Garinis GA, Fruci B, Mazza A, De Siena M, Abenavoli S, Gulletta E, Ventura V, Greco M, Abenavoli L, Belfiore A. Metformin versus dietary treatment in nonalcoholic hepatic steatosis: a randomized study. Int J Obes (Lond)2010; 34(8): 1255–1264
https://doi.org/10.1038/ijo.2010.40 pmid: 20179669
84 Shargorodsky M, Omelchenko E, Matas Z, Boaz M, Gavish D. Relation between augmentation index and adiponectin during one-year metformin treatment for nonalcoholic steatohepatosis: effects beyond glucose lowering? Cardiovasc Diabetol 2012; 11(1): 61
https://doi.org/10.1186/1475-2840-11-61 pmid: 22676459
85 Han Y, Shi JP, Ma AL, Xu Y, Ding XD, Fan JG. Randomized, vitamin E-controlled trial of bicyclol plus metformin in non-alcoholic fatty liver disease patients with impaired fasting glucose. Clin Drug Investig 2014; 34(1): 1–7
https://doi.org/10.1007/s40261-013-0136-3 pmid: 24081374
86 Li Y, Liu L, Wang B, Wang J, Chen D. Metformin in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Biomedical reports 2013; 1(1): 57–64
87 Rakoski MO, Singal AG, Rogers MA, Conjeevaram H. Meta-analysis: insulin sensitizers for the treatment of non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2010; 32(10): 1211–1221
https://doi.org/10.1111/j.1365-2036.2010.04467.x pmid: 20955440
88 Musso G, Gambino R, Cassader M, Pagano G. A meta-analysis of randomized trials for the treatment of nonalcoholic fatty liver disease. Hepatology 2010; 52(1): 79–104
https://doi.org/10.1002/hep.23623 pmid: 20578268
89 Musso G, Cassader M, Rosina F, Gambino R. Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of randomised trials. Diabetologia 2012; 55(4): 885–904
https://doi.org/10.1007/s00125-011-2446-4 pmid: 22278337
90 Kaul S, Bolger AF, Herrington D, Giugliano RP, Eckel RH. Thiazolidinedione drugs and cardiovascular risks: a science advisory from the American Heart Association and American College of Cardiology Foundation. Circulation 2010; 121(16): 1868–1877
https://doi.org/10.1161/CIR.0b013e3181d34114 pmid: 20179252
91 Hofmann CA, Colca JR. New oral thiazolidinedione antidiabetic agents act as insulin sensitizers. Diabetes Care 1992; 15(8): 1075–1078
https://doi.org/10.2337/diacare.15.8.1075 pmid: 1505314
92 Masoudi FA, Wang Y, Inzucchi SE, Setaro JF, Havranek EP, Foody JM, Krumholz HM. Metformin and thiazolidinedione use in Medicare patients with heart failure. JAMA 2003; 290(1): 81–85
https://doi.org/10.1001/jama.290.1.81 pmid: 12837715
93 Sinha B, Ghosal S. Pioglitazone—do we really need it to manage type 2 diabetes? Diabetes Metab Syndr 2013; 7(1): 52–55
https://doi.org/10.1016/j.dsx.2013.02.033 pmid: 23517798
94 Buckingham RE, Hanna A. Thiazolidinedione insulin sensitizers and the heart: a tale of two organs? Diabetes Obes Metab 2008; 10(4): 312–328
https://doi.org/10.1111/j.1463-1326.2006.00700.x pmid: 18333890
95 Lebovitz HE. Differentiating members of the thiazolidinedione class: a focus on safety. Diabetes Metab Res Rev 2002; 18(S 2 Suppl 2 ): S23–S29
https://doi.org/10.1002/dmrr.252 pmid: 11921435
96 Pouwels KB, van Grootheest K. The rosiglitazone decision process at FDA and EMA. What should we learn? Int J Risk Saf Med 2012; 24(2): 73–80
pmid: 22751189
97 Sadikot SM, Ghosal S. India suspends pioglitazone: is it justified? Diabetes Metab Syndr 2014; 8(1): 53–56
https://doi.org/10.1016/j.dsx.2013.10.020 pmid: 24661760
98 Yau H, Rivera K, Lomonaco R, Cusi K. The future of thiazolidinedione therapy in the management of type 2 diabetes mellitus. Curr Diab Rep 2013; 13(3): 329–341
https://doi.org/10.1007/s11892-013-0378-8 pmid: 23625197
99 Kung J, Henry RR. Thiazolidinedione safety. Expert Opin Drug Saf 2012; 11(4): 565–579
https://doi.org/10.1517/14740338.2012.691963 pmid: 22616948
100 Shaw RJ. Metformin trims fats to restore insulin sensitivity. Nat Med 2013; 19(12): 1570–1572
https://doi.org/10.1038/nm.3414 pmid: 24309653
101 Diabetes Prevention Program Research Group. Long-term safety, tolerability, and weight loss associated with metformin in the Diabetes Prevention Program Outcomes Study. Diabetes Care 2012; 35(4): 731–737
https://doi.org/10.2337/dc11-1299 pmid: 22442396
102 Reitman ML, Schadt EE. Pharmacogenetics of metformin response: a step in the path toward personalized medicine. J Clin Invest 2007; 117(5): 1226–1229
https://doi.org/10.1172/JCI32133 pmid: 17476355
103 Lautatzis ME, Goulis DG, Vrontakis M. Efficacy and safety of metformin during pregnancy in women with gestational diabetes mellitus or polycystic ovary syndrome: a systematic review. Metabolism 2013; 62(11): 1522–1534
https://doi.org/10.1016/j.metabol.2013.06.006 pmid: 23886298
104 Ekstr?m N, Schi?ler L, Svensson AM, Eeg-Olofsson K, Miao Jonasson J, Zethelius B, Cederholm J, Eliasson B, Gudbj?rnsdottir S. Effectiveness and safety of metformin in 51 675 patients with type 2 diabetes and different levels of renal function: a cohort study from the Swedish National Diabetes Register. BMJ Open 2012; 2(4): e001076
https://doi.org/10.1136/bmjopen-2012-001076 pmid: 22798258
105 Spinozzi S, Colliva C, Camborata C, Roberti M, Ianni C, Neri F, Calvarese C, Lisotti A, Mazzella G, Roda A. Berberine and its metabolites: relationship between physicochemical properties and plasma levels after administration to human subjects. J Nat Prod 2014; 77(4): 766–772
https://doi.org/10.1021/np400607k pmid: 24593257
106 Liu Y, Zhang L, Song H, Ji G. Update on berberine in nonalcoholic Fatty liver disease. Evid Based Complement Alternat Med 2013; 2013: 308134
107 Affuso F, Mercurio V, Fazio V, Fazio S. Cardiovascular and metabolic effects of berberine. World J Cardiol 2010; 2(4): 71–77
108 Hu Y, Young AJ, Ehli EA, Nowotny D, Davies PS, Droke EA, Soundy TJ, Davies GE. Metformin and berberine prevent olanzapine-induced weight gain in rats. PLoS ONE 2014; 9(3): e93310
https://doi.org/10.1371/journal.pone.0093310 pmid: 24667776
109 Chang W, Zhang M, Li J, Meng Z, Wei S, Du H, Chen L, Hatch GM. Berberine improves insulin resistance in cardiomyocytes via activation of 5′-adenosine monophosphate-activated protein kinase. Metabolism 2013; 62(8): 1159–1167
https://doi.org/10.1016/j.metabol.2013.02.007 pmid: 23537779
110 Chen Y, Li Y, Wang Y, Wen Y, Sun C. Berberine improves free-fatty-acid-induced insulin resistance in L6 myotubes through inhibiting peroxisome proliferator-activated receptor γ and fatty acid transferase expressions. Metabolism 2009; 58(12): 1694–1702
https://doi.org/10.1016/j.metabol.2009.06.009 pmid: 19767038
111 Kong WJ, Zhang H, Song DQ, Xue R, Zhao W, Wei J, Wang YM, Shan N, Zhou ZX, Yang P, You XF, Li ZR, Si SY, Zhao LX, Pan HN, Jiang JD. Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression. Metabolism 2009; 58(1): 109–119
https://doi.org/10.1016/j.metabol.2008.08.013 pmid: 19059538
112 Shan CY, Yang JH, Kong Y, Wang XY, Zheng MY, Xu YG, Wang Y, Ren HZ, Chang BC, Chen LM. Alteration of the intestinal barrier and GLP2 secretion in berberine-treated type 2 diabetic rats. J Endocrinol 2013; 218(3): 255–262
https://doi.org/10.1530/JOE-13-0184 pmid: 23757509
113 Li Z, Geng YN, Jiang JD, Kong WJ. Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus. Evid Based Complement Alternat Med 2014; 2014: 289264
114 Zhang H, Wei J, Xue R, Wu JD, Zhao W, Wang ZZ, Wang SK, Zhou ZX, Song DQ, Wang YM, Pan HN, Kong WJ, Jiang JD. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism 2010; 59(2): 285–292
https://doi.org/10.1016/j.metabol.2009.07.029 pmid: 19800084
115 Han J, Lin H, Huang W. Modulating gut microbiota as an anti-diabetic mechanism of berberine. Med Sci Monit 2011; 17(7): RA164–RA167
https://doi.org/10.12659/MSM.881842 pmid: 21709646
116 Dong H, Wang N, Zhao L, Lu F. Berberine in the treatment of type 2 diabetes mellitus: a systemic review and meta-analysis. Evid Based Complement Alternat Med 2012; 2012: 591654
117 Tillhon M, Guamán Ortiz LM, Lombardi P, Scovassi AI. Berberine: new perspectives for old remedies. Biochem Pharmacol 2012; 84(10): 1260–1267
https://doi.org/10.1016/j.bcp.2012.07.018 pmid: 22842630
118 Xia X, Yan J, Shen Y, Tang K, Yin J, Zhang Y, Yang D, Liang H, Ye J, Weng J. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis. PLoS ONE 2011; 6(2): e16556
https://doi.org/10.1371/journal.pone.0016556 pmid: 21304897
119 Yin J, Gao Z, Liu D, Liu Z, Ye J. Berberine improves glucose metabolism through induction of glycolysis. Am J Physiol Endocrinol Metab 2008; 294(1): E148–E156
https://doi.org/10.1152/ajpendo.00211.2007 pmid: 17971514
120 Turner N, Li JY, Gosby A, To SW, Cheng Z, Miyoshi H, Taketo MM, Cooney GJ, Kraegen EW, James DE, Hu LH, Li J, Ye JM. Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action. Diabetes 2008; 57(5): 1414–1418
https://doi.org/10.2337/db07-1552 pmid: 18285556
121 Witters LA. The blooming of the French lilac. J Clin Invest 2001; 108(8): 1105–1107
https://doi.org/10.1172/JCI14178 pmid: 11602616
122 Ma RC. Acarbose: an alternative to metformin for first-line treatment in type 2 diabetes? Lancet Diabetes Endocrinol 2014; 2(1): 6–7
123 Holman R. Metformin as first choice in oral diabetes treatment: the UKPDS experience. Journ Annu Diabetol Hotel Dieu 2007; 2007: 13–20
pmid: 18613325
124 Prutsky G, Domecq JP, Tsapas A. Insulin secretagogues were associated with increased mortality compared with metformin in type 2 diabetes. Ann Intern Med 2012; 156(2): JC1–JC7
https://doi.org/10.7326/0003-4819-156-2-201201170-02007 pmid: 22250169
125 Vecchio S, Giampreti A, Petrolini VM, Lonati D, Protti A, Papa P, Rognoni C, Valli A, Rocchi L, Rolandi L, Manzo L, Locatelli CA. Metformin accumulation: lactic acidosis and high plasmatic metformin levels in a retrospective case series of 66 patients on chronic therapy. Clin Toxicol (Phila)2014; 52(2): 129–135
https://doi.org/10.3109/15563650.2013.860985 pmid: 24283301
126 Lin KD, Lin JD, Juang JH. Metformin-induced hemolysis with jaundice. N Engl J Med 1998; 339(25): 1860–1861
https://doi.org/10.1056/NEJM199812173392517 pmid: 9867572
127 Babich MM, Pike I, Shiffman ML. Metformin-induced acute hepatitis. Am J Med 1998; 104(5): 490–492
https://doi.org/10.1016/S0002-9343(98)00088-6 pmid: 9626034
128 Saadi T, Waterman M, Yassin H, Baruch Y. Metformin-induced mixed hepatocellular and cholestatic hepatic injury: case report and literature review. Int J Gen Med 2013; 6: 703–706
https://doi.org/10.2147/IJGM.S49657 pmid: 23983487
129 Miralles-Linares F, Puerta-Fernandez S, Bernal-Lopez MR, Tinahones FJ, Andrade RJ, Gomez-Huelgas R. Metformin-induced hepatotoxicity. Diabetes Care 2012; 35(3): e21
https://doi.org/10.2337/dc11-2306 pmid: 22355024
130 Kutoh E. Possible metformin-induced hepatotoxicity. Am J Geriatr Pharmacother 2005; 3(4): 270–273
https://doi.org/10.1016/j.amjopharm.2005.12.002 pmid: 16503324
131 Aksay E, Yanturali S, Bayram B, Hocaoglu N, Kiyan S. A rare side effect of metformin: metformin-induced hepatotoxicity. Turk J Med Sci 2007; 37(3): 173–175
132 Holstein A, Egberts EH. Currently listed contraindications to the use of metformin — more harmful than beneficial? Deut Med Wochenschr 2006; 131(3): 105–110
https://doi.org/10.1055/s-2006-924934
133 Harris K, Smith L. Safety and efficacy of metformin in patients with type 2 diabetes mellitus and chronic hepatitis C. Ann Pharmacother 2013; 47(10): 1348–1352
https://doi.org/10.1177/1060028013503108 pmid: 24259699
134 Xun YH, Zhang YJ, Pan QC, Mao RC, Qin YL, Liu HY, Zhang YM, Yu YS, Tang ZH, Lu MJ, Zang GQ, Zhang JM. Metformin inhibits hepatitis B virus protein production and replication in human hepatoma cells. J Viral Hepat 2014; 21(8): 597–603
pmid: 24164660
135 Donadon V, Balbi M, Mas MD, Casarin P, Zanette G. Metformin and reduced risk of hepatocellular carcinoma in diabetic patients with chronic liver disease. Liver Int 2010; 30(5): 750–758
136 Bhalla K, Hwang BJ, Dewi RE, Twaddel W, Goloubeva OG, Wong KK, Saxena NK, Biswal S, Girnun GD. Metformin prevents liver tumorigenesis by inhibiting pathways driving hepatic lipogenesis. Cancer Prev Res (Phila)2012; 5(4): 544–552
https://doi.org/10.1158/1940-6207.CAPR-11-0228 pmid: 22467080
137 DeCensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B, Gandini S. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res (Phila)2010; 3(11): 1451–1461
https://doi.org/10.1158/1940-6207.CAPR-10-0157 pmid: 20947488
138 Huang X, Wullschleger S, Shpiro N, McGuire VA, Sakamoto K, Woods YL, McBurnie W, Fleming S, Alessi DR. Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem J 2008; 412(2): 211–221
https://doi.org/10.1042/BJ20080557 pmid: 18387000
139 Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F, Viollet B, Thompson CB. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res 2007; 67(14): 6745–6752
https://doi.org/10.1158/0008-5472.CAN-06-4447 pmid: 17638885
140 Jalling O, Olsen C. The effects of metformin compared to the effects of phenformin on the lactate production and the metabolism of isolated parenchymal rat liver cell. Acta Pharmacol Toxicol (Copenh)1984; 54(5): 327–332
https://doi.org/10.1111/j.1600-0773.1984.tb01938.x pmid: 6431751
141 Chang CT, Chen YC, Fang JT, Huang CC. Metformin-associated lactic acidosis: case reports and literature review. J Nephrol 2002; 15(4): 398–402
pmid: 12243370
142 Rojas LB, Gomes MB. Metformin: an old but still the best treatment for type 2 diabetes. Diabetol Metab Syndr 2013; 5(1): 6
https://doi.org/10.1186/1758-5996-5-6 pmid: 23415113
143 Cusi K, Consoli A, DeFronzo RA. Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1996; 81(11): 4059–4067
pmid: 8923861
144 Salpeter SR, Greyber E, Pasternak GA, Salpeter EE. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus: systematic review and meta-analysis. Arch Intern Med 2003; 163(21): 2594–2602
https://doi.org/10.1001/archinte.163.21.2594 pmid: 14638559
145 Kadayifci A. Nonalcoholic steatohepatitis: role of leptin in pathogenesis and benefits of metformin in treatment. Am J Gastroenterol 2003; 98(10): 2330
146 Salpeter SR, Greyber E, Pasternak GA, Salpeter EE. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev 2010; (4): CD002967
https://doi.org/10.1002/14651858.CD002967.pub4 pmid: 20393934
147 Brackett CC. Clarifying metformin’s role and risks in liver dysfunction. J Am Pharm Assoc (2003)2010; 50(3): 407–410
https://doi.org/10.1331/JAPhA.2010.08090 pmid: 20452916
148 Chitturi S, George J. Hepatotoxicity of commonly used drugs: nonsteroidal anti-inflammatory drugs, antihypertensives, antidiabetic agents, anticonvulsants, lipid-lowering agents, psychotropic drugs. Semin Liver Dis 2002; 22(2): 169–183
https://doi.org/10.1055/s-2002-30102 pmid: 12016548
149 Edwards CMB, Barton MA, Snook J, David M, Mak VHF, Chowdhury TA. Metformin-associated lactic acidosis in a patient with liver disease. QJM 2003; 96(4): 315–316
https://doi.org/10.1093/qjmed/hcg049 pmid: 12651978
150 M?ller S, Hillings? J, Christensen E, Henriksen JH. Arterial hypoxaemia in cirrhosis: fact or fiction? Gut 1998; 42(6): 868–874
https://doi.org/10.1136/gut.42.6.868 pmid: 9691928
151 Guigas B, Bertrand L, Taleux N, Foretz M, Wiernsperger N, Vertommen D, Andreelli F, Viollet B, Hue L. 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an AMP-activated protein kinase-independent effect on glucokinase translocation. Diabetes 2006; 55(4): 865–874
pmid: 16567505
[1] Hui Wang, Yang Zhang, Zhujun Shen, Ligang Fang, Zhenyu Liu, Shuyang Zhang. Prognostic value of fasting glucose on the risk of heart failure and left ventricular systolic dysfunction in non-diabetic patients with ST-segment elevation myocardial infarction[J]. Front. Med., 2021, 15(1): 70-78.
[2] Di Cheng, Chunyan Hu, Rui Du, Hongyan Qi, Lin Lin, Xueyan Wu, Lina Ma, Kui Peng, Mian Li, Min Xu, Yu Xu, Yufang Bi, Weiqing Wang, Yuhong Chen, Jieli Lu. Serum uric acid and risk of incident diabetes in middle-aged and elderly Chinese adults: prospective cohort study[J]. Front. Med., 2020, 14(6): 802-810.
[3] Huiwen Ren, Can Wu, Ying Shao, Shuang Liu, Yang Zhou, Qiuyue Wang. Correlation between serum miR-154-5p and urinary albumin excretion rates in patients with type 2 diabetes mellitus: a cross-sectional cohort study[J]. Front. Med., 2020, 14(5): 642-650.
[4] Pengju Zhang, Tao Li, Xingyun Wu, Edouard C. Nice, Canhua Huang, Yuanyuan Zhang. Oxidative stress and diabetes: antioxidative strategies[J]. Front. Med., 2020, 14(5): 583-600.
[5] Ning Jiang, Yao Li, Ting Shu, Jing Wang. Cytokines and inflammation in adipogenesis: an updated review[J]. Front. Med., 2019, 13(3): 314-329.
[6] Xiaoqing Li, Xinxin Li, Genbei Wang, Yan Xu, Yuanyuan Wang, Ruijia Hao, Xiaohui Ma. Xiao Ke Qing improves glycometabolism and ameliorates insulin resistance by regulating the PI3K/Akt pathway in KKAy mice[J]. Front. Med., 2018, 12(6): 688-696.
[7] Liping Xuan, Zhiyun Zhao, Xu Jia, Yanan Hou, Tiange Wang, Mian Li, Jieli Lu, Yu Xu, Yuhong Chen, Lu Qi, Weiqing Wang, Yufang Bi, Min Xu. Type 2 diabetes is causally associated with depression: a Mendelian randomization analysis[J]. Front. Med., 2018, 12(6): 678-687.
[8] Ruiting Han, Junli Ma, Houkai Li. Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota[J]. Front. Med., 2018, 12(6): 645-657.
[9] Jiemin Pan, Weiping Jia. Early-onset diabetes: an epidemic in China[J]. Front. Med., 2018, 12(6): 624-633.
[10] Cynthia Rajani, Wei Jia. Bile acids and their effects on diabetes[J]. Front. Med., 2018, 12(6): 608-623.
[11] Meng Dong, Jun Lin, Wonchung Lim, Wanzhu Jin, Hyuek Jong Lee. Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia[J]. Front. Med., 2018, 12(2): 130-138.
[12] Chao Chen, Chang Wang, Chun Hu, Yachun Han, Li Zhao, Xuejing Zhu, Li Xiao, Lin Sun. Normoalbuminuric diabetic kidney disease[J]. Front. Med., 2017, 11(3): 310-318.
[13] Qiuxia Han, Hanyu Zhu, Xiangmei Chen, Zhangsuo Liu. Non-genetic mechanisms of diabetic nephropathy[J]. Front. Med., 2017, 11(3): 319-332.
[14] Palka Kaur Khanuja,Satish Chander Narula,Rajesh Rajput,Rajinder Kumar Sharma,Shikha Tewari. Association of periodontal disease with glycemic control in patients with type 2 diabetes in Indian population[J]. Front. Med., 2017, 11(1): 110-119.
[15] Huiqin Zhong,Ya Shao,Ling Fan,Tangshen Zhong,Lu Ren,Yan Wang. Perceived resource support for chronic illnesses among diabetics in north-western China[J]. Front. Med., 2016, 10(2): 219-227.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed