Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2015, Vol. 9 Issue (3) : 368-373    https://doi.org/10.1007/s11684-015-0403-1
RESEARCH ARTICLE
Glucagon-like peptide-2 exhibits protective effect on hepatic ischemia-reperfusion injury in rats
Naci Topaloğlu1,Adem Küçük2,Şule Yıldırım1,*(),Mustafa Tekin1,Havva Erdem3,Mustafa Deniz4
1. ?anakkale Onsekiz Mart University Medical Faculty, Department of Pediatrics, ?anakkale, Turkey
2. Düzce Atatürk State Hospital, Department of Pediatric Surgery, Düzce, Turkey
3. Düzce University Medical Faculty, Department of Pathology, Düzce, Turkey
4. ?anakkale Onsekiz Mart University Medical Faculty, Department of Physiology, ?anakkale, Turkey
 Download: PDF(356 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Glucagon-like peptide-2 (GLP-2) has potent anti-inflammatory effects and protects against experimental ischemia/reperfusion (I/R) injury in pulmonary, intestinal, and myocardial tissue. However, its protective abilities against I/R injury in the liver are unknown. We investigated the potential role of GLP-2 pretreatment on hepatic I/R injury in rats. A total of 24 rats were randomly divided into three groups (n = 8). The first group was the control group; the second group was the vehicle-treated hepatic ischemia/reperfusion (HIR, vehicle saline-treated) group; and the third group was the GLP-2 pretreated I/R (GLP2-IR) group. Each rat in the third group was intraperitoneally administered 5 μg GLP-2 for 5 d before the procedure. A portal triad was created to induce ischemia with a vascular atraumatic clamp. After 40 min, the clamp was released to initiate hepatic reperfusion for 6 h. Blood samples and tissue specimens from the liver were obtained. Alanine aminotransferase, aspartate aminotransferase, and total bilirubin levels significantly increased in the saline-treated HIR group (P<0.001), whereas GLP-2 pretreatment significantly decreased their levels (P<0.01). Our data suggested that GLP-2 pretreatment may have a protective effect on liver I/R injury. However, dose-response studies are necessary to determine the most effective dose.

Keywords ischemia/reperfusion      liver      glucagon-like peptide-2      alanine aminotransferase     
Corresponding Author(s): ?ule Y?ld?r?m   
Just Accepted Date: 07 July 2015   Online First Date: 21 August 2015    Issue Date: 26 August 2015
 Cite this article:   
Naci Topalo?lu,Adem Kü?ük,?ule Y?ld?r?m, et al. Glucagon-like peptide-2 exhibits protective effect on hepatic ischemia-reperfusion injury in rats[J]. Front. Med., 2015, 9(3): 368-373.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-015-0403-1
https://academic.hep.com.cn/fmd/EN/Y2015/V9/I3/368
Control (mean±SEM) HIR (mean±SEM) GLP2-IR (mean±SEM)
AST (n = 8) (U/L) 102.50±10.29 435.71±26.00 223.87±58.00
ALT (n = 8) (U/L) 34.75±3.57 365.71±55.00 164.14±65.00
Total bilirubin (n = 8) (mg/dl) 0.06±0.08 0.12±0.01 0.05±0.00
Total protein (n = 8) (g/dl) 5.08±0.13 5.37±0.09 5.37±0.17
GGT (n = 8) (U/L) 0.12±0.12 1.37±0.32 0.62±0.183
ALP (n = 8) (U/L) 74.11±13.00 134.62±9.56 128.87±7.13
Tab.1  Serum levels of AST, ALT, total bilirubin, total protein, GGT and ALP of rats in the groups
Fig.1  Histopathological liver specimens from rats. (A) Control group: normal liver tissue. (B) Specimens of HIR group. Liver specimens after ischemia reperfusion exhibited focal necrosis and infiltration of leukocytes. (C) Specimens of GLP2-IR group. GLP-2 treatment did not significantly decrease these pathological changes (P?>?0.05).
Fig.2  The effect of saline, I/R, and GLP-2 pretreatment on microscopic damage scores. *P?<?0.05; compared with the control group.
1 Abu-Amara M, Yang SY, Tapuria N, Fuller B, Davidson B, Seifalian A. Liver ischemia/reperfusion injury: processes in inflammatory networks—a review. Liver Transpl 2010; 16(9): 1016–1032
https://doi.org/10.1002/lt.22117 pmid: 20818739
2 Taki-Eldin A, Zhou L, Xie HY, Chen KJ, Yu D, He Y, Zheng SS. Triiodothyronine attenuates hepatic ischemia/reperfusion injury in a partial hepatectomy model through inhibition of proinflammatory cytokines, transcription factors, and adhesion molecules. J Surg Res 2012; 178(2): 646–656
https://doi.org/10.1016/j.jss.2012.05.069 pmid: 22727940
3 Rushing GD, Britt LD. Reperfusion injury after hemorrhage: a collective review. Ann Surg 2008; 247(6): 929–937
https://doi.org/10.1097/SLA.0b013e31816757f7 pmid: 18520219
4 Birrer R, Takuda Y, Takara T. Hypoxic hepatopathy: pathophysiology and prognosis. Intern Med 2007; 46(14): 1063–1070
https://doi.org/10.2169/internalmedicine.46.0059 pmid: 17634701
5 Tapuria N, Kumar Y, Habib MM, Abu Amara M, Seifalian AM, Davidson BR. Remote ischemic preconditioning: a novel protective method from ischemia reperfusion injury—a review. J Surg Res 2008; 150(2): 304–330
https://doi.org/10.1016/j.jss.2007.12.747 pmid: 19040966
6 Kandilci HB, Gümü?el B. Ischemia-reperfusion injury and ischemic preconditioning in lungs. Hacettepe University Journal of the Faculty of Pharmacy 2005; 25: 35–49 (in Turkish)
7 Kaplowitz N. Mechanisms of liver cell injury. J Hepatol 2000; 32(1 Suppl): 39–47
https://doi.org/10.1016/S0168-8278(00)80414-6 pmid: 10728793
8 Jaeschke H. Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning. Am J Physiol Gastrointest Liver Physiol 2003; 284(1): G15–G26
https://doi.org/10.1152/ajpgi.00342.2002 pmid: 12488232
9 Teoh NC, Farrell GC. Hepatic ischemia reperfusion injury: pathogenic mechanisms and basis for hepatoprotection. J Gastroenterol Hepatol 2003; 18(8): 891–902
https://doi.org/10.1046/j.1440-1746.2003.03056.x pmid: 12859717
10 Guan X, Karpen HE, Stephens J, Bukowski JT, Niu S, Zhang G, Stoll B, Finegold MJ, Holst JJ, Hadsell D, Nichols BL, Burrin DG. GLP-2 receptor localizes to enteric neurons and endocrine cells expressing vasoactive peptides and mediates increased blood flow. Gastroenterology 2006; 130(1): 150–164
https://doi.org/10.1053/j.gastro.2005.11.005 pmid: 16401478
11 Bremholm L, Hornum M, Henriksen BM, Larsen S, Holst JJ. Glucagon-like peptide-2 increases mesenteric blood flow in humans. Scand J Gastroenterol 2009; 44(3): 314–319
https://doi.org/10.1080/00365520802538195 pmid: 19005872
12 Bremholm L, Hornum M, Andersen UB, Hartmann B, Holst JJ, Jeppesen PB. The effect of glucagon-like peptide-2 on mesenteric blood flow and cardiac parameters in end-jejunostomy short bowel patients. Regul Pept 2011; 168(1-3): 32–38
https://doi.org/10.1016/j.regpep.2011.03.003 pmid: 21421014
13 Deniz M, Bozkurt A, Kurtel H. Mediators of glucagon-like peptide 2-induced blood flow: responses in different vascular sites. Regul Pept 2007; 142(1-2): 7–15
https://doi.org/10.1016/j.regpep.2007.01.002 pmid: 17346812
14 Benjamin MA, McKay DM, Yang PC, Cameron H, Perdue MH. Glucagon-like peptide-2 enhances intestinal epithelial barrier function of both transcellular and paracellular pathways in the mouse. Gut 2000; 47(1): 112–119
https://doi.org/10.1136/gut.47.1.112 pmid: 10861272
15 Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A, Lambert DM, Muccioli GG, Delzenne NM. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009; 58(8): 1091–1103
https://doi.org/10.1136/gut.2008.165886 pmid: 19240062
16 Ivory CP, Wallace LE, McCafferty DM, Sigalet DL. Interleukin-10-independent anti-inflammatory actions of glucagon-like peptide 2. Am J Physiol Gastrointest Liver Physiol 2008; 295(6): G1202–G1210
https://doi.org/10.1152/ajpgi.90494.2008 pmid: 18845573
17 Sigalet DL, Wallace LE, Holst JJ, Martin GR, Kaji T, Tanaka H, Sharkey KA. Enteric neural pathways mediate the anti-inflammatory actions of glucagon-like peptide 2. Am J Physiol Gastrointest Liver Physiol 2007; 293(1): G211–G221
https://doi.org/10.1152/ajpgi.00530.2006 pmid: 17395898
18 Munroe DG, Gupta AK, Kooshesh F, Vyas TB, Rizkalla G, Wang H, Demchyshyn L, Yang ZJ, Kamboj RK, Chen H, McCallum K, Sumner-Smith M, Drucker DJ, Crivici A. Prototypic G protein-coupled receptor for the intestinotrophic factor glucagon-like peptide 2. Proc Natl Acad Sci USA 1999; 96(4): 1569–1573
https://doi.org/10.1073/pnas.96.4.1569 pmid: 9990065
19 Thulesen J, Hartmann B, ?rskov C, Jeppesen PB, Holst JJ, Poulsen SS. Potential targets for glucagon-like peptide 2 (GLP-2) in the rat: distribution and binding of i.v. injected (125)I-GLP-2. Peptides 2000; 21(10): 1511–1517
https://doi.org/10.1016/S0196-9781(00)00305-3 pmid: 11068098
20 Chiappa AC, Makuuchi M, Zbar AP, Biella F, Vezzoni A, Torzilli G, Andreoni B. Protective effect of methylprednisolone and of intermittent hepatic pedicle clamping during liver vascular inflow occlusion in the rat. Hepatogastroenterology 2004; 51(59): 1439–1444
pmid: 15362771
21 Aslan A, Karagüzel G, Celik M, Uysal N, Yücel G, Melikoglu M. Pentoxifylline contributes to the hepatic cytoprotective process in rats undergoing hepatic ischemia and reperfusion injury. Eur Surg Res 2001; 33(4): 285–290
https://doi.org/10.1159/000049719 pmid: 11684835
22 Portakal O, Inal-Erden M. Effects of pentoxifylline and coenzyme Q10 in hepatic ischemia/reperfusion injury. Clin Biochem 1999; 32(6): 461–466
https://doi.org/10.1016/S0009-9120(99)00041-7 pmid: 10667482
23 Vardareli E, Sar?cam T, Koken T, Degirmenci I, Aral E, Erenoglu E. The effect of alpha-tocopherol and pentoxyfilline on ischemia-reperfusion induced liver injury in rats. Hepatogastroenterology 1998; 45(23): 1505–1508
pmid: 9840094
24 Y?ld?r?m S, Tok H, K?ksal H, Erdem L, Baykan A. Allopurinol plus pentoxifilline in hepatic ischaemia/reperfusion injury. Asian J Surg 2002; 25(2): 149–153
https://doi.org/10.1016/S1015-9584(09)60164-0 pmid: 12376236
25 Vaghasiya JD, Sheth NR, Bhalodia YS, Jivani NP. Exaggerated liver injury induced by renal ischemia reperfusion in diabetes: effect of exenatide. Saudi J Gastroenterol 2010; 16(3): 174–180
https://doi.org/10.4103/1319-3767.65187 pmid: 20616412
26 Ozturk H, Gezici A, Ozturk H. The effect of celecoxib, a selective COX-2 inhibitor, on liver ischemia/reperfusion-induced oxidative stress in rats. Hepatol Res 2006; 34(2): 76–83
https://doi.org/10.1016/j.hepres.2005.11.003 pmid: 16384742
27 Farber JL, Gerson RJ. Mechanism of cell injury with hepatotoxic chemicals. Pharmacol Rew 1984; 36: 715–745
28 Hearse DJ. Reperfusion of the ischemic myocardium. J Mol Cell Cardiol 1977; 9(8): 605–616
https://doi.org/10.1016/S0022-2828(77)80357-X pmid: 903971
29 Arda-Pirincci P, Bolkent S. The role of glucagon-like peptide-2 on apoptosis, cell proliferation, and oxidant-antioxidant system at a mouse model of intestinal injury induced by tumor necrosis factor-alpha/actinomycin D. Mol Cell Biochem 2011; 350(1-2): 13–27
https://doi.org/10.1007/s11010-010-0678-0 pmid: 21153865
30 Neuman MG. Apoptosis in diseases of the liver. Crit Rev Clin Lab Sci 2001; 38(2): 109–166
https://doi.org/10.1080/20014091084182 pmid: 11347718
31 Rüdiger HA, Graf R, Clavien PA. Liver ischemia: apoptosis as a central mechanism of injury. J Invest Surg 2003; 16(3): 149–159
https://doi.org/10.1080/08941930390205764 pmid: 12775431
32 Schmeling DJ, Caty MG, Oldham KT, Guice KS. Cytoprotection by diclofenac sodium after intestinal ischemia/reperfusion injury. J Pediatr Surg 1994; 29(8): 1044–1048
https://doi.org/10.1016/0022-3468(94)90276-3 pmid: 7965503
33 Tsung A, Kaizu T, Nakao A, Shao L, Bucher B, Fink MP, Murase N, Geller DA. Ethyl pyruvate ameliorates liver ischemia-reperfusion injury by decreasing hepatic necrosis and apoptosis. Transplantation 2005; 79(2): 196–204
https://doi.org/10.1097/01.TP.0000151681.07474.2E pmid: 15665768
34 Schmeding M, Neumann UP, Boas-Knoop S, Spinelli A, Neuhaus P. Erythropoietin reduces ischemia-reperfusion injury in the rat liver. Eur Surg Res 2007; 39(3): 189–197
https://doi.org/10.1159/000101009 pmid: 17377393
35 Erdo?an O, Y?ld?z S, Ba?aran A, Demirba? A, Ye?ilkaya A. Effect of intraportal verapamil infusion on hepatic ischemia-reperfusion injury. Pol J Pharmacol 2001; 53(2): 137–141
pmid: 11787953
36 Hiranuma S, Ito K, Noda Y, Ozasa H, Koike Y, Horikawa S. Amelioration of hepatic ischemia/reperfusion injury in the remnant liver after partial hepatectomy in rats. J Gastroenterol Hepatol 2007; 22(12): 2167–2172
https://doi.org/10.1111/j.1440-1746.2006.04779.x pmid: 18031376
37 Taylor-Edwards CC, Burrin DG, Kristensen NB, Holst JJ, McLeod KR, Harmon DL. Glucagon-like peptide-2 (GLP-2) increases net amino acid utilization by the portal-drained viscera of ruminating calves. Animal 2012; 6(12): 1985–1997
https://doi.org/10.1017/S175173111200095X pmid: 23031436
38 Guan X, Stoll B, Lu X, Tappenden KA, Holst JJ, Hartmann B, Burrin DG. GLP-2-mediated up-regulation of intestinal blood flow and glucose uptake is nitric oxide-dependent in TPN-fed piglets 1. Gastroenterology 2003; 125(1): 136–147
https://doi.org/10.1016/S0016-5085(03)00667-X pmid: 12851879
[1] Pengju Zhang, Tao Li, Xingyun Wu, Edouard C. Nice, Canhua Huang, Yuanyuan Zhang. Oxidative stress and diabetes: antioxidative strategies[J]. Front. Med., 2020, 14(5): 583-600.
[2] Junjun Jia, Xinyao Tian, Jianwen Jiang, Zhigang Ren, Haifeng Lu, Ning He, Haiyang Xie, Lin Zhou, Shusen Zheng. Structural shifts in the intestinal microbiota of rats treated with cyclosporine A after orthotropic liver transplantation[J]. Front. Med., 2019, 13(4): 451-460.
[3] Xiaofang Cui, Benting Ma, Yan Wang, Yan Chen, Chunling Shen, Ying Kuang, Jian Fei, Lungen Lu, Zhugang Wang. Rdh13 deficiency weakens carbon tetrachloride-induced liver injury by regulating Spot14 and Cyp2e1 expression levels[J]. Front. Med., 2019, 13(1): 104-111.
[4] Xiaoqing Li, Xinxin Li, Genbei Wang, Yan Xu, Yuanyuan Wang, Ruijia Hao, Xiaohui Ma. Xiao Ke Qing improves glycometabolism and ameliorates insulin resistance by regulating the PI3K/Akt pathway in KKAy mice[J]. Front. Med., 2018, 12(6): 688-696.
[5] Yinlong Zhang, Guangna Liu, Jingyan Wei, Guangjun Nie. Platelet membrane-based and tumor-associated platelet- targeted drug delivery systems for cancer therapy[J]. Front. Med., 2018, 12(6): 667-677.
[6] Lan Yu, Xun Tian, Chun Gao, Ping Wu, Liming Wang, Bei Feng, Xiaomin Li, Hui Wang, Ding Ma, Zheng Hu. Genome editing for the treatment of tumorigenic viral infections and virus-related carcinomas[J]. Front. Med., 2018, 12(5): 497-508.
[7] Meijuan Zheng, Haoyu Sun, Zhigang Tian. Natural killer cells in liver diseases[J]. Front. Med., 2018, 12(3): 269-279.
[8] Qing Pang, Hao Jin, Zhongran Man, Yong Wang, Song Yang, Zongkuang Li, Yimin Lu, Huichun Liu, Lei Zhou. Radical versus conservative surgical treatment of liver hydatid cysts: a meta-analysis[J]. Front. Med., 2018, 12(3): 350-359.
[9] Xuefu Wang, Zhigang Tian. γδ T cells in liver diseases[J]. Front. Med., 2018, 12(3): 262-268.
[10] Shasha Zhu, Huimin Zhang, Li Bai. NKT cells in liver diseases[J]. Front. Med., 2018, 12(3): 249-261.
[11] Xinyao Tian, Zhe Yang, Fangzhou Luo, Shusen Zheng. Gut microbial balance and liver transplantation: alteration, management, and prediction[J]. Front. Med., 2018, 12(2): 123-129.
[12] Qiang Li, Dongrui Deng. New medical risks affecting obstetrics after implementation of the two-child policy in China[J]. Front. Med., 2017, 11(4): 570-575.
[13] Zhen He,Cheng Hu,Weiping Jia. miRNAs in non-alcoholic fatty liver disease[J]. Front. Med., 2016, 10(4): 389-396.
[14] Chun Chen,Zhihong Cheng,Ping Jiang,Mei Sun,Qi Zhang,Jun Lv. Effect of the new maternity insurance scheme on medical expenditures for caesarean delivery in Wuxi, China: a retrospective pre/post-reform case study[J]. Front. Med., 2016, 10(4): 473-480.
[15] Yugang Cheng,Hanxiang Zhan,Lei Wang,Jianwei Xu,Guangyong Zhang,Zongli Zhang,Sanyuan Hu. Analysis of 100 consecutive cases of resectable pancreatic neuroendocrine neoplasms: clinicopathological characteristics and long-term outcomes[J]. Front. Med., 2016, 10(4): 444-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed