Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2015, Vol. 9 Issue (3) : 288-303     DOI: 10.1007/s11684-015-0412-0
Toll-like receptor signaling in hematopoietic homeostasis and the pathogenesis of hematologic diseases
Joseph Cannova1,2,Peter Breslin S.J.3,5,6,*(),Jiwang Zhang1,3,4,*()
1. Biochemistry and Molecular Biology Program, Loyola University Chicago, Maywood, IL 60153, USA
2. Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
3. Oncology Institute, Loyola University Chicago, Maywood, IL 60153, USA
4. Department of Pathology, Loyola University Chicago, Maywood, IL 60153, USA
5. Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
6. Department of Molecular and Cellular Physiology, Loyola University Chicago, Maywood, IL 60153, USA
Download: PDF(961 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Toll-like receptors (TLRs), which are found in innate immune cells, are essential mediators of rapid inflammatory responses and appropriate T-cell activation in response to infection and tissue damage. Accumulating evidence suggests that TLR signaling is involved in normal hematopoiesis and specific hematologic pathologies. Particular TLRs and their downstream signaling mediators are expressed not only in terminally differentiated innate immune cells but also in early hematopoietic progenitors. Sterile activation of TLR signaling is required to generate early embryonic hematopoietic progenitor cells. In adult animals, TLR signaling directly or indirectly promotes differentiation of myeloid cells at the expense of that of lymphoid cells and the self-renewal of hematopoietic stem cells during infection and tissue damage. Activating mutations of the MyD88 gene, which codes for a key adaptor involved in TLR signaling, are commonly detected in B-cell lymphomas and other B-cell hematopathologies. Dysregulated TLR signaling contributes to the pathogenesis of many hematopoietic disorders, including bone marrow failure, myelodysplastic syndrome, and acute myeloid leukemia. Complete elucidation of the molecular mechanisms by which TLR signaling mediates the regulation of both normal and pathogenic hematopoiesis will prove valuable to the development of targeted therapies and strategies for improved treatment of hematopoietic disorders.

Keywords TLR      MyD88      hematopoiesis      bone marrow failure      leukemia      myelodysplastic syndrome     
Corresponding Authors: Peter Breslin S.J.,Jiwang Zhang   
Just Accepted Date: 12 August 2015   Online First Date: 21 August 2015    Issue Date: 26 August 2015
URL:     OR
Fig.1  TLR signaling ligands and directed responses. TLR signaling is divided into MyD88-dependent and MyD88-independent responses. MyD88-dependent signaling mediates the activation of IL1R, TLR1/2, TLR2/6, TLR4, TLR5, TLR7, TLR8, and TLR9. Such activation leads to oligomerization of the myddosome, which is composed of MyD88, IRAK1/2, and IRAK4. The myddosome activates TRAF6, which results in the activation of p38/CREB, JNK/AP-1, and NF-κB transcription factors, thereby stimulating inflammatory cytokine production. TLR7, TLR8, and TLR9 dimerization and signaling have been consolidated in this figure. In addition to myddosome signaling, TLR7, TLR8, and TLR9 induce IRF5 and IRF7 activation through TRAF6, indicated by the dashed line. TLR1, TLR 2, TLR4, TLR5, TLR6, and IL1R are unable to induce IFN expression through MyD88. MyD88-independent (TRIF-dependent) signaling mediates type I interferon production through the activation of IRF3 and IRF7. TRIF is suppressed through a direct interaction with SARM. TRIF may also bind to RIPK3 to initiate necroptosis, which is normally suppressed by caspase-8.
Fig.2  Emergency myelopoiesis in response to TLR activation. Production of myeloid cells is observed in response to TLR stimulation at the level of: (1) peripheral innate immune cells, (2) mesenchymal stem cells (MSCs), and (3) hematopoietic stem cells (HSCs). Upon TLR stimulation, IFN-γ produced by peripheral immune cells migrating to the bone marrow niche stimulates IL-6 production by MSCs, which induces HSPC proliferation and myeloid-biased differentiation.
Fig.3  TLR signaling in hematological pathologies. Aplastic anemia (AA) autoimmune bone marrow failure is mediated by HSPC-reactive Th1 cells. Myelodysplastic syndromes result in ineffective hematopoiesis through alteration of the HSPC microenvironment by myeloid-derived suppressor cells (MDSCs). MDSCs suppress the Th1 T-cell response and produce cytokines that generate a BM microenvironment favorable for leukemic cells.
Fig.4  MyD88 mutations in B-cell lymphomas. Activating mutations of MYD88 in B-cell lymphomas lead to constitutive activation of NF-κB signaling, which promotes proliferation and survival of tumor cells by collaborating with STAT3 signaling stimulated by autocrine inflammatory cytokines.
1 Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010; 140(6): 805–820
doi: 10.1016/j.cell.2010.01.022 pmid: 20303872
2 Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol 2014; 5: 461
doi: 10.3389/fimmu.2014.00461 pmid: 25309543
3 Gay NJ, Symmons MF, Gangloff M, Bryant CE. Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol 2014; 14(8): 546–558
doi: 10.1038/nri3713 pmid: 25060580
4 Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, MacDonald AS, Allen JE. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 2011; 332(6035): 1284–1288
doi: 10.1126/science.1204351 pmid: 21566158
5 Yá?ez A, Goodridge HS, Gozalbo D, Gil ML. TLRs control hematopoiesis during infection. Eur J Immunol 2013; 43(10): 2526–2533
doi: 10.1002/eji.201343833 pmid: 24122753
6 Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010; 11(5): 373–384
doi: 10.1038/ni.1863 pmid: 20404851
7 Jin MS, Lee JO. Structures of the toll-like receptor family and its ligand complexes. Immunity 2008; 29(2): 182–191
doi: 10.1016/j.immuni.2008.07.007 pmid: 18701082
8 Yoon SI, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL, Wilson IA. Structural basis of TLR5-flagellin recognition and signaling. Science 2012; 335(6070): 859–864
doi: 10.1126/science.1215584 pmid: 22344444
9 Latz E, Verma A, Visintin A, Gong M, Sirois CM, Klein DC, Monks BG, McKnight CJ, Lamphier MS, Duprex WP, Espevik T, Golenbock DT. Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat Immunol 2007; 8(7): 772–779
doi: 10.1038/ni1479 pmid: 17572678
10 Tanji H, Ohto U, Shibata T, Miyake K, Shimizu T. Structural reorganization of the Toll-like receptor 8 dimer induced by agonistic ligands. Science 2013; 339(6126): 1426–1429
doi: 10.1126/science.1229159 pmid: 23520111
11 Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999; 162(7): 3749–3752
pmid: 10201887
12 Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL, Akira S. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 2002; 169(1): 10–14
doi: 10.4049/jimmunol.169.1.10 pmid: 12077222
13 Takeuchi O, Kawai T, Mühlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, Akira S. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 2001; 13(7): 933–940
doi: 10.1093/intimm/13.7.933 pmid: 11431423
14 Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 1999; 11(4): 443–451
doi: 10.1016/S1074-7613(00)80119-3 pmid: 10549626
15 Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004; 303(5663): 1526–1529
doi: 10.1126/science.1093620 pmid: 14976262
16 Tanji H, Ohto U, Shibata T, Taoka M, Yamauchi Y, Isobe T, Miyake K, Shimizu T. Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat Struct Mol Biol 2015; 22(2): 109–115
doi: 10.1038/nsmb.2943 pmid: 25599397
17 Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 2007; 130(6): 1071–1082
doi: 10.1016/j.cell.2007.09.008 pmid: 17889651
18 Kang JY, Nan X, Jin MS, Youn SJ, Ryu YH, Mah S, Han SH, Lee H, Paik SG, Lee JO. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 2009; 31(6): 873–884
doi: 10.1016/j.immuni.2009.09.018 pmid: 19931471
19 Leonard JN, Ghirlando R, Askins J, Bell JK, Margulies DH, Davies DR, Segal DM. The TLR3 signaling complex forms by cooperative receptor dimerization. Proc Natl Acad Sci USA 2008; 105(1): 258–263
doi: 10.1073/pnas.0710779105 pmid: 18172197
20 Liu L, Botos I, Wang Y, Leonard JN, Shiloach J, Segal DM, Davies DR. Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science 2008; 320(5874): 379–381
doi: 10.1126/science.1155406 pmid: 18420935
21 Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 2009; 458(7242): 1191–1195
doi: 10.1038/nature07830 pmid: 19252480
22 Ulevitch RJ, Tobias PS. Recognition of gram-negative bacteria and endotoxin by the innate immune system. Curr Opin Immunol 1999; 11(1): 19–22
doi: 10.1016/S0952-7915(99)80004-1 pmid: 10047547
23 Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990; 249(4975): 1431–1433
doi: 10.1126/science.1698311 pmid: 1698311
24 Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 1999; 189(11): 1777–1782
doi: 10.1084/jem.189.11.1777 pmid: 10359581
25 Kim YM, Brinkmann MM, Paquet ME, Ploegh HL. UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature 2008; 452(7184): 234–238
doi: 10.1038/nature06726 pmid: 18305481
26 Feldman N, Rotter-Maskowitz A, Okun E. DAMPs as mediators of sterile inflammation in aging-related pathologies. Ageing Res Rev 2015
doi: 10.1016/j.arr.2015.01.003 pmid: 25641058
27 Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science 2010; 327(5963): 291–295
doi: 10.1126/science.1183021 pmid: 20075244
28 Park JS, Gamboni-Robertson F, He Q, Svetkauskaite D, Kim JY, Strassheim D, Sohn JW, Yamada S, Maruyama I, Banerjee A, Ishizaka A, Abraham E. High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Physiol Cell Physiol 2006; 290(3): C917–C924
doi: 10.1152/ajpcell.00401.2005 pmid: 16267105
29 Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C, Hua J, An LL, Audoly L, La Rosa G, Bierhaus A, Naworth P, Marshak-Rothstein A, Crow MK, Fitzgerald KA, Latz E, Kiener PA, Coyle AJ. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 2007; 8(5): 487–496
doi: 10.1038/ni1457 pmid: 17417641
30 Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002; 418(6894): 191–195
doi: 10.1038/nature00858 pmid: 12110890
31 Luong M, Zhang Y, Chamberlain T, Zhou T, Wright JF, Dower K, Hall JP. Stimulation of TLR4 by recombinant HSP70 requires structural integrity of the HSP70 protein itself. J Inflamm (Lond)2012; 9(1): 11
doi: 10.1186/1476-9255-9-11 pmid: 22448747
32 Wheeler DS, Chase MA, Senft AP, Poynter SE, Wong HR, Page K. Extracellular Hsp72, an endogenous DAMP, is released by virally infected airway epithelial cells and activates neutrophils via Toll-like receptor (TLR)-4. Respir Res 2009; 10(1): 31
doi: 10.1186/1465-9921-10-31 pmid: 19405961
33 Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 2003; 301(5633): 640–643
doi: 10.1126/science.1087262 pmid: 12855817
34 Sheedy FJ, O’Neill LA. The Troll in Toll: Mal and Tram as bridges for TLR2 and TLR4 signaling. J Leukoc Biol 2007; 82(2): 196–203
doi: 10.1189/jlb.1206750 pmid: 17449723
35 Deguine J, Barton GM. MyD88: a central player in innate immune signaling. F1000Prime Rep 2014; 6: 97
doi: 10.12703/P6-97 pmid: 25580251
36 Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol 2008; 9(4): 361–368
doi: 10.1038/ni1569 pmid: 18297073
37 Carty M, Goodbody R, Schr?der M, Stack J, Moynagh PN, Bowie AG. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol 2006; 7(10): 1074–1081
doi: 10.1038/ni1382 pmid: 16964262
38 Lin SC, Lo YC, Wu H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 2010; 465(7300): 885–890
doi: 10.1038/nature09121 pmid: 20485341
39 Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV. TRAF6 is a signal transducer for interleukin-1. Nature 1996; 383(6599): 443–446
doi: 10.1038/383443a0 pmid: 8837778
40 Kobayashi T, Walsh MC, Choi Y. The role of TRAF6 in signal transduction and the immune response. Microbes Infect 2004; 6(14): 1333–1338
doi: 10.1016/j.micinf.2004.09.001 pmid: 15555541
41 Han KJ, Su X, Xu LG, Bin LH, Zhang J, Shu HB. Mechanisms of the TRIF-induced interferon-stimulated response element and NF-kappaB activation and apoptosis pathways. J Biol Chem 2004; 279(15): 15652–15661
doi: 10.1074/jbc.M311629200 pmid: 14739303
42 Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, Shimada N, Ohba Y, Takaoka A, Yoshida N, Taniguchi T. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 2005; 434(7034): 772–777
doi: 10.1038/nature03464 pmid: 15800576
43 Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M, Inoue J, Uematsu S, Takeuchi O, Akira S. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol 2004; 5(10): 1061–1068
doi: 10.1038/ni1118 pmid: 15361868
44 Balkhi MY, Fitzgerald KA, Pitha PM. Functional regulation of MyD88-activated interferon regulatory factor 5 by K63-linked polyubiquitination. Mol Cell Biol 2008; 28(24): 7296–7308
doi: 10.1128/MCB.00662-08 pmid: 18824541
45 Schoenemeyer A, Barnes BJ, Mancl ME, Latz E, Goutagny N, Pitha PM, Fitzgerald KA, Golenbock DT. The interferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7 signaling. J Biol Chem 2005; 280(17): 17005–17012
doi: 10.1074/jbc.M412584200 pmid: 15695821
46 Jiang Z, Mak TW, Sen G, Li X. Toll-like receptor 3-mediated activation of NF-κB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-β. Proc Natl Acad Sci USA 2004; 101(10): 3533–3538
doi: 10.1073/pnas.0308496101 pmid: 14982987
47 Narayanan KB, Park HH. Toll/interleukin-1 receptor (TIR) domain-mediated cellular signaling pathways. Apoptosis 2015; 20(2): 196–209
doi: 10.1007/s10495-014-1073-1 pmid: 25563856
48 Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, Sehon CA, Marquis RW, Bertin J, Mocarski ES. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem 2013; 288(43): 31268–31279
doi: 10.1074/jbc.M113.462341 pmid: 24019532
49 Balmer ML, Schürch CM, Saito Y, Geuking MB, Li H, Cuenca M, Kovtonyuk LV, McCoy KD, Hapfelmeier S, Ochsenbein AF, Manz MG, Slack E, Macpherson AJ. Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling. J Immunol 2014; 193(10): 5273–5283
doi: 10.4049/jimmunol.1400762 pmid: 25305320
50 He Q, Zhang C, Wang L, Zhang P, Ma D, Lv J, Liu F. Inflammatory signaling regulates hematopoietic stem and progenitor cell emergence in vertebrates. Blood 2015; 125(7): 1098–1106
doi: 10.1182/blood-2014-09-601542 pmid: 25540193
51 Sawamiphak S, Kontarakis Z, Stainier DY. Interferon gamma signaling positively regulates hematopoietic stem cell emergence. Dev Cell 2014; 31(5): 640–653
doi: 10.1016/j.devcel.2014.11.007 pmid: 25490269
52 Li Y, Esain V, Teng L, Xu J, Kwan W, Frost IM, Yzaguirre AD, Cai X, Cortes M, Maijenburg MW, Tober J, Dzierzak E, Orkin SH, Tan K, North TE, Speck NA. Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production. Genes Dev 2014; 28(23): 2597–2612
doi: 10.1101/gad.253302.114 pmid: 25395663
53 Orelio C, Haak E, Peeters M, Dzierzak E. Interleukin-1-mediated hematopoietic cell regulation in the aorta-gonad-mesonephros region of the mouse embryo. Blood 2008; 112(13): 4895–4904
doi: 10.1182/blood-2007-12-123836 pmid: 18805969
54 Robin C, Ottersbach K, Durand C, Peeters M, Vanes L, Tybulewicz V, Dzierzak E. An unexpected role for IL-3 in the embryonic development of hematopoietic stem cells. Dev Cell 2006; 11(2): 171–180
doi: 10.1016/j.devcel.2006.07.002 pmid: 16890157
55 Espín-Palazón R, Stachura DL, Campbell CA, García-Moreno D, Del Cid N, Kim AD, Candel S, Meseguer J, Mulero V, Traver D. Proinflammatory signaling regulates hematopoietic stem cell emergence. Cell 2014; 159(5): 1070–1085
doi: 10.1016/j.cell.2014.10.031 pmid: 25416946
56 Veldman MB, Lin S. Stem cells on fire: inflammatory signaling in HSC emergence. Dev Cell 2014; 31(5): 517–518
doi: 10.1016/j.devcel.2014.11.026 pmid: 25490260
57 Cannistra SA, Griffin JD. Regulation of the production and function of granulocytes and monocytes. Semin Hematol 1988; 25(3): 173–188
pmid: 3043672
58 Qiu P, Pan PC, Govind S. A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development 1998; 125(10): 1909–1920
pmid: 9550723
59 Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S, Takatsu K, Kincade PW. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 2006; 24(6): 801–812
doi: 10.1016/j.immuni.2006.04.008 pmid: 16782035
60 De Luca K, Frances-Duvert V, Asensio MJ, Ihsani R, Debien E, Taillardet M, Verhoeyen E, Bella C, Lantheaume S, Genestier L, Defrance T. The TLR1/2 agonist PAM(3)CSK(4) instructs commitment of human hematopoietic stem cells to a myeloid cell fate. Leukemia 2009; 23(11): 2063–2074
doi: 10.1038/leu.2009.155 pmid: 19641520
61 Baldridge MT, King KY, Boles NC, Weksberg DC, Goodell MA. Quiescent haematopoietic stem cells are activated by IFN-γ in response to chronic infection. Nature 2010; 465(7299): 793–797
doi: 10.1038/nature09135 pmid: 20535209
62 Yá?ez A, Murciano C, O'Connor JE, Gozalbo D, Gil ML. Candida albicans triggers proliferation and differentiation of hematopoietic stem and progenitor cells by a MyD88-dependent signaling. Microbes Infect 2009; 11(4): 531–535
doi: 10.1016/j.micinf.2009.01.011 pmid: 19217944
63 Yá?ez A, Megías J, O’Connor JE, Gozalbo D, Gil ML. Candida albicans induces selective development of macrophages and monocyte derived dendritic cells by a TLR2 dependent signalling. PLoS ONE 2011; 6(9): e24761
doi: 10.1371/journal.pone.0024761 pmid: 21935459
64 Esplin BL, Shimazu T, Welner RS, Garrett KP, Nie L, Zhang Q, Humphrey MB, Yang Q, Borghesi LA, Kincade PW. Chronic exposure to a TLR ligand injures hematopoietic stem cells. J Immunol 2011; 186(9): 5367–5375
doi: 10.4049/jimmunol.1003438 pmid: 21441445
65 Manz MG, Boettcher S. Emergency granulopoiesis. Nat Rev Immunol 2014; 14(5): 302–314
doi: 10.1038/nri3660 pmid: 24751955
66 Sioud M, Fl?isand Y. TLR agonists induce the differentiation of human bone marrow CD34+ progenitors into CD11c+ CD80/86+ DC capable of inducing a Th1-type response. Eur J Immunol 2007; 37(10): 2834–2846
doi: 10.1002/eji.200737112 pmid: 17853407
67 Welner RS, Pelayo R, Nagai Y, Garrett KP, Wuest TR, Carr DJ, Borghesi LA, Farrar MA, Kincade PW. Lymphoid precursors are directed to produce dendritic cells as a result of TLR9 ligation during herpes infection. Blood 2008; 112(9): 3753–3761
doi: 10.1182/blood-2008-04-151506 pmid: 18552210
68 Buechler MB, Teal TH, Elkon KB, Hamerman JA. Cutting edge: Type I IFN drives emergency myelopoiesis and peripheral myeloid expansion during chronic TLR7 signaling. J Immunol 2013; 190(3): 886–891
doi: 10.4049/jimmunol.1202739 pmid: 23303674
69 Megías J, Yá?ez A, Moriano S, O’Connor JE, Gozalbo D, Gil ML. Direct Toll-like receptor-mediated stimulation of hematopoietic stem and progenitor cells occurs in vivo and promotes differentiation toward macrophages. Stem Cells 2012; 30(7): 1486–1495
doi: 10.1002/stem.1110 pmid: 22511319
70 Zhao JL, Ma C, O’Connell RM, Mehta A, DiLoreto R, Heath JR, Baltimore D. Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis. Cell Stem Cell 2014; 14(4): 445–459
doi: 10.1016/j.stem.2014.01.007 pmid: 24561084
71 Massberg S, Schaerli P, Knezevic-Maramica I, K?llnberger M, Tubo N, Moseman EA, Huff IV, Junt T, Wagers AJ, Mazo IB, von Andrian UH. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 2007; 131(5): 994–1008
doi: 10.1016/j.cell.2007.09.047 pmid: 18045540
72 Yá?ez A, Hassanzadeh-Kiabi N, Ng MY, Megías J, Subramanian A, Liu GY, Underhill DM, Gil ML, Goodridge HS. Detection of a TLR2 agonist by hematopoietic stem and progenitor cells impacts the function of the macrophages they produce. Eur J Immunol 2013; 43(8): 2114–2125
doi: 10.1002/eji.201343403 pmid: 23661549
73 Raicevic G, Rouas R, Najar M, Stordeur P, Boufker HI, Bron D, Martiat P, Goldman M, Nevessignsky MT, Lagneaux L. Inflammation modifies the pattern and the function of Toll-like receptors expressed by human mesenchymal stromal cells. Hum Immunol 2010; 71(3): 235–244
doi: 10.1016/j.humimm.2009.12.005 pmid: 20034529
74 Romieu-Mourez R, Fran?ois M, Boivin MN, Bouchentouf M, Spaner DE, Galipeau J. Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype. J Immunol 2009; 182(12): 7963–7973
doi: 10.4049/jimmunol.0803864 pmid: 19494321
75 Boettcher S, Ziegler P, Schmid MA, Takizawa H, van Rooijen N, Kopf M, Heikenwalder M, Manz MG. Cutting edge: LPS-induced emergency myelopoiesis depends on TLR4-expressing nonhematopoietic cells. J Immunol 2012; 188(12): 5824–5828
doi: 10.4049/jimmunol.1103253 pmid: 22586037
76 Schürch CM, Riether C, Ochsenbein AF. Cytotoxic CD8+ T cells stimulate hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal stromal cells. Cell Stem Cell 2014; 14(4): 460–472
doi: 10.1016/j.stem.2014.01.002 pmid: 24561082
77 de Winter JP, Joenje H. The genetic and molecular basis of Fanconi anemia. Mutat Res 2009; 668(1-2): 11–19
doi: 10.1016/j.mrfmmm.2008.11.004 pmid: 19061902
78 Vanderwerf SM, Svahn J, Olson S, Rathbun RK, Harrington C, Yates J, Keeble W, Anderson DC, Anur P, Pereira NF, Pilonetto DV, Pasquini R, Bagby GC. TLR8-dependent TNF-(α) overexpression in Fanconi anemia group C cells. Blood 2009; 114(26): 5290–5298
doi: 10.1182/blood-2009-05-222414 pmid: 19850743
79 Garbati MR, Hays LE, Keeble W, Yates JE, Rathbun RK, Bagby GC. FANCA and FANCC modulate TLR and p38 MAPK-dependent expression of IL-1β in macrophages. Blood 2013; 122(18): 3197–3205
doi: 10.1182/blood-2013-02-484816 pmid: 24046015
80 Anur P, Yates J, Garbati MR, Vanderwerf S, Keeble W, Rathbun K, Hays LE, Tyner JW, Svahn J, Cappelli E, Dufour C, Bagby GC. p38 MAPK inhibition suppresses the TLR-hypersensitive phenotype in FANCC- and FANCA-deficient mononuclear phagocytes. Blood 2012; 119(9): 1992–2002
doi: 10.1182/blood-2011-06-354647 pmid: 22234699
81 Dufour C, Corcione A, Svahn J, Haupt R, Poggi V, Béka’ssy AN, Scimè R, Pistorio A, Pistoia V. TNF-α and IFN-γ are overexpressed in the bone marrow of Fanconi anemia patients and TNF-α suppresses erythropoiesis in vitro. Blood 2003; 102(6): 2053–2059
doi: 10.1182/blood-2003-01-0114 pmid: 12750172
82 Bijangi-Vishehsaraei K, Saadatzadeh MR, Werne A, McKenzie KA, Kapur R, Ichijo H, Haneline LS. Enhanced TNF-α-induced apoptosis in Fanconi anemia type C-deficient cells is dependent on apoptosis signal-regulating kinase 1. Blood 2005; 106(13): 4124–4130
doi: 10.1182/blood-2005-05-2096 pmid: 16109778
83 Pang Q, Keeble W, Diaz J, Christianson TA, Fagerlie S, Rathbun K, Faulkner GR, O’Dwyer M, Bagby GC Jr. Role of double-stranded RNA-dependent protein kinase in mediating hypersensitivity of Fanconi anemia complementation group C cells to interferon γ, tumor necrosis factor-α, and double-stranded RNA. Blood 2001; 97(6): 1644–1652
doi: 10.1182/blood.V97.6.1644 pmid: 11238103
84 Pang Q, Keeble W, Christianson TA, Faulkner GR, Bagby GC. FANCC interacts with Hsp70 to protect hematopoietic cells from IFN-γ/TNF-α-mediated cytotoxicity. EMBO J 2001; 20(16): 4478–4489
doi: 10.1093/emboj/20.16.4478 pmid: 11500375
85 Pang Q, Christianson TA, Keeble W, Koretsky T, Bagby GC. The anti-apoptotic function of Hsp70 in the interferon-inducible double-stranded RNA-dependent protein kinase-mediated death signaling pathway requires the Fanconi anemia protein, FANCC. J Biol Chem 2002; 277(51): 49638–49643
doi: 10.1074/jbc.M209386200 pmid: 12397061
86 Schultz JC, Shahidi NT. Tumor necrosis factor-α overproduction in Fanconi’s anemia. Am J Hematol 1993; 42(2): 196–201
doi: 10.1002/ajh.2830420211 pmid: 8438880
87 Zhang X, Li J, Sejas DP, Rathbun KR, Bagby GC, Pang Q. The Fanconi anemia proteins functionally interact with the protein kinase regulated by RNA (PKR). J Biol Chem 2004; 279(42): 43910–43919
doi: 10.1074/jbc.M403884200 pmid: 15299030
88 Li J, Sejas DP, Zhang X, Qiu Y, Nattamai KJ, Rani R, Rathbun KR, Geiger H, Williams DA, Bagby GC, Pang Q. TNF-α induces leukemic clonal evolution ex vivo in Fanconi anemia group C murine stem cells. J Clin Invest 2007; 117(11): 3283–3295
doi: 10.1172/JCI31772 pmid: 17960249
89 Kaczmarek A, Vandenabeele P, Krysko DV. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 2013; 38(2): 209–223
doi: 10.1016/j.immuni.2013.02.003 pmid: 23438821
90 Young NS. Pathophysiologic mechanisms in acquired aplastic anemia. Hematology (Am Soc Hematol Educ Program)2006; 2006(1): 72–77
doi: 10.1182/asheducation-2006.1.72 pmid: 17124043
91 Young NS, Bacigalupo A, Marsh JC. Aplastic anemia: pathophysiology and treatment. Biol Blood Marrow Transplant 2010; 16(1 Suppl): S119–S125
doi: 10.1016/j.bbmt.2009.09.013 pmid: 19782144
92 Bagby GC, Fleischman AG. The stem cell fitness landscape and pathways of molecular leukemogenesis. Front Biosci (Schol Ed)2011; 3(1): 487–500
doi: 10.2741/s167 pmid: 21196392
93 Leguit RJ, van den Tweel JG. The pathology of bone marrow failure. Histopathology 2010; 57(5): 655–670
doi: 10.1111/j.1365-2559.2010.03612.x pmid: 20727024
94 Leguit RJ, van den Tweel JG. The pathology of bone marrow failure. Histopathology 2010; 57(5): 655–670
doi: 10.1111/j.1365-2559.2010.03612.x pmid: 20727024
95 Scheinberg P, Young NS. How I treat acquired aplastic anemia. Blood 2012; 120(6): 1185–1196
doi: 10.1182/blood-2011-12-274019 pmid: 22517900
96 Afable MG 2nd, Wlodarski M, Makishima H, Shaik M, Sekeres MA, Tiu RV, Kalaycio M, O’Keefe CL, Maciejewski JP. SNP array-based karyotyping: differences and similarities between aplastic anemia and hypocellular myelodysplastic syndromes. Blood 2011; 117(25): 6876–6884
doi: 10.1182/blood-2010-11-314393 pmid: 21527527
97 Young NS, Scheinberg P, Calado RT. Aplastic anemia. Curr Opin Hematol 2008; 15(3): 162–168
doi: 10.1097/MOH.0b013e3282fa7470 pmid: 18391779
98 Sloand EM, Rezvani K. The role of the immune system in myelodysplasia: implications for therapy. Semin Hematol 2008; 45(1): 39–48
doi: 10.1053/j.seminhematol.2007.11.006 pmid: 18179968
99 Parker CJ. Paroxysmal nocturnal hemoglobinuria. Curr Opin Hematol 2012; 19(3): 141–148
doi: 10.1097/MOH.0b013e328351c348 pmid: 22395662
100 Cazzola M, Della Porta MG, Travaglino E, Malcovati L. Classification and prognostic evaluation of myelodysplastic syndromes. Semin Oncol 2011; 38(5): 627–634
doi: 10.1053/j.seminoncol.2011.04.007 pmid: 21943669
101 Dimicoli S, Wei Y, Bueso-Ramos C, Yang H, Dinardo C, Jia Y, Zheng H, Fang Z, Nguyen M, Pierce S, Chen R, Wang H, Wu C, Garcia-Manero G. Overexpression of the toll-like receptor (TLR) signaling adaptor MYD88, but lack of genetic mutation, in myelodysplastic syndromes. PLoS ONE 2013; 8(8): e71120
doi: 10.1371/journal.pone.0071120 pmid: 23976989
102 Wei Y, Dimicoli S, Bueso-Ramos C, Chen R, Yang H, Neuberg D, Pierce S, Jia Y, Zheng H, Wang H, Wang X, Nguyen M, Wang SA, Ebert B, Bejar R, Levine R, Abdel-Wahab O, Kleppe M, Ganan-Gomez I, Kantarjian H, Garcia-Manero G. Toll-like receptor alterations in myelodysplastic syndrome. Leukemia 2013; 27(9): 1832–1840
doi: 10.1038/leu.2013.180 pmid: 23765228
103 Maratheftis CI, Andreakos E, Moutsopoulos HM, Voulgarelis M. Toll-like receptor-4 is up-regulated in hematopoietic progenitor cells and contributes to increased apoptosis in myelodysplastic syndromes. Clin Cancer Res 2007; 13(4): 1154–1160
doi: 10.1158/1078-0432.CCR-06-2108 pmid: 17317824
104 Hofmann WK, de Vos S, Komor M, Hoelzer D, Wachsman W, Koeffler HP. Characterization of gene expression of CD34+ cells from normal and myelodysplastic bone marrow. Blood 2002; 100(10): 3553–3560
doi: 10.1182/blood.V100.10.3553 pmid: 12411319
105 Starczynowski DT, Vercauteren S, Telenius A, Sung S, Tohyama K, Brooks-Wilson A, Spinelli JJ, Eaves CJ, Eaves AC, Horsman DE, Lam WL, Karsan A. High-resolution whole genome tiling path array CGH analysis of CD34+ cells from patients with low-risk myelodysplastic syndromes reveals cryptic copy number alterations and predicts overall and leukemia-free survival. Blood 2008; 112(8): 3412–3424
doi: 10.1182/blood-2007-11-122028 pmid: 18663149
106 Gondek LP, Tiu R, O’Keefe CL, Sekeres MA, Theil KS, Maciejewski JP. Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood 2008; 111(3): 1534–1542
doi: 10.1182/blood-2007-05-092304 pmid: 17954704
107 Rhyasen GW, Bolanos L, Fang J, Jerez A, Wunderlich M, Rigolino C, Mathews L, Ferrer M, Southall N, Guha R, Keller J, Thomas C, Beverly LJ, Cortelezzi A, Oliva EN, Cuzzola M, Maciejewski JP, Mulloy JC, Starczynowski DT. Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome. Cancer Cell 2013; 24(1): 90–104
doi: 10.1016/j.ccr.2013.05.006 pmid: 23845443
108 Ga?án-Gómez I, Wei Y, Starczynowski DT, Colla S, Yang H, Cabrero-Calvo M, Bohannan ZS, Verma A, Steidl U, Garcia-Manero G. Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes. Leukemia 2015; 29(7): 1458–1469
doi: 10.1038/leu.2015.69 pmid: 25761935
109 Boultwood J, Pellagatti A, Cattan H, Lawrie CH, Giagounidis A, Malcovati L, Della Porta MG, J?dersten M, Killick S, Fidler C, Cazzola M, Hellstr?m-Lindberg E, Wainscoat JS. Gene expression profiling of CD34+ cells in patients with the 5q- syndrome. Br J Haematol 2007; 139(4): 578–589
doi: 10.1111/j.1365-2141.2007.06833.x pmid: 17916100
110 Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A, Hirst M, Hogge D, Marra M, Wells RA, Buckstein R, Lam W, Humphries RK, Karsan A. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med 2010; 16(1): 49–58
doi: 10.1038/nm.2054 pmid: 19898489
111 Keerthivasan G, Mei Y, Zhao B, Zhang L, Harris CE, Gao J, Basiorka AA, Schipma MJ, McElherne J, Yang J, Verma AK, Pellagatti A, Boultwood J, List AF, Williams DA, Ji P. Aberrant overexpression of CD14 on granulocytes sensitizes the innate immune response in mDia1 heterozygous del(5q) MDS. Blood 2014; 124(5): 780–790
doi: 10.1182/blood-2014-01-552463 pmid: 24891322
112 Abou Zahr A, Saad Aldin E, Komrokji RS, Zeidan AM. Clinical utility of lenalidomide in the treatment of myelodysplastic syndromes. J Blood Med 2015; 6: 1–16
doi: 10.2147/JBM.S50482 pmid: 25565910
113 Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9(3): 162–174
doi: 10.1038/nri2506 pmid: 19197294
114 Kusmartsev S, Gabrilovich DI. Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother 2006; 55(3): 237–245
doi: 10.1007/s00262-005-0048-z pmid: 16047143
115 Chen X, Eksioglu EA, Zhou J, Zhang L, Djeu J, Fortenbery N, Epling-Burnette P, Van Bijnen S, Dolstra H, Cannon J, Youn JI, Donatelli SS, Qin D, De Witte T, Tao J, Wang H, Cheng P, Gabrilovich DI, List A, Wei S. Induction of myelodysplasia by myeloid-derived suppressor cells. J Clin Invest 2013; 123(11): 4595–4611
doi: 10.1172/JCI67580 pmid: 24216507
116 Ehrchen JM, Sunderk?tter C, Foell D, Vogl T, Roth J. The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol 2009; 86(3): 557–566
doi: 10.1189/jlb.1008647 pmid: 19451397
117 Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA, Nacken W, Foell D, van der Poll T, Sorg C, Roth J. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 2007; 13(9): 1042–1049
doi: 10.1038/nm1638 pmid: 17767165
118 Basith S, Manavalan B, Yoo TH, Kim SG, Choi S. Roles of toll-like receptors in cancer: a double-edged sword for defense and offense. Arch Pharm Res 2012; 35(8): 1297–1316
doi: 10.1007/s12272-012-0802-7 pmid: 22941474
119 Pradere JP, Dapito DH, Schwabe RF. The Yin and Yang of Toll-like receptors in cancer. Oncogene 2014; 33(27): 3485–3495
doi: 10.1038/onc.2013.302 pmid: 23934186
120 Kaczanowska S, Joseph AM, Davila E. TLR agonists: our best frenemy in cancer immunotherapy. J Leukoc Biol 2013; 93(6): 847–863
doi: 10.1189/jlb.1012501 pmid: 23475577
121 Coste I, Le Corf K, Kfoury A, Hmitou I, Druillennec S, Hainaut P, Eychene A, Lebecque S, Renno T. Dual function of MyD88 in RAS signaling and inflammation, leading to mouse and human cell transformation. J Clin Invest 2010; 120(10): 3663–3667
doi: 10.1172/JCI42771 pmid: 20941850
122 Kelly MG, Alvero AB, Chen R, Silasi DA, Abrahams VM, Chan S, Visintin I, Rutherford T, Mor G. TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res 2006; 66(7): 3859–3868
doi: 10.1158/0008-5472.CAN-05-3948 pmid: 16585214
123 Wang EL, Qian ZR, Nakasono M, Tanahashi T, Yoshimoto K, Bando Y, Kudo E, Shimada M, Sano T. High expression of Toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br J Cancer 2010; 102(5): 908–915
doi: 10.1038/sj.bjc.6605558 pmid: 20145615
124 Szajnik M, Szczepanski MJ, Czystowska M, Elishaev E, Mandapathil M, Nowak-Markwitz E, Spaczynski M, Whiteside TL. TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene 2009; 28(49): 4353–4363
doi: 10.1038/onc.2009.289 pmid: 19826413
125 Silasi DA, Alvero AB, Illuzzi J, Kelly M, Chen R, Fu HH, Schwartz P, Rutherford T, Azodi M, Mor G. MyD88 predicts chemoresistance to paclitaxel in epithelial ovarian cancer. Yale J Biol Med 2006; 79(3-4): 153–163
pmid: 17940625
126 Liang B, Chen R, Wang T, Cao L, Liu Y, Yin F, Zhu M, Fan X, Liang Y, Zhang L, Guo Y, Zhao J. Myeloid differentiation factor 88 promotes growth and metastasis of human hepatocellular carcinoma. Clin Cancer Res 2013; 19(11): 2905–2916
doi: 10.1158/1078-0432.CCR-12-1245 pmid: 23549880
127 Je EM, Kim SS, Yoo NJ, Lee SH. Mutational and expressional analyses of MYD88 gene in common solid cancers. Tumori 2012; 98(5): 663–669
doi: 10.1700/1190.13209 pmid: 23235763
128 Agúndez JA, García-Martín E, Devesa MJ, Carballo M, Martínez C, Lee-Brunner A, Fernández C, Díaz-Rubio M, Ladero JM. Polymorphism of the TLR4 gene reduces the risk of hepatitis C virus-induced hepatocellular carcinoma. Oncology 2012; 82(1): 35–40
doi: 10.1159/000335606 pmid: 22286521
129 Minmin S, Xiaoqian X, Hao C, Baiyong S, Xiaxing D, Junjie X, Xi Z, Jianquan Z, Songyao J. Single nucleotide polymorphisms of Toll-like receptor 4 decrease the risk of development of hepatocellular carcinoma. PLoS ONE 2011; 6(4): e19466
doi: 10.1371/journal.pone.0019466 pmid: 21559380
130 Weng PH, Huang YL, Page JH, Chen JH, Xu J, Koutros S, Berndt S, Chanock S, Yeager M, Witte JS, Eeles RA, Easton DF, Neal DE, Donovan J, Hamdy FC, Muir KR, Giles G, Severi G, Smith JR, Balistreri CR, Shui IM, Chen YC. Polymorphisms of an innate immune gene, toll-like receptor 4, and aggressive prostate cancer risk: a systematic review and meta-analysis. PLoS ONE 2014; 9(10): e110569
doi: 10.1371/journal.pone.0110569 pmid: 25360682
131 Vidas Z. Polymorphisms in Toll-like receptor genes–implications for prostate cancer development. Coll Antropol 2010; 34(2): 779–783
pmid: 20698170
132 Swann JB, Vesely MD, Silva A, Sharkey J, Akira S, Schreiber RD, Smyth MJ. Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc Natl Acad Sci USA 2008; 105(2): 652–656
doi: 10.1073/pnas.0708594105 pmid: 18178624
133 Prieto J. Inflammation, HCC and sex: IL-6 in the centre of the triangle. J Hepatol 2008; 48(2): 380–381
doi: 10.1016/j.jhep.2007.11.007 pmid: 18093689
134 Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM, Karin M. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 2007; 317(5834): 121–124
doi: 10.1126/science.1140485 pmid: 17615358
135 Melkamu T, Qian X, Upadhyaya P, O’Sullivan MG, Kassie F. Lipopolysaccharide enhances mouse lung tumorigenesis: a model for inflammation-driven lung cancer. Vet Pathol 2013; 50(5): 895–902
doi: 10.1177/0300985813476061 pmid: 23381924
136 Yusuf N, Nasti TH, Long JA, Naseemuddin M, Lucas AP, Xu H, Elmets CA. Protective role of Toll-like receptor 4 during the initiation stage of cutaneous chemical carcinogenesis. Cancer Res 2008; 68(2): 615–622
doi: 10.1158/0008-5472.CAN-07-5219 pmid: 18199559
137 Li X, Eckard J, Shah R, Malluck C, Frenkel K. Interleukin-1alpha up-regulation in vivo by a potent carcinogen 7,12-dimethylbenz(a)anthracene (DMBA) and control of DMBA-induced inflammatory responses. Cancer Res 2002; 62(2): 417–423
pmid: 11809690
138 Nourizadeh M, Masoumi F, Memarian A, Alimoghaddam K, Moazzeni SM, Yaghmaie M, Hadjati J. In vitro induction of potent tumor-specific cytotoxic T lymphocytes using TLR agonist-activated AML-DC. Target Oncol 2014; 9(3): 225–237
doi: 10.1007/s11523-013-0285-6 pmid: 23852664
139 Zhang X, Su Y, Song H, Yu Z, Zhang B, Chen H. Attenuated A20 expression of acute myeloid leukemia-derived dendritic cells increased the anti-leukemia immune response of autologous cytolytic T cells. Leuk Res 2014; 38(6): 673–681
doi: 10.1016/j.leukres.2014.03.011 pmid: 24713261
140 Nourizadeh M, Masoumi F, Memarian A, Alimoghaddam K, Moazzeni SM, Hadjati J. Synergistic effect of Toll-like receptor 4 and 7/8 agonists is necessary to generate potent blast-derived dendritic cells in Acute Myeloid Leukemia. Leuk Res 2012; 36(9): 1193–1199
doi: 10.1016/j.leukres.2012.04.007 pmid: 22579107
141 Li L, Reinhardt P, Schmitt A, Barth TF, Greiner J, Ringhoffer M, D?hner H, Wiesneth M, Schmitt M. Dendritic cells generated from acute myeloid leukemia (AML) blasts maintain the expression of immunogenic leukemia associated antigens. Cancer Immunol Immunother 2005; 54(7): 685–693
doi: 10.1007/s00262-004-0631-8 pmid: 15627212
142 Ignatz-Hoover JJ, Wang H, Moreton SA, Chakrabarti A, Agarwal MK, Sun K, Gupta K, Wald DN. The role of TLR8 signaling in acute myeloid leukemia differentiation. Leukemia 2015; 29(4): 918–926
doi: 10.1038/leu.2014.293 pmid: 25283842
143 Je EM, Yoo NJ, Lee SH. Absence of MYD88 gene mutation in acute leukemias and multiple myelomas. Eur J Haematol 2012; 88(3): 273–274
doi: 10.1111/j.1600-0609.2011.01720.x pmid: 21991928
144 Volk A, Li J, Xin J, You D, Zhang J, Liu X, Xiao Y, Breslin P, Li Z, Wei W, Schmidt R, Li X, Zhang Z, Kuo PC, Nand S, Zhang J, Chen J, Zhang J. Co-inhibition of NF-κB and JNK is synergistic in TNF-expressing human AML. J Exp Med 2014; 211(6): 1093–1108
doi: 10.1084/jem.20130990 pmid: 24842373
145 Liu X, Zhang J, Li J, Volk A, Breslin P, Zhang J, Zhang Z. The synergistic repressive effect of NF-κB and JNK inhibitor on the clonogenic capacity of Jurkat leukemia cells. PLoS ONE 2014; 9(12): e115490
doi: 10.1371/journal.pone.0115490 pmid: 25526629
146 Rhyasen GW, Bolanos L, Starczynowski DT. Differential IRAK signaling in hematologic malignancies. Exp Hematol 2013; 41(12): 1005–1007
doi: 10.1016/j.exphem.2013.09.008 pmid: 24084080
147 Hamadeh F, MacNamara SP, Aguilera NS, Swerdlow SH, Cook JR. MYD88 L265P mutation analysis helps define nodal lymphoplasmacytic lymphoma. Mod Pathol 2015; 28(4): 564–574
doi: 10.1038/modpathol.2014.120 pmid: 25216226
148 Xu L, Hunter ZR, Yang G, Zhou Y, Cao Y, Liu X, Morra E, Trojani A, Greco A, Arcaini L, Varettoni M, Brown JR, Tai YT, Anderson KC, Munshi NC, Patterson CJ, Manning RJ, Tripsas CK, Lindeman NI, Treon SP. MYD88 L265P in Waldenstr?m macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood 2013; 121(11): 2051–2058
doi: 10.1182/blood-2012-09-454355 pmid: 23321251
149 Xu L, Hunter ZR, Yang G, Cao Y, Liu X, Manning R, Tripsas C, Chen J, Patterson CJ, Kluk M, Kanan S, Castillo J, Lindeman N, Treon SP. Detection of MYD88 L265P in peripheral blood of patients with Waldenstr?m’s Macroglobulinemia and IgM monoclonal gammopathy of undetermined significance. Leukemia 2014; 28(8): 1698–1704
doi: 10.1038/leu.2014.65 pmid: 24509637
150 Varettoni M, Arcaini L, Zibellini S, Boveri E, Rattotti S, Riboni R, Corso A, Orlandi E, Bonfichi M, Gotti M, Pascutto C, Mangiacavalli S, Croci G, Fiaccadori V, Morello L, Guerrera ML, Paulli M, Cazzola M. Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenstrom’s macroglobulinemia and related lymphoid neoplasms. Blood 2013; 121(13): 2522–2528
doi: 10.1182/blood-2012-09-457101 pmid: 23355535
151 Jiménez C, Sebastián E, Chillón MC, Giraldo P, Mariano Hernández J, Escalante F, González-López TJ, Aguilera C, de Coca AG, Murillo I, Alcoceba M, Balanzategui A, Sarasquete ME, Corral R, Marín LA, Paiva B, Ocio EM, Gutiérrez NC, González M, San Miguel JF, García-Sanz R. MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenstr?m’s macroglobulinemia. Leukemia 2013; 27(8): 1722–1728
doi: 10.1038/leu.2013.62 pmid: 23446312
152 Landgren O, Staudt L. MYD88 L265P somatic mutation in IgM MGUS. N Engl J Med 2012; 367(23): 2255–2256, author reply 2256-2257
doi: 10.1056/NEJMc1211959 pmid: 23215570
153 Treon SP, Cao Y, Xu L, Yang G, Liu X, Hunter ZR. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood 2014; 123(18): 2791–2796
doi: 10.1182/blood-2014-01-550905 pmid: 24553177
154 Treon SP, Hunter ZR. A new era for Waldenstrom macroglobulinemia: MYD88 L265P. Blood 2013; 121(22): 4434–4436
doi: 10.1182/blood-2013-04-494849 pmid: 23723443
155 Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, Sheehy P, Manning RJ, Patterson CJ, Tripsas C, Arcaini L, Pinkus GS, Rodig SJ, Sohani AR, Harris NL, Laramie JM, Skifter DA, Lincoln SE, Hunter ZR. MYD88 L265P somatic mutation in Waldenstr?m’s macroglobulinemia. N Engl J Med 2012; 367(9): 826–833
doi: 10.1056/NEJMoa1200710 pmid: 22931316
156 Ansell SM, Hodge LS, Secreto FJ, Manske M, Braggio E, Price-Troska T, Ziesmer S, Li Y, Johnson SH, Hart SN, Kocher JP, Vasmatzis G, Chanan-Kahn A, Gertz M, Fonseca R, Dogan A, Cerhan JR, Novak AJ. Activation of TAK1 by MYD88 L265P drives malignant B-cell Growth in non-Hodgkin lymphoma. Blood Cancer J 2014; 4(2): e183
doi: 10.1038/bcj.2014.4 pmid: 24531446
157 Gonzalez-Aguilar A, Idbaih A, Boisselier B, Habbita N, Rossetto M, Laurenge A, Bruno A, Jouvet A, Polivka M, Adam C, Figarella-Branger D, Miquel C, Vital A, Ghesquières H, Gressin R, Delwail V, Taillandier L, Chinot O, Soubeyran P, Gyan E, Choquet S, Houillier C, Soussain C, Tanguy ML, Marie Y, Mokhtari K, Hoang-Xuan K. Recurrent mutations of MYD88 and TBL1XR1 in primary central nervous system lymphomas. Clin Cancer Res 2012; 18(19): 5203–5211
doi: 10.1158/1078-0432.CCR-12-0845 pmid: 22837180
158 Puente XS, Pinyol M, Quesada V, Conde L, Ordó?ez GR, Villamor N, Escaramis G, Jares P, Beà S, González-Díaz M, Bassaganyas L, Baumann T, Juan M, López-Guerra M, Colomer D, Tubío JM, López C, Navarro A, Tornador C, Aymerich M, Rozman M, Hernández JM, Puente DA, Freije JM, Velasco G, Gutiérrez-Fernández A, Costa D, Carrió A, Guijarro S, Enjuanes A, Hernández L, Yagüe J, Nicolás P, Romeo-Casabona CM, Himmelbauer H, Castillo E, Dohm JC, de Sanjosé S, Piris MA, de Alava E, San Miguel J, Royo R, Gelpí JL, Torrents D, Orozco M, Pisano DG, Valencia A, Guigó R, Bayés M, Heath S, Gut M, Klatt P, Marshall J, Raine K, Stebbings LA, Futreal PA, Stratton MR, Campbell PJ, Gut I, López-Guillermo A, Estivill X, Montserrat E, López-Otín C, Campo E. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011; 475(7354): 101–105
doi: 10.1038/nature10113 pmid: 21642962
159 Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K, Werner L, Sivachenko A, DeLuca DS, Zhang L, Zhang W, Vartanov AR, Fernandes SM, Goldstein NR, Folco EG, Cibulskis K, Tesar B, Sievers QL, Shefler E, Gabriel S, Hacohen N, Reed R, Meyerson M, Golub TR, Lander ES, Neuberg D, Brown JR, Getz G, Wu CJ. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 2011; 365(26): 2497–2506
doi: 10.1056/NEJMoa1109016 pmid: 22150006
160 Tr?en G, Warsame A, Delabie J. CD79B and MYD88 mutations in splenic marginal zone lymphoma. ISRN Oncol 2013; 2013: 252318
doi: 10.1155/2013/252318 pmid: 23378931
161 Yan Q, Huang Y, Watkins AJ, Kocialkowski S, Zeng N, Hamoudi RA, Isaacson PG, de Leval L, Wotherspoon A, Du MQ. BCR and TLR signaling pathways are recurrently targeted by genetic changes in splenic marginal zone lymphomas. Haematologica 2012; 97(4): 595–598
doi: 10.3324/haematol.2011.054080 pmid: 22102703
162 Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH, Kohlhammer H, Xu W, Yang Y, Zhao H, Shaffer AL, Romesser P, Wright G, Powell J, Rosenwald A, Muller-Hermelink HK, Ott G, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Fisher RI, Braziel RM, Tubbs RR, Cook JR, Weisenburger DD, Chan WC, Staudt LM. Oncogenically active MYD88 mutations in human lymphoma. Nature 2011; 470(7332): 115–119
doi: 10.1038/nature09671 pmid: 21179087
163 Yang G, Zhou Y, Liu X, Xu L, Cao Y, Manning RJ, Patterson CJ, Buhrlage SJ, Gray N, Tai YT, Anderson KC, Hunter ZR, Treon SP. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenstr?m macroglobulinemia. Blood 2013; 122(7): 1222–1232
doi: 10.1182/blood-2012-12-475111 pmid: 23836557
164 Edwards AD, Diebold SS, Slack EM, Tomizawa H, Hemmi H, Kaisho T, Akira S, Sousa CR. Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8α+ DC correlates with unresponsiveness to imidazoquinolines. Eur J Immunol 2003; 33(4): 827–833
doi: 10.1002/eji.200323797 pmid: 12672047
[1] Yuting Tan,Han Liu,Saijuan Chen. Mutant DNA methylation regulators endow hematopoietic stem cells with the preleukemic stem cell property, a requisite of leukemia initiation and relapse[J]. Front. Med., 2015, 9(4): 412-420.
[2] Lanping Xu,Huanling Zhu,Jianda Hu,Depei Wu,Hao Jiang,Qian Jiang,Xiaojun Huang. Superiority of allogeneic hematopoietic stem cell transplantation to nilotinib and dasatinib for adult patients with chronic myelogenous leukemia in the accelerated phase[J]. Front. Med., 2015, 9(3): 304-311.
[3] Ching-Hon Pui. Genomic and pharmacogenetic studies of childhood acute lymphoblastic leukemia[J]. Front. Med., 2015, 9(1): 1-9.
[4] Jessica Fredericks, Ruibao Ren. The role of RAS effectors in BCR/ABL induced chronic myelogenous leukemia[J]. Front Med, 2013, 7(4): 452-461.
[5] Meilin Ma, Xiang Wang, Jingyan Tang, Huiliang Xue, Jing Chen, Ci Pan, Hua Jiang, Shuhong Shen. Early T-cell precursor leukemia: a subtype of high risk childhood acute lymphoblastic leukemia[J]. Front Med, 2012, 6(4): 416-420.
[6] Shuangwei Li, Diane DiFang Hsu, Hongyang Wang, Gen-Sheng Feng. Dual faces of SH2-containing protein-tyrosine phosphatase Shp2/PTPN11 in tumorigenesis[J]. Front Med, 2012, 6(3): 275-279.
[7] Megan A. Hatlen, Lan Wang, Stephen D. Nimer. AML1-ETO driven acute leukemia: insights into pathogenesis and potential therapeutic approaches[J]. Front Med, 2012, 6(3): 248-262.
[8] Haiyan He, Yang Shen, Yongmei Zhu, Saijuan Chen. Prognostic analysis of chronic myeloid leukemia in Chinese population in an imatinib era[J]. Front Med, 2012, 6(2): 204-211.
[9] Jianqing Mi. Current treatment strategy of acute promyelocytic leukemia[J]. Front Med, 2011, 5(4): 341-347.
[10] Panpan Zhang, Feng Liu. In vivo imaging of hematopoietic stem cell development in the zebrafish[J]. Front Med, 2011, 5(3): 239-247.
[11] Jiong HU. Arsenic in the treatment of newly diagnosed acute promyelocytic leukemia: current status and future research direction[J]. Front Med, 2011, 5(1): 45-52.
[12] Ying-Li WU, Guo-Qiang CHEN, Hu-Chen ZHOU, . Molecular mechanisms of leukemia-associated protein degradation[J]. Front. Med., 2010, 4(4): 363-370.
[13] Felicitas THOL, Arnold GANSER. Molecular pathogenesis of acute myeloid leukemia: A diverse disease with new perspectives[J]. Front. Med., 2010, 4(4): 356-362.
[14] Zhi-Ruo ZHANG PhD, Jian-Qing MI MD, Zhao-Jun WEN MA, Sai-Juan CHEN MD, PhD, Zhu CHEN PhD, Long-Jun GU MD, Jing-Yan TANG MD, PhD, Shu-Hong SHEN MD, PhD, . Using sound Clinical Paths and Diagnosis-related Groups (DRGs)-based payment reform to bring benefits to patient care: A case study of leukemia therapy[J]. Front. Med., 2010, 4(1): 8-15.
Full text