Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2015, Vol. 9 Issue (4) : 431-436    https://doi.org/10.1007/s11684-015-0416-9
REVIEW
Function of Slit/Robo signaling in breast cancer
Feng Gu,Yongjie Ma,Jiao Zhang,Fengxia Qin,Li Fu()
Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy of the Ministry of Education; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin 300060, China
 Download: PDF(340 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Slit and Robo are considered tumor suppressors because they are frequently inactivated in various tumor tissue. These genes are closely correlated with CpG hypermethylation in their promoters. The Slit/Robo signaling pathway is reportedly involved in breast cancer development and metastasis. Overexpression of Slit/Robo induces its tumor suppressive effects possibly by inactivating the β-catenin/LEF/TCF and PI3K/Akt signaling pathways or by altering β-catenin/E-cadherin-mediated cell-cell adhesion in breast cancer cells. Furthermore, loss of Slit proteins or their Robo receptors upregulates the CXCL12/CXCR4 signaling axis in human breast carcinoma. In addition, this pathway regulates the distant migration of breast cancer cells not only by mediating the phosphorylation of the downstream molecules of CXCL12/CXCR4 and srGAPs, such as PI3K/Src, RAFTK/ Pyk2, and CDC42, but also by regulating the activities of MAP kinases. This review includes recent studies on the functions of Slit/Robo signaling in breast cancer and its molecular mechanisms.

Keywords Slit/Robo      hypermethylation      β-catenin      CXCL12/CXCR4      migration     
Corresponding Author(s): Li Fu   
Online First Date: 05 November 2015    Issue Date: 26 November 2015
 Cite this article:   
Feng Gu,Yongjie Ma,Jiao Zhang, et al. Function of Slit/Robo signaling in breast cancer[J]. Front. Med., 2015, 9(4): 431-436.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-015-0416-9
https://academic.hep.com.cn/fmd/EN/Y2015/V9/I4/431
Fig.1  Possible signaling pathways of the Slit/Robo complex via β-catenin in breast cancer. The LRR region in Slit, which binds to the immunoglobulin region of Robo, can initiate cell signaling cascades that regulate the proliferation, invasiveness, and migration of cells. The complex decreases Akt activity and then inhibits GSK-3β phosphorylation. Furthermore, GSK-3β dephosphorylation enhances β-catenin phosphorylation, which is recognized by the ubiquitin ligase complex that mediates β-catenin degradation. Aside from interacting with the E-cadherin/actin cytoskeletal system during the regulation of cell-cell adhesion, β-catenin also acts as a transcription factor along with the TCF/LEF family of DNA-binding proteins that regulate the expression of a subset of genes. LRR: leucine-rich repeat; AKT: protein kinase B, PKB; GSK-3β: glycogen synthase kinase 3 β; TCF/LEF: T cell factor/lymphoid enhancer factor; ub: ubiquitin; P: phosphorylated site.
Fig.2  Possible signaling pathways of the Slit/Robo complex via the CXCL12/CXCR4 axis in breast cancer. The Slit/Robo complex inhibits the migration, proliferation, motility, morphology, invasion, and growth cycle of breast cancer cells via the activity of the downstream molecules of CXCL12/CXCR4 and srGAPs, such as PI3K, FAK, RAFTK/Pyk2, p44/42 MAP kinase, Cdc42, MMP2, and MMP9. srGAPs: Slit/Robo GTPase-activating proteins; PI3K: phosphoinositide 3-kinase; FAK: focal adhesion kinase; RAFTK/Pyk2: related adhesion focal tyrosine kinase/praline-rich tyrosine kinase 2; p44/42 MAP kinase: p44/42 mitogen-activated protein kinase; PAK: p21-activated kinase; MMP: matrix metalloprotease.
1 Nelson  HD, Tyne  K, Naik  A, Bougatsos  C, Chan  BK, Humphrey  L. Screening for breast cancer: an update for the U.S. Preventive Services Task Force. Ann Intern Med 2009; 151: 727–737
2 Landis  SH, Murray  T, Bolden  S, Wingo  PA. Cancer statistics, 1999. CA Cancer J Clin 1999; 49: 8–31
3 Greenberg  PA, Hortobagyi  GN, Smith  TL, Ziegler  LD, Frye  DK, Buzdar  AU. Long-term follow-up of patients with complete remission following combination chemotherapy for metastatic breast cancer. J Clin Oncol 1996; 14(8): 2197–2205
4 Rothberg  J M, Hartley  DA, Walther  Z, Artavanis-Tsakonas  S. slit: an EGF-homologous locus of D. melanogaster involved in the development of the embryonic central nervous system. Cell 1988; 55: 1047–1059
5 Qiu  H, Zhu  J, Yu  J, Pu  H, Dong  R. SLIT2 is epigenetically silenced in ovarian cancers and suppresses growth when activated. Asian Pac J Cancer Prev 2011; 12(3): 791–795
pmid: 21627385
6 Huang  Z, Wen  P, Kong  R, Cheng  H, Zhang  B, Quan  C, Bian  Z, Chen  M, Zhang  Z, Chen  X, Du  X, Liu  J, Zhu  L, Fushimi  K, Hua  D, Wu  JY. USP33 mediates Slit-Robo signaling in inhibiting colorectal cancer cell migration. Int J Cancer 2015; 136(8): 1792–1802
https://doi.org/10.1002/ijc.29226 pmid: 25242263
7 Morlot  C, Thielens  NM, Ravelli  RB, Hemrika  W, Romijn  RA, Gros  P, Cusack  S, McCarthy  AA. Structural insights into the Slit-Robo complex. Proc Natl Acad Sci USA 2007; 104(38): 14923–14928
https://doi.org/10.1073/pnas.0705310104 pmid: 17848514
8 Wu  JY, Feng  L, Park  HT, Havlioglu  N, Wen  L, Tang  H, Bacon  KB, Jiang  Zh, Zhang  Xc, Rao  Y. The neuronal repellent Slit inhibits leukocyte chemotaxis induced by chemotactic factors. Nature 2001; 410(6831): 948–952
https://doi.org/10.1038/35073616 pmid: 11309622
9 Holmes  GP, Negus  K, Burridge  L, Raman  S, Algar  E, Yamada  T, Little  MH. Distinct but overlapping expression patterns of two vertebrate slit homologs implies functional roles in CNS development and organogenesis. Mech Dev 1998; 79(1-2): 57–72
https://doi.org/10.1016/S0925-4773(98)00174-9 pmid: 10349621
10 Hohenester  E. Structural insight into Slit-Robo signalling. Biochem Soc Trans 2008; 36( 2): 251–256
https://doi.org/10.1042/BST0360251 pmid: 18363568
11 Howitt  JA, Clout  NJ, Hohenester  E. Binding site for Robo receptors revealed by dissection of the leucine-rich repeat region of Slit. EMBO J 2004; 23(22): 4406–4412
https://doi.org/10.1038/sj.emboj.7600446 pmid: 15496984
12 Ma  WJ, Zhou  Y, Lu  D, Dong  D, Tian  XJ, Wen  JX, Zhang  J. Reduced expression of Slit2 in renal cell carcinoma. Med Oncol 2014; 31(1): 768
https://doi.org/10.1007/s12032-013-0768-4 pmid: 24287947
13 Prasad  A, Fernandis  AZ, Rao  Y, Ganju  RK. Slit protein-mediated inhibition of CXCR4-induced chemotactic and chemoinvasive signaling pathways in breast cancer cells. J Biol Chem 2004; 279(10): 9115–9124
https://doi.org/10.1074/jbc.M308083200 pmid: 14645233
14 Alvarez  C, Tapia  T, Cornejo  V, Fernandez  W, Muñoz  A, Camus  M, Alvarez  M, Devoto  L, Carvallo  P. Silencing of tumor suppressor genes RASSF1A, SLIT2, and WIF1 by promoter hypermethylation in hereditary breast cancer. Mol Carcinog 2013; 52(6): 475–487
https://doi.org/10.1002/mc.21881 pmid: 22315090
15 Dallol  A, Da Silva  NF, Viacava  P, Minna  JD, Bieche  I, Maher  ER, Latif  F. SLIT2, a human homologue of the Drosophila Slit2 gene, has tumor suppressor activity and is frequently inactivated in lung and breast cancers. Cancer Res 2002; 62(20): 5874–5880
pmid: 12384551
16 Kim  GE, Lee  KH, Choi  YD, Lee  JS, Lee  JH, Nam  JH, Choi  C, Park  MH, Yoon  JH. Detection of Slit2 promoter hypermethylation in tissue and serum samples from breast cancer patients. Virchows Arch 2011; 459(4): 383–390
https://doi.org/10.1007/s00428-011-1143-5 pmid: 21894562
17 Shivapurkar  N, Maitra  A, Milchgrub  S, Gazdar  AF. Deletions of chromosome 4 occur early during the pathogenesis of colorectal carcinoma. Hum Pathol 2001; 32(2): 169–177
https://doi.org/10.1053/hupa.2001.21560 pmid: 11230704
18 Shivapurkar  N, Sood  S, Wistuba  II, Virmani  AK, Maitra  A, Milchgrub  S, Minna  JD, Gazdar  AF. Multiple regions of chromosome 4 demonstrating allelic losses in breast carcinomas. Cancer Res 1999; 59(15): 3576–3580
pmid: 10446964
19 Dallol  A, Forgacs  E, Martinez  A, Sekido  Y, Walker  R, Kishida  T, Rabbitts  P, Maher  ER, Minna  JD, Latif  F. Tumour specific promoter region methylation of the human homologue of the Drosophila Roundabout gene DUTT1 (ROBO1) in human cancers. Oncogene 2002; 21(19): 3020–3028
https://doi.org/10.1038/sj.onc.1205421 pmid: 12082532
20 Prasad  A, Paruchuri  V, Preet  A, Latif  F, Ganju  RK. Slit-2 induces a tumor-suppressive effect by regulating beta-catenin in breast cancer cells. J Biol Chem 2008; 283(39): 26624–26633
https://doi.org/10.1074/jbc.M800679200 pmid: 18611862
21 Takeichi  M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 1991; 251(5000): 1451–1455
https://doi.org/10.1126/science.2006419 pmid: 2006419
22 Marlow  R, Strickland  P, Lee  JS, Wu  X, Pebenito  M, Binnewies  M, Le  EK, Moran  A, Macias  H, Cardiff  RD, Sukumar  S, Hinck  L. SLITs suppress tumor growth in vivo by silencing Sdf1/Cxcr4 within breast epithelium. Cancer Res 2008; 68(19): 7819–7827
https://doi.org/10.1158/0008-5472.CAN-08-1357 pmid: 18829537
23 Papkoff  J, Rubinfeld  B, Schryver  B, Polakis  P. Wnt-1 regulates free pools of catenins and stabilizes APC-catenin complexes. Mol Cell Biol 1996; 16(5): 2128–2134
pmid: 8628279
24 Tetsu  O, McCormick  F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999; 398(6726): 422–426
https://doi.org/10.1038/18884 pmid: 10201372
25 Chang  PH, Hwang-Verslues  WW, Chang  YC, Chen  CC, Hsiao  M, Jeng  YM, Chang  KJ, Lee  EY, Shew  JY, Lee  WH. Activation of Robo1 signaling of breast cancer cells by Slit2 from stromal fibroblast restrains tumorigenesis via blocking PI3K/Akt/β-catenin pathway. Cancer Res 2012; 72(18): 4652–4661
https://doi.org/10.1158/0008-5472.CAN-12-0877 pmid: 22826604
26 Müller  A, Homey  B, Soto  H, Ge  N, Catron  D, Buchanan  ME, McClanahan  T, Murphy  E, Yuan  W, Wagner  SN, Barrera  JL, Mohar  A, Verástegui  E, Zlotnik  A. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410(6824): 50–56
https://doi.org/10.1038/35065016 pmid: 11242036
27 Yuasa-Kawada  J, Kinoshita-Kawada  M, Rao  Y, Wu  JY. Deubiquitinating enzyme USP33/VDU1 is required for Slit signaling in inhibiting breast cancer cell migration. Proc Natl Acad Sci USA 2009; 106(34): 14530–14535
https://doi.org/10.1073/pnas.0801262106 pmid: 19706539
28 Avraham  H, Park  SY, Schinkmann  K, Avraham  S. RAFTK/Pyk2-mediated cellular signalling. Cell Signal 2000; 12: 123–133
29 Park  SY, Avraham  H, Avraham  S. Characterization of the tyrosine kinases RAFTK/Pyk2 and FAK in nerve growth factor-induced neuronal differentiation. J Biol Chem 2000; 275: 19768–19777
30 Nabeshima  K, Inoue  T, Shimao  Y, Sameshima  T. Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol Int 2002; 52(4): 255–264
https://doi.org/10.1046/j.1440-1827.2002.01343.x pmid: 12031080
31 Beemiller  P, Zhang  Y, Mohan  S, Levinsohn  E, Gaeta  I, Hoppe  AD, Swanson  JA. A Cdc42 activation cycle coordinated by PI 3-kinase during Fc receptor-mediated phagocytosis. Mol Biol Cell 2010; 21(3): 470–480
https://doi.org/10.1091/mbc.E08-05-0494 pmid: 19955216
32 Wong  K, Ren  XR, Huang  YZ, Xie  Y, Liu  G, Saito  H, Tang  H, Wen  L, Brady-Kalnay  SM, Mei  L, Wu  JY, Xiong  WC, Rao  Y. Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell 2001; 107(2): 209–221
https://doi.org/10.1016/S0092-8674(01)00530-X pmid: 11672528
33 Ghose  A, Van Vactor  D. GAPs in Slit-Robo signaling. BioEssays 2002; 24(5): 401–404
https://doi.org/10.1002/bies.10080 pmid: 12001262
34 Cau  J, Faure  S, Comps  M, Delsert  C, Morin  N. A novel p21-activated kinase binds the actin and microtubule networks and induces microtubule stabilization. J Cell Biol 2001; 155(6): 1029–1042
https://doi.org/10.1083/jcb.200104123 pmid: 11733543
35 Mertens  G, Cassiman  JJ, Van den Berghe  H, Vermylen  J, David  G. Cell surface heparan sulfate proteoglycans from human vascular endothelial cells. Core protein characterization and antithrombin III binding properties. J Biol Chem 1992; 267(28): 20435–20443
pmid: 1400362
36 Liang  Y, Annan  RS, Carr  SA, Popp  S, Mevissen  M, Margolis  RK, Margolis  RU. Mammalian homologues of the Drosophila slit protein are ligands of the heparan sulfate proteoglycan glypican-1 in brain. J Biol Chem 1999; 274(25): 17885–17892
https://doi.org/10.1074/jbc.274.25.17885 pmid: 10364234
37 Schmid  BC, Rezniczek  GA, Fabjani  G, Yoneda  T, Leodolter  S, Zeillinger  R. The neuronal guidance cue Slit2 induces targeted migration and may play a role in brain metastasis of breast cancer cells. Breast Cancer Res Treat 2007; 106(3): 333–342
https://doi.org/10.1007/s10549-007-9504-0 pmid: 17268810
38 Lee  TH, Avraham  HK, Jiang  S, Avraham  S. Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. J Biol Chem 2003; 278(7): 5277–5284
https://doi.org/10.1074/jbc.M210063200 pmid: 12446667
[1] Xiaoyu Wang,Yuxuan Gao,Haigang Shi,Na Liu,Wei Zhang,Hongbo Li. Influence of the intensity and loading time of direct current electric field on the directional migration of rat bone marrow mesenchymal stem cells[J]. Front. Med., 2016, 10(3): 286-296.
[2] Samuel Chege Gitau,Xuelian Li,Dandan Zhao,Zhenfeng Guo,Haihai Liang,Ming Qian,Lifang Lv,Tianshi Li,Bozhi Xu,Zhiguo Wang,Yong Zhang,Chaoqian Xu,Yanjie Lu,Zhiming Du,Hongli Shan,Baofeng Yang. Acetyl salicylic acid attenuates cardiac hypertrophy through Wnt signaling[J]. Front. Med., 2015, 9(4): 444-456.
[3] Yinyin Xie,Yuanliang Zhang,Lu Jiang,Mengmeng Zhang,Zhiwei Chen,Dan Liu,Qiuhua Huang. Disabled homolog 2 is required for migration and invasion of prostate cancer cells[J]. Front. Med., 2015, 9(3): 312-321.
[4] Runlin Shi,Haibing Xiao,Tao Yang,Lei Chang,Yuanfeng Tian,Bolin Wu,Hua Xu. Effects of miR-200c on the migration and invasion abilities of human prostate cancer Du145 cells and the corresponding mechanism[J]. Front. Med., 2014, 8(4): 456-463.
[5] Li LI, Jianxin JIANG. Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms[J]. Front Med, 2011, 5(1): 33-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed