Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2015, Vol. 9 Issue (4) : 478-486    https://doi.org/10.1007/s11684-015-0420-0
RESEARCH ARTICLE
U-shaped association between telomere length and esophageal squamous cell carcinoma risk: a case-control study in Chinese population
Jiangbo Du1,2, Wenjie Xue1, Yong Ji3, Xun Zhu1, Yayun Gu1,2, Meng Zhu1,2, Cheng Wang1,2, Yong Gao4, Juncheng Dai1,2, Hongxia Ma1, Yue Jiang1, Jiaping Chen1,2, Zhibin Hu1,2, Guangfu Jin1,2, Hongbing Shen1,2()
1. Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
2. Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
3. Department of Cardiothoracic Surgery, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi 214043, China
4. Department of Medical Oncology, the Affiliated Huai’an First People’s Hospital of Nanjing Medical University, Huai’an 223300, China
 Download: PDF(171 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Telomeres play a critical role in biological ageing by maintaining chromosomal integrity and preventing chromosome ends fusion. Epidemiological studies have suggested that inter-individual differences of telomere length could affect predisposition to multiple cancers, but evidence regarding esophageal squamous cell carcinoma (ESCC) was still uncertain. Several telomere length-related single nucleotide polymorphisms (TL-SNPs) in Caucasians have been reported in genome-wide association studies. However, the effects of telomere length and TL-SNPs on ESCC development are unclear. Therefore, we conducted a case-control study (1045 ESCC cases and 1433 controls) to evaluate the associations between telomere length, TL-SNPs, and ESCC risk in Chinese population. As a result, ESCC cases showed overall shorter relative telomere length (RTL) (median: 1.34) than controls (median: 1.50, P<0.001). More interestingly, an evident nonlinear U-shaped association was observed between RTL and ESCC risk (P<0.001), with odds ratios (95% confidence interval) equal to 2.40 (1.84–3.14), 1.36 (1.03–1.79), 1.01 (0.76–1.35), and 1.37 (1.03–1.82) for individuals in the 1st (the shortest), 2nd, 3rd, and 5th (the longest) quintile, respectively, compared with those in the 4th quintile as reference group. No significant associations were observed between the eight reported TL-SNPs and ESCC susceptibility. These findings suggest that either short or extremely long telomeres may be risk factors for ESCC in the Chinese population.

Keywords esophageal squamous cell carcinoma      telomere length      genetic variants      susceptibility      genome-wide association study     
Corresponding Author(s): Hongbing Shen   
Just Accepted Date: 10 October 2015   Online First Date: 17 November 2015    Issue Date: 26 November 2015
 Cite this article:   
Jiangbo Du,Wenjie Xue,Yong Ji, et al. U-shaped association between telomere length and esophageal squamous cell carcinoma risk: a case-control study in Chinese population[J]. Front. Med., 2015, 9(4): 478-486.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-015-0420-0
https://academic.hep.com.cn/fmd/EN/Y2015/V9/I4/478
Fig.1  Association between relative telomere length (RTL) and esophageal squamous cell carcinoma risk based on restricted cubic spline function in the logistic regression model.
Characteristics Control ESCC P a
N RTL median (IQR) N RTL median (IQR)
Overall 1433 1.50 (1.22−1.81) 1045 1.34 (1.04−1.72) 7.39 × 10−13
Age (year)
<60 711 1.60 (1.32−1.94) 495 1.40 (1.05−1.81) 5.45 × 10−11
≥60 722 1.40 (1.11−1.68) 550 1.29 (1.01−1.64) 8.41 × 10−4
P b 9.63 × 10−20 1.63 × 10−3
Sex
Male 1016 1.47 (1.18−1.76) 770 1.32 (1.02−1.72) 4.09 × 10−8
Female 417 1.40 (1.28−1.94) 275 1.42 (1.08−1.76) 5.87 × 10−6
P b 1.04 × 10−5 0.081
Smoking
Never 739 1.51 (1.22−1.84) 456 1.33 (1.01−1.72) 3.91 × 10−8
Ever 694 1.50 (1.22−1.80) 589 1.35 (1.05−1.72) 3.01 × 10−6
P b 0.657 0.415
Drinking
Never 907 1.52 (1.23−1.82) 499 1.34 (1.02−1.72) 5.38 × 10−9
Ever 526 1.47 (1.18−1.80) 546 1.35 (1.05−1.73) 6.58 × 10−5
P b 0.217 0.721
Tab.1  Comparative analysis of relative telomere length (RTL) between case-control group and characteristics subgroup
Quintile of RTL by controls category Control N (%) ESCC N (%) OR (95%CI) a P a
≥1.89 286 (19.96) 186 (17.80) 1.37 (1.03−1.82) 0.030
1.60−1.89 287 (20.03) 146 (13.97) 1.00 (referent)
1.38−1.60 287 (20.03) 155 (14.83) 1.01 (0.76−1.35) 0.950
1.14−1.38 287 (20.03) 214 (20.48) 1.36 (1.03−1.79) 0.027
<1.14 286 (19.96) 344 (32.92) 2.40 (1.84−3.14) 1.46 × 10−10
Tab.2  Association between relative telomere length (RTL) and esophageal squamous cell carcinoma risk
Gene SNPs Control N (%) Cases N (%) OR (95% CI) a P a
TERC rs10936599
TT 402 (28.45) 295 (29.29) 1.00
TC 715 (50.60) 522 (51.84) 0.97 (0.80−1.18) 0.766
CC 296 (20.95) 190 (18.87) 0.92 (0.81−1.04) 0.170
C allele 0.92 (0.82−1.04) 0.181
ACYP2 rs11125529
CC 894 (63.00) 606 (61.15) 1.00
CA 457 (32.21) 349 (35.22) 1.11 (0.93−1.33) 0.240
AA 68 (4.79) 36 (3.63) 0.87 (0.70−1.07) 0.183
A allele 1.01 (0.87−1.16) 0.944
TERT rs2736100
TT 484 (34.20) 333 (32.17) 1.00
TG 679 (47.99) 513 (49.57) 1.08 (0.90−1.30) 0.410
GG 252 (17.81) 189 (18.26) 1.04 (0.92−1.17) 0.535
G allele 1.04 (0.93−1.17) 0.483
TERT rs2736108
GG 720 (50.70) 499 (48.64) 1.00
GA 559 (39.37) 456 (44.44) 1.16 (0.98−1.38) 0.092
AA 141 (9.93) 71 (6.92) 0.86 (0.74−1.01) 0.069
A allele 0.98 (0.86−1.12) 0.776
OBFC1 rs4387287
CC 976 (69.96) 751 (72.84) 1.00
CA 386 (27.67) 281 (24.73) 0.85 (0.70−1.03) 0.095
AA 33 (2.37) 25 (2.42) 1.00 (0.76−1.31) 0.983
A allele 0.90 (0.76−1.05) 0.181
RTEL1 rs755017
AA 447 (32.51) 329 (31.97) 1.00
AG 660 (48.00) 520 (50.53) 1.08 (0.89−1.30) 0.427
GG 268 (19.49) 180 (17.49) 0.94 (0.84−1.06) 0.340
G allele 0.96 (0.86−1.08) 0.527
NAF1 rs7675998
GG 932 (65.77) 700 (67.90) 1.00
GA 431 (30.42) 296 (28.71) 0.94 (0.78−1.12) 0.491
AA 54 (3.81) 35 (3.39) 0.92 (0.73−1.14) 0.437
A allele 0.93 (0.80−1.08) 0.349
ZNF208 rs8105767
AA 703 (49.58) 487 (48.70) 1.00
AG 593 (41.82) 435 (43.50) 1.06 (0.89−1.26) 0.484
GG 122 (8.60) 78 (7.80) 0.96 (0.82−1.12) 0.607
G allele 1.00 (0.88−1.14) 0.960
Tab.3  Association results of reported telomere length related SNPs with ESCC risk
Grouping of WGS by controls quintile category Controls N (%) Cases N (%) OR(95%CI) a P a
≥0.534 265 (19.9) 177 (20.1) referent
0.458−0.534 269 (20.2) 182 (20.6) 1.05 (0.80−1.37) 0.745
0.394−0.458 263 (19.8) 158 (17.9) 0.94 (0.71−1.24) 0.657
0.310−0.394 267 (20.1) 198 (22.4) 1.17 (0.89−1.53) 0.259
<0.310 266 (20.0) 168 (19.0) 0.99 (0.75−1.30) 0.940
Tab.4  Association between weighted genetic score (WGS) of relative telomere length and ESCC risk
1 EH Blackburn. Telomeres and telomerase: the means to the end (Nobel lecture). Angew Chem Int Ed Engl 2010; 49(41): 7405–7421
https://doi.org/10.1002/anie.201002387 pmid: 20821774
2 RT Calado, NS Young. Telomere diseases. N Engl J Med 2009; 361(24): 2353–2365
https://doi.org/10.1056/NEJMra0903373 pmid: 20007561
3 X Wu, CI Amos, Y Zhu, H Zhao, BH Grossman, JW Shay, S Luo, WK Hong, MR Spitz. Telomere dysfunction: a potential cancer predisposition factor. J Natl Cancer Inst 2003; 95(16): 1211–1218
https://doi.org/10.1093/jnci/djg011 pmid: 12928346
4 DT Bau, SM Lippman, E Xu, Y Gong, JJ Lee, X Wu, J Gu. Short telomere lengths in peripheral blood leukocytes are associated with an increased risk of oral premalignant lesion and oral squamous cell carcinoma. Cancer 2013; 119(24): 4277–4283
https://doi.org/10.1002/cncr.28367 pmid: 24105340
5 JS Jang, YY Choi, WK Lee, JE Choi, SI Cha, YJ Kim, CH Kim, S Kam, TH Jung, JY Park. Telomere length and the risk of lung cancer. Cancer Sci 2008; 99(7): 1385–1389
https://doi.org/10.1111/j.1349-7006.2008.00831.x pmid: 18452563
6 HD Hosgood 3rd, R Cawthon, X He, S Chanock, Q Lan. Genetic variation in telomere maintenance genes, telomere length, and lung cancer susceptibility. Lung Cancer 2009; 66(2): 157–161
https://doi.org/10.1016/j.lungcan.2009.02.005 pmid: 19285750
7 Q Lan, R Cawthon, Y Gao, W Hu, HD Hosgood 3rd, F Barone-Adesi, BT Ji, B Bassig, WH Chow, X Shu, Q Cai, Y Xiang, S Berndt, C Kim, S Chanock, W Zheng, N Rothman. Longer telomere length in peripheral white blood cells is associated with risk of lung cancer and the rs2736100 (CLPTM1L-TERT) polymorphism in a prospective cohort study among women in China. PLoS ONE 2013; 8(3): e59230
https://doi.org/10.1371/journal.pone.0059230 pmid: 23555636
8 L Shao, CG Wood, D Zhang, NM Tannir, S Matin, CP Dinney, X Wu. Telomere dysfunction in peripheral lymphocytes as a potential predisposition factor for renal cancer. J Urol 2007; 178(4 Pt 1): 1492–1496
https://doi.org/10.1016/j.juro.2007.05.112 pmid: 17707063
9 K Broberg, J Björk, K Paulsson, M Höglund, M Albin. Constitutional short telomeres are strong genetic susceptibility markers for bladder cancer. Carcinogenesis 2005; 26(7): 1263–1271
https://doi.org/10.1093/carcin/bgi063 pmid: 15746160
10 M McGrath, JY Wong, D Michaud, DJ Hunter, I De Vivo. Telomere length, cigarette smoking, and bladder cancer risk in men and women. Cancer Epidemiol Biomarkers Prev 2007; 16(4): 815–819
https://doi.org/10.1158/1055-9965.EPI-06-0961 pmid: 17416776
11 L Mirabello, M Garcia-Closas, R Cawthon, J Lissowska, LA Brinton, B Pepłońska, ME Sherman, SA Savage. Leukocyte telomere length in a population-based case-control study of ovarian cancer: a pilot study. Cancer Causes Control 2010; 21(1): 77–82
https://doi.org/10.1007/s10552-009-9436-6 pmid: 19784860
12 KA Pooley, MS Sandhu, J Tyrer, M Shah, KE Driver, RN Luben, SA Bingham, BA Ponder, PD Pharoah, KT Khaw, DF Easton, AM Dunning. Telomere length in prospective and retrospective cancer case-control studies. Cancer Res 2010; 70(8): 3170–3176
https://doi.org/10.1158/0008-5472.CAN-09-4595 pmid: 20395204
13 J Shen, MD Gammon, MB Terry, Q Wang, P Bradshaw, SL Teitelbaum, AI Neugut, RM Santella. Telomere length, oxidative damage, antioxidants and breast cancer risk. Int J Cancer 2009; 124(7): 1637–1643
https://doi.org/10.1002/ijc.24105 pmid: 19089916
14 J Shen, MB Terry, I Gurvich, Y Liao, RT Senie, RM Santella. Short telomere length and breast cancer risk: a study in sister sets. Cancer Res 2007; 67(11): 5538–5544
https://doi.org/10.1158/0008-5472.CAN-06-3490 pmid: 17545637
15 J Han, AA Qureshi, J Prescott, Q Guo, L Ye, DJ Hunter, I De Vivo. A prospective study of telomere length and the risk of skin cancer. J Invest Dermatol 2009; 129(2): 415–421
https://doi.org/10.1038/jid.2008.238 pmid: 18668136
16 U Svenson, K Nordfjäll, B Stegmayr, J Manjer, P Nilsson, B Tavelin, R Henriksson, P Lenner, G Roos. Breast cancer survival is associated with telomere length in peripheral blood cells. Cancer Res 2008; 68(10): 3618–3623
https://doi.org/10.1158/0008-5472.CAN-07-6497 pmid: 18483243
17 MM Gramatges, ML Telli, R Balise, JM Ford. Longer relative telomere length in blood from women with sporadic and familial breast cancer compared with healthy controls. Cancer Epidemiol Biomarkers Prev 2010; 19(2): 605–613
https://doi.org/10.1158/1055-9965.EPI-09-0896 pmid: 20142254
18 I De Vivo, J Prescott, JY Wong, P Kraft, SE Hankinson, DJ Hunter. A prospective study of relative telomere length and postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev 2009; 18(4): 1152–1156
https://doi.org/10.1158/1055-9965.EPI-08-0998 pmid: 19293310
19 M Shen, R Cawthon, N Rothman, SJ Weinstein, J Virtamo, HD Hosgood 3rd, W Hu, U Lim, D Albanes, Q Lan. A prospective study of telomere length measured by monochrome multiplex quantitative PCR and risk of lung cancer. Lung Cancer 2011; 73(2): 133–137
https://doi.org/10.1016/j.lungcan.2010.11.009 pmid: 21507503
20 B Sanchez-Espiridion, M Chen, JY Chang, C Lu, DW Chang, JA Roth, X Wu, J Gu. Telomere length in peripheral blood leukocytes and lung cancer risk: a large case-control study in Caucasians. Cancer Res 2014; 74(9): 2476–2486
https://doi.org/10.1158/0008-5472.CAN-13-2968 pmid: 24618342
21 J Liu, Y Yang, H Zhang, S Zhao, H Liu, N Ge, H Yang, JL Xing, Z Chen. Longer leukocyte telomere length predicts increased risk of hepatitis B virus-related hepatocellular carcinoma: a case-control analysis. Cancer 2011; 117(18): 4247–4256
https://doi.org/10.1002/cncr.26015 pmid: 21387275
22 Q Lan, R Cawthon, M Shen, SJ Weinstein, J Virtamo, U Lim, HD Hosgood 3rd, D Albanes, N Rothman. A prospective study of telomere length measured by monochrome multiplex quantitative PCR and risk of non-Hodgkin lymphoma. Clin Cancer Res 2009; 15(23): 7429–7433
https://doi.org/10.1158/1078-0432.CCR-09-0845 pmid: 19934287
23 HG Skinner, RE Gangnon, K Litzelman, RA Johnson, ST Chari, GM Petersen, LA Boardman. Telomere length and pancreatic cancer: a case-control study. Cancer Epidemiol Biomarkers Prev 2012; 21(11): 2095–2100
https://doi.org/10.1158/1055-9965.EPI-12-0671 pmid: 23093543
24 S Qu, W Wen, XO Shu, WH Chow, YB Xiang, J Wu, BT Ji, N Rothman, G Yang, Q Cai, YT Gao, W Zheng. Association of leukocyte telomere length with breast cancer risk: nested case-control findings from the Shanghai Women’s Health Study. Am J Epidemiol 2013; 177(7): 617–624
https://doi.org/10.1093/aje/kws291 pmid: 23444102
25 S Wang, Y Chen, F Qu, S He, X Huang, H Jiang, T Jin, S Wan, J Xing. Association between leukocyte telomere length and glioma risk: a case-control study. Neuro-oncol 2014; 16(4): 505–512
https://doi.org/10.1093/neuonc/not240 pmid: 24366909
26 J Du, X Zhu, C Xie, N Dai, Y Gu, M Zhu, C Wang, Y Gao, F Pan, C Ren, Y Ji, J Dai, H Ma, Y Jiang, J Chen, H Yi, Y Zhao, Z Hu, H Shen, G Jin. Telomere length, genetic variants and gastric cancer risk in a Chinese population. Carcinogenesis, 2015; 36(9): 963–970
https://doi.org/10.1093/carcin/bgv075 pmid: 26025910
27 PE Slagboom, S Droog, DI Boomsma. Genetic determination of telomere size in humans: a twin study of three age groups. Am J Hum Genet 1994; 55(5): 876–882
pmid: 7977349
28 V Codd, CP Nelson, E Albrecht, M Mangino, J Deelen, JL Buxton, JJ Hottenga, K Fischer, T Esko, I Surakka, L Broer, DR Nyholt, I Mateo Leach, P Salo, S Hägg, MK Matthews, J Palmen, GD Norata, PF O’Reilly, D Saleheen, N Amin, AJ Balmforth, M Beekman, RA de Boer, S Böhringer, PS Braund, PR Burton, AJ de Craen, M Denniff, Y Dong, K Douroudis, E Dubinina, JG Eriksson, K Garlaschelli, D Guo, AL Hartikainen, AK Henders, JJ Houwing-Duistermaat, L Kananen, LC Karssen, J Kettunen, N Klopp, V Lagou, EM van Leeuwen, PA Madden, R Mägi, PK Magnusson, S Männistö, MI McCarthy, SE Medland, E Mihailov, GW Montgomery, BA Oostra, A Palotie, A Peters, H Pollard, A Pouta, I Prokopenko, S Ripatti, V Salomaa, HE Suchiman, AM Valdes, N Verweij, A Viñuela, X Wang, HE Wichmann, E Widen, G Willemsen, MJ Wright, K Xia, X Xiao, DJ van Veldhuisen, AL Catapano, MD Tobin, AS Hall, AI Blakemore, WH van Gilst, H Zhu, C Consortium, J Erdmann, MP Reilly, S Kathiresan, H Schunkert, PJ Talmud, NL Pedersen, M Perola, W Ouwehand, J Kaprio, NG Martin, CM van Duijn, I Hovatta, C Gieger, A Metspalu, DI Boomsma, MR Jarvelin, PE Slagboom, JR Thompson, TD Spector, P van der Harst, NJ Samani. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet 2013; 45(4): 422–427, e1−e2
https://doi.org/10.1038/ng.2528 pmid: 23535734
29 V Codd, M Mangino, P van der Harst, PS Braund, M Kaiser, AJ Beveridge, S Rafelt, J Moore, C Nelson, N Soranzo, G Zhai, AM Valdes, H Blackburn, I Mateo Leach, RA de Boer, M Kimura, A; Wellcome Trust Case Control Consortium, Aviv AH Goodall, W Ouwehand, DJ van Veldhuisen, WH van Gilst, G Navis, PR Burton, MD Tobin, AS Hall, JR Thompson, T Spector, NJ Samani. Common variants near TERC are associated with mean telomere length. Nat Genet 2010; 42(3): 197–199
https://doi.org/10.1038/ng.532 pmid: 20139977
30 D Levy, SL Neuhausen, SC Hunt, M Kimura, SJ Hwang, W Chen, JC Bis, AL Fitzpatrick, E Smith, AD Johnson, JP Gardner, SR Srinivasan, N Schork, JI Rotter, U Herbig, BM Psaty, M Sastrasinh, SS Murray, RS Vasan, MA Province, NL Glazer, X Lu, X Cao, R Kronmal, M Mangino, N Soranzo, TD Spector, GS Berenson, A Aviv. Genome-wide association identifies OBFC1 as a locus involved in human leukocyte telomere biology. Proc Natl Acad Sci USA 2010; 107(20): 9293–9298
https://doi.org/10.1073/pnas.0911494107 pmid: 20421499
31 SE Bojesen, KA Pooley, SE Johnatty, J Beesley, K Michailidou, JP Tyrer, SL Edwards, HA Pickett, HC Shen, CE Smart, KM Hillman, PL Mai, K Lawrenson, MD Stutz, Y Lu, R Karevan, N Woods, RL Johnston, JD French, X Chen, M Weischer, SF Nielsen, MJ Maranian, M Ghoussaini, S Ahmed, C Baynes, MK Bolla, Q Wang, J Dennis, L McGuffog, D Barrowdale, A Lee, S Healey, M Lush, DC Tessier, D Vincent, F Bacot; Australian Cancer Study; Australian Ovarian Cancer Study; Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer (kConFab); Gene Environment Interaction and Breast Cancer (GENICA); Swedish Breast Cancer Study (SWE-BRCA); Hereditary Breast and Ovarian Cancer Research Group Netherlands (HEBON); Epidemiological study of BRCA1 & BRCA2 Mutation Carriers (EMBRACE); Genetic Modifiers of Cancer Risk in BRCA1/2 Mutation Carriers (GEMO), I Vergote, S Lambrechts, E Despierre, HA Risch, A González-Neira, MA Rossing, G Pita, JA Doherty, N Alvarez, MC Larson, BL Fridley, N Schoof, J Chang-Claude, MS Cicek, J Peto, KR Kalli, A Broeks, SM Armasu, MK Schmidt, LM Braaf, B Winterhoff, H Nevanlinna, GE Konecny, D Lambrechts, L Rogmann, P Guénel, A Teoman, RL Milne, JJ Garcia, A Cox, V Shridhar, B Burwinkel, F Marme, R Hein, EJ Sawyer, CA Haiman, S Wang-Gohrke, IL Andrulis, KB Moysich, JL Hopper, K Odunsi, A Lindblom, GG Giles, H Brenner, J Simard, G Lurie, PA Fasching, ME Carney, P Radice, LR Wilkens, A Swerdlow, MT Goodman, H Brauch, M Garcia-Closas, P Hillemanns, R Winqvist, M Dürst, P Devilee, I Runnebaum, A Jakubowska, J Lubinski, A Mannermaa, R Butzow, NV Bogdanova, T Dörk, LM Pelttari, W Zheng, A Leminen, H Anton-Culver, CH Bunker, V Kristensen, RB Ness, K Muir, R Edwards, A Meindl, F Heitz, K Matsuo, A du Bois, AH Wu, P Harter, SH Teo, I Schwaab, XO Shu, W Blot, S Hosono, D Kang, T Nakanishi, M Hartman, Y Yatabe, U Hamann, BY Karlan, S Sangrajrang, SK Kjaer, V Gaborieau, A Jensen, D Eccles, E Høgdall, CY Shen, J Brown, YL Woo, M Shah, MA Azmi, R Luben, SZ Omar, K Czene, RA Vierkant, BG Nordestgaard, H Flyger, C Vachon, JE Olson, X Wang, DA Levine, A Rudolph, RP Weber, D Flesch-Janys, E Iversen, S Nickels, JM Schildkraut, IS Silva, DW Cramer, L Gibson, KL Terry, O Fletcher, AF Vitonis, CE van der Schoot, EM Poole, FB Hogervorst, SS Tworoger, J Liu, EV Bandera, J Li, SH Olson, K Humphreys, I Orlow, C Blomqvist, L Rodriguez-Rodriguez, K Aittomäki, HB Salvesen, TA Muranen, E Wik, B Brouwers, C Krakstad, E Wauters, MK Halle, H Wildiers, LA Kiemeney, C Mulot, KK Aben, P Laurent-Puig, AM Altena, T Truong, LF Massuger, J Benitez, T Pejovic, JI Perez, M Hoatlin, MP Zamora, LS Cook, SP Balasubramanian, LE Kelemen, A Schneeweiss, ND Le, C Sohn, A Brooks-Wilson, I Tomlinson, MJ Kerin, N Miller, C Cybulski, BE Henderson, J Menkiszak, F Schumacher, N Wentzensen, L Le Marchand, HP Yang, AM Mulligan, G Glendon, SA Engelholm, JA Knight, CK Høgdall, C Apicella, M Gore, H Tsimiklis, H Song, MC Southey, A Jager, AM den Ouweland, R Brown, JW Martens, JM Flanagan, M Kriege, J Paul, S Margolin, N Siddiqui, G Severi, AS Whittemore, L Baglietto, V McGuire, C Stegmaier, W Sieh, H Müller, V Arndt, F Labrèche, YT Gao, MS Goldberg, G Yang, M Dumont, JR McLaughlin, A Hartmann, AB Ekici, MW Beckmann, CM Phelan, MP Lux, J Permuth-Wey, B Peissel, TA Sellers, F Ficarazzi, M Barile, A Ziogas, A Ashworth, A Gentry-Maharaj, M Jones, SJ Ramus, N Orr, U Menon, CL Pearce, T Brüning, MC Pike, YD Ko, J Lissowska, J Figueroa, J Kupryjanczyk, SJ Chanock, A Dansonka-Mieszkowska, A Jukkola-Vuorinen, IK Rzepecka, K Pylkäs, M Bidzinski, S Kauppila, A Hollestelle, C Seynaeve, RA Tollenaar, K Durda, K Jaworska, JM Hartikainen, VM Kosma, V Kataja, NN Antonenkova, J Long, M Shrubsole, S Deming-Halverson, A Lophatananon, P Siriwanarangsan, S Stewart-Brown, N Ditsch, P Lichtner, RK Schmutzler, H Ito, H Iwata, K Tajima, CC Tseng, DO Stram, D van den Berg, CH Yip, MK Ikram, YC Teh, H Cai, W Lu, LB Signorello, Q Cai, DY Noh, KY Yoo, H Miao, PT Iau, YY Teo, J McKay, C Shapiro, F Ademuyiwa, G Fountzilas, CN Hsiung, JC Yu, MF Hou, CS Healey, C Luccarini, S Peock, D Stoppa-Lyonnet, P Peterlongo, TR Rebbeck, M Piedmonte, CF Singer, E Friedman, M Thomassen, K Offit, TV Hansen, SL Neuhausen, CI Szabo, I Blanco, J Garber, SA Narod, JN Weitzel, M Montagna, E Olah, AK Godwin, D Yannoukakos, DE Goldgar, T Caldes, EN Imyanitov, L Tihomirova, BK Arun, I Campbell, AR Mensenkamp, CJ van Asperen, KE van Roozendaal, H Meijers-Heijboer, JM Collée, JC Oosterwijk, MJ Hooning, MA Rookus, RB van der Luijt, TA Os, DG Evans, D Frost, E Fineberg, J Barwell, L Walker, MJ Kennedy, R Platte, R Davidson, SD Ellis, T Cole, B Bressac-de Paillerets, B Buecher, F Damiola, L Faivre, M Frenay, OM Sinilnikova, O Caron, S Giraud, S Mazoyer, V Bonadona, V Caux-Moncoutier, A Toloczko-Grabarek, J Gronwald, T Byrski, AB Spurdle, B Bonanni, D Zaffaroni, G Giannini, L Bernard, R Dolcetti, S Manoukian, N Arnold, C Engel, H Deissler, K Rhiem, D Niederacher, H Plendl, C Sutter, B Wappenschmidt, A Borg, B Melin, J Rantala, M Soller, KL Nathanson, SM Domchek, GC Rodriguez, R Salani, DG Kaulich, MK Tea, SS Paluch, Y Laitman, AB Skytte, TA Kruse, UB Jensen, M Robson, AM Gerdes, B Ejlertsen, L Foretova, SA Savage, J Lester, P Soucy, KB Kuchenbaecker, C Olswold, JM Cunningham, S Slager, VS Pankratz, E Dicks, SR Lakhani, FJ Couch, P Hall, AN Monteiro, SA Gayther, PD Pharoah, RR Reddel, EL Goode, MH Greene, DF Easton, A Berchuck, AC Antoniou, G Chenevix-Trench, AM Dunning. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat Genet 2013; 45(4): 371–384, e1−e2
https://doi.org/10.1038/ng.2566 pmid: 23535731
32 JD McKay, RJ Hung, V Gaborieau, P Boffetta, A Chabrier, G Byrnes, D Zaridze, A Mukeria, N Szeszenia-Dabrowska, J Lissowska, P Rudnai, E Fabianova, D Mates, V Bencko, L Foretova, V Janout, J McLaughlin, F Shepherd, A Montpetit, S Narod, HE Krokan, F Skorpen, MB Elvestad, L Vatten, I Njølstad, T Axelsson, C Chen, G Goodman, M Barnett, MM Loomis, J Lubiñski, J Matyjasik, M Lener, D Oszutowska, J Field, T Liloglou, G Xinarianos, A Cassidy; EPIC Study, P Vineis, F Clavel-Chapelon, D Palli, R Tumino, V Krogh, S Panico, CA González, J Ramón Quirós, C Martínez, C Navarro, E Ardanaz, N Larrañaga, KT Kham, T Key, HB Bueno-de-Mesquita, PH Peeters, A Trichopoulou, J Linseisen, H Boeing, G Hallmans, K Overvad, A Tjønneland, M Kumle, E Riboli, D Zelenika, A Boland, M Delepine, M Foglio, D Lechner, F Matsuda, H Blanche, I Gut, S Heath, M Lathrop, P Brennan. Lung cancer susceptibility locus at 5p15.33. Nat Genet 2008; 40(12): 1404–1406
https://doi.org/10.1038/ng.254 pmid: 18978790
33 Z Hu, C Wu, Y Shi, H Guo, X Zhao, Z Yin, L Yang, J Dai, L Hu, W Tan, Z Li, Q Deng, J Wang, W Wu, G Jin, Y Jiang, D Yu, G Zhou, H Chen, P Guan, Y Chen, Y Shu, L Xu, X Liu, L Liu, P Xu, B Han, C Bai, Y Zhao, H Zhang, Y Yan, H Ma, J Chen, M Chu, F Lu, Z Zhang, F Chen, X Wang, L Jin, J Lu, B Zhou, D Lu, T Wu, D Lin, H Shen. A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese. Nat Genet 2011; 43(8): 792–796
https://doi.org/10.1038/ng.875 pmid: 21725308
34 AM Jones, AD Beggs, L Carvajal-Carmona, S Farrington, A Tenesa, M Walker, K Howarth, S Ballereau, SV Hodgson, A Zauber, M Bertagnolli, R Midgley, H Campbell, D Kerr, MG Dunlop, IP Tomlinson. TERC polymorphisms are associated both with susceptibility to colorectal cancer and with longer telomeres. Gut 2012; 61(2): 248–254
https://doi.org/10.1136/gut.2011.239772 pmid: 21708826
35 J Ferlay, I Soerjomataram, M Ervik, R Dikshit, S Eser, C Mathers, M Rebelo, DM Parkin, D Forman, F Bray. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer.
36 Q Yu, J Yang, B Liu, W Li, G Hu, H Qiu, L Huang, H Xiong, X Yuan. Combined effects of leukocyte telomere length, p53 polymorphism and human papillomavirus infection on esophageal squamous cell carcinoma in a Han Chinese population. Cancer Epidemiol 2014; 38(5): 569–575
https://doi.org/10.1016/j.canep.2014.07.010 pmid: 25153662
37 J Shi, F Sun, L Peng, B Li, L Liu, C Zhou, J Han, L Zhang, L Zhou, X Zhang, H Pu, L Tong, Q Yuan, X Song, M Yang. Leukocyte telomere length-related genetic variants in 1p34.2 and 14q21 loci contribute to the risk of esophageal squamous cell carcinoma. Int J Cancer 2013; 132(12): 2799–2807
https://doi.org/10.1002/ijc.27959 pmid: 23180556
38 M Weischer, BG Nordestgaard, RM Cawthon, JJ Freiberg, A Tybjærg-Hansen, SE Bojesen. Short telomere length, cancer survival, and cancer risk in 47102 individuals. J Natl Cancer Inst 2013; 105(7): 459–468
https://doi.org/10.1093/jnci/djt016 pmid: 23468462
39 RM Cawthon. Telomere measurement by quantitative PCR. Nucleic Acids Res 2002; 30(10): e47
https://doi.org/10.1093/nar/30.10.e47 pmid: 12000852
40 L Desquilbet, F Mariotti. Dose-response analyses using restricted cubic spline functions in public health research. Stat Med 2010; 29(9): 1037–1057
pmid: 20087875
41 AJ Cesare, RR Reddel. Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet 2010; 11(5): 319–330
https://doi.org/10.1038/nrg2763 pmid: 20351727
42 T Rafnar, P Sulem, SN Stacey, F Geller, J Gudmundsson, A Sigurdsson, M Jakobsdottir, H Helgadottir, S Thorlacius, KK Aben, T Blöndal, TE Thorgeirsson, G Thorleifsson, K Kristjansson, K Thorisdottir, R Ragnarsson, B Sigurgeirsson, H Skuladottir, T Gudbjartsson, HJ Isaksson, GV Einarsson, KR Benediktsdottir, BA Agnarsson, K Olafsson, A Salvarsdottir, H Bjarnason, M Asgeirsdottir, KT Kristinsson, S Matthiasdottir, SG Sveinsdottir, S Polidoro, V Höiom, R Botella-Estrada, K Hemminki, P Rudnai, DT Bishop, M Campagna, E Kellen, MP Zeegers, P de Verdier, A Ferrer, D Isla, MJ Vidal, R Andres, B Saez, P Juberias, J Banzo, S Navarrete, A Tres, D Kan, A Lindblom, E Gurzau, K Koppova, F de Vegt, JA Schalken, HF van der Heijden, HJ Smit, RA Termeer, E Oosterwijk, O van Hooij, E Nagore, S Porru, G Steineck, J Hansson, F Buntinx, WJ Catalona, G Matullo, P Vineis, AE Kiltie, JI Mayordomo, R Kumar, LA Kiemeney, ML Frigge, T Jonsson, H Saemundsson, RB Barkardottir, E Jonsson, S Jonsson, JH Olafsson, JR Gulcher, G Masson, DF Gudbjartsson, A Kong, U Thorsteinsdottir, K Stefansson. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet 2009; 41(2): 221–227
https://doi.org/10.1038/ng.296 pmid: 19151717
[1] FMD-15230-OF-SHB_suppl_1 Download
[1] Na Qin, Yuancheng Li, Cheng Wang, Meng Zhu, Juncheng Dai, Tongtong Hong, Demetrius Albanes, Stephen Lam, Adonina Tardon, Chu Chen, Gary Goodman, Stig E. Bojesen, Maria Teresa Landi, Mattias Johansson, Angela Risch, H-Erich Wichmann, Heike Bickeboller, Gadi Rennert, Susanne Arnold, Paul Brennan, John K. Field, Sanjay Shete, Loic Le Marchand, Olle Melander, Hans Brunnstrom, Geoffrey Liu, Rayjean J. Hung, Angeline Andrew, Lambertus A. Kiemeney, Shan Zienolddiny, Kjell Grankvist, Mikael Johansson, Neil Caporaso, Penella Woll, Philip Lazarus, Matthew B. Schabath, Melinda C. Aldrich, Victoria L. Stevens, Guangfu Jin, David C. Christiani, Zhibin Hu, Christopher I. Amos, Hongxia Ma, Hongbing Shen. Comprehensive functional annotation of susceptibility variants identifies genetic heterogeneity between lung adenocarcinoma and squamous cell carcinoma[J]. Front. Med., 2021, 15(2): 275-291.
[2] Jie Pan, Zhengchao Shi, Dingsai Lin, Ningmin Yang, Fei Meng, Lang Lin, Zhencheng Jin, Qingjie Zhou, Jiansheng Wu, Jianzhong Zhang, Youming Li. Is tailored therapy based on antibiotic susceptibility effective ? A multicenter, open-label, randomized trial[J]. Front. Med., 2020, 14(1): 43-50.
[3] Tiange Wang, Min Xu, Yufang Bi, Guang Ning. Interplay between diet and genetic susceptibility in obesity and related traits[J]. Front. Med., 2018, 12(6): 601-607.
[4] Ying Ma,Nanxue Zhang,Shi Wu,Haihui Huang,Yanpei Cao. Antimicrobial activity of topical agents against Propionibacterium acnes: an in vitro study of clinical isolates from a hospital in Shanghai, China[J]. Front. Med., 2016, 10(4): 517-521.
[5] Li Shang, Mingrong Wang. Molecular alterations and clinical relevance in esophageal squamous cell carcinoma[J]. Front Med, 2013, 7(4): 401-410.
[6] Junfang JI, Kun WU, Min WU, Qimin ZHAN, . p53 functional activation is independent of its genotype in five esophageal squamous cell carcinoma cell lines[J]. Front. Med., 2010, 4(4): 412-418.
[7] Li-Feng LIU MD, PhD, Qiong CHEN MD, PhD, Ying CHANG MD, PhD, Ju-Sheng LIN MD, PhD, Jin-Liang ZHANG MM, . Cyclooxygenase-2 gene-1195G/A genotype is associated with the risk of HBV-induced HCC: A case-control study in Han Chinese people[J]. Front. Med., 2010, 4(1): 90-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed