Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2015, Vol. 9 Issue (4) : 421-430    https://doi.org/10.1007/s11684-015-0424-9
REVIEW
Emerging roles of podoplanin in vascular development and homeostasis
Yanfang Pan1,2,*(),Lijun Xia3
1. Department of Non-Communicable Diseases Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
2. State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
3. Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, OK 73104, USA
 Download: PDF(1278 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Podoplanin (PDPN) is a mucin-type O-glycoprotein expressed in diverse cell types, such as lymphatic endothelial cells (LECs) in the vascular system and fibroblastic reticular cells (FRCs) in lymph nodes. PDPN on LECs or FRCs activates CLEC-2 in platelets, triggering platelet activation and/or aggregation through downstream signaling events, including activation of Syk kinase. This mechanism is required to initiate and maintain separation of blood and lymphatic vessels and to stabilize high endothelial venule integrity within lymph nodes. In the vascular system, normal expression of PDPN at the LEC surface requires transcriptional activation of Pdpn by Prox1 and modification of PDPN with core 1-derived O-glycans. This review provides a comprehensive overview of the roles of PDPN in vascular development and lymphoid organ maintenance and discusses the mechanisms that regulate PDPN expression related to its function.

Keywords podoplanin      CLEC-2      Prox1      O-glycosylation      lymphatic vascular development and maintenance      lymphoid organ homeostasis     
Corresponding Author(s): Yanfang Pan   
Just Accepted Date: 23 September 2015   Online First Date: 26 October 2015    Issue Date: 26 November 2015
 Cite this article:   
Yanfang Pan,Lijun Xia. Emerging roles of podoplanin in vascular development and homeostasis[J]. Front. Med., 2015, 9(4): 421-430.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-015-0424-9
https://academic.hep.com.cn/fmd/EN/Y2015/V9/I4/421
Fig.1  Steps of mouse lymphangiogenesis. At E8.5, cardinal vein endothelial cells (ECs) become lymphatic competent. At E9−E9.5, a subset of cardinal vein ECs begins expressing Sox18 and subsequently, Prox1 at E9.75. Starting at E10.5, PDPN is expressed in ECs. At E11.5, primary lymph sac is formed from sprouted LECs, with aggregate platelets to seal and separate from the vein. Mature lymphatic vessels are then developed from the primary lymph sac. Prox1 and possibly PDPN are critical not only for separating blood and lymphatic vascular system, but also for maintaining LEC identity.
Fig.2  Mechanism of blood and lymphatic vessel separation. PDPN is O-glycosylated during biosynthesis in LECs. Cell surface-exposed PDPN binds to platelet receptor CLEC-2 and activates the Syk tyrosine kinase and SLP-76 adaptor protein. Syk/SLP-76 signaling leads to downstream activation of phospholipase C-γ2 (PLC-γ2), resulting in platelet activation. Aggregated platelets form a plug to seal off the growing primary lymph sac from the cardinal vein.
Fig.3  PDPN is a mucin-type O-glycoprotein. (A) Comparison of PDPN sequences of three species. Signal sequence is underlined in blue. Sites for potential O-glycosylation (boxed in red), transmembrane domain (underlined in green), and cytoplasmic domain (underlined in red) are highly conserved across species. (B) Biosynthesis of mucin-type O-glycans. Arrow-heads indicate possible branching, elongation, sialylation, and fucosylation.
Fig.4  Schematic cartoon of PDPN. Signal peptide amino acid is shown in gray. Potential O-glycosylation sites (serine or threonine) are shown in blue, with core 1 O-glycans attached. Only one potential N-glycosylation site is shown in green (asparagine 60). Platelet aggregation-stimulating domains are underlined in red.
Fig.5  Regulation of PDPN expression in LECs. At the transcriptional stage, Prox1 serves as a master regulator of LEC identity. Prox1 binds to the 5′ regulatory sequence of Pdpn (with or without co-factors) and induces PDPN expression. At the translational level, PDPN is synthesized and modified by C1galt1 to attach core 1 O-glycans to the protein backbone. The normally glycosylated PDPN is presented on the surface of LECs and able to interact with CLEC-2 on the platelet surface. Platelets are then activated through the Syk/SLP-76 signaling pathway and finally form aggregates. When C1galt1 is deficient, newly synthesized PDPN is not protected by core 1 O-glycans and is easily degraded by lymph metalloproteinases and/or other proteases.
1 Martín-Villar  E, Megías  D, Castel  S, Yurrita  MM, Vilaró  S, Quintanilla  M. Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition. J Cell Sci 2006; 119(Pt 21): 4541–4553
https://doi.org/10.1242/jcs.03218 pmid: 17046996
2 Breiteneder-Geleff  S, Matsui  K, Soleiman  A, Meraner  P, Poczewski  H, Kalt  R, Schaffner  G, Kerjaschki  D. Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis. Am J Pathol 1997; 151(4): 1141–1152
pmid: 9327748
3 Ramirez  MI, Millien  G, Hinds  A, Cao  Y, Seldin  DC, Williams  MC. T1α, a lung type I cell differentiation gene, is required for normal lung cell proliferation and alveolus formation at birth. Dev Biol 2003; 256(1): 61–72
https://doi.org/10.1016/S0012-1606(02)00098-2 pmid: 12654292
4 Schacht  V, Ramirez  MI, Hong  YK, Hirakawa  S, Feng  D, Harvey  N, Williams  M, Dvorak  AM, Dvorak  HF, Oliver  G, Detmar  M. T1α/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J 2003; 22(14): 3546–3556
https://doi.org/10.1093/emboj/cdg342 pmid: 12853470
5 Schietinger  A, Philip  M, Yoshida  BA, Azadi  P, Liu  H, Meredith  SC, Schreiber  H. A mutant chaperone converts a wild-type protein into a tumor-specific antigen. Science 2006; 314(5797): 304–308
https://doi.org/10.1126/science.1129200 pmid: 17038624
6 Suzuki-Inoue  K, Kato  Y, Inoue  O, Kaneko  MK, Mishima  K, Yatomi  Y, Yamazaki  Y, Narimatsu  H, Ozaki  Y. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem 2007; 282(36): 25993–26001
https://doi.org/10.1074/jbc.M702327200 pmid: 17616532
7 Chaipan  C, Soilleux  EJ, Simpson  P, Hofmann  H, Gramberg  T, Marzi  A, Geier  M, Stewart  EA, Eisemann  J, Steinkasserer  A, Suzuki-Inoue  K, Fuller  GL, Pearce  AC, Watson  SP, Hoxie  JA, Baribaud  F, Pöhlmann  S. DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets. J Virol 2006; 80(18): 8951–8960
https://doi.org/10.1128/JVI.00136-06 pmid: 16940507
8 Tang  T, Li  L, Tang  J, Li  Y, Lin  WY, Martin  F, Grant  D, Solloway  M, Parker  L, Ye  W, Forrest  W, Ghilardi  N, Oravecz  T, Platt  KA, Rice  DS, Hansen  GM, Abuin  A, Eberhart  DE, Godowski  P, Holt  KH, Peterson  A, Zambrowicz  BP, de Sauvage  FJ. A mouse knockout library for secreted and transmembrane proteins. Nat Biotechnol 2010; 28(7): 749–755
https://doi.org/10.1038/nbt.1644 pmid: 20562862
9 Fuller  GL, Williams  JA, Tomlinson  MG, Eble  JA, Hanna  SL, Pöhlmann  S, Suzuki-Inoue  K, Ozaki  Y, Watson  SP, Pearce  AC. The C-type lectin receptors CLEC-2 and Dectin-1, but not DC-SIGN, signal via a novel YXXL-dependent signaling cascade. J Biol Chem 2007; 282(17): 12397–12409
https://doi.org/10.1074/jbc.M609558200 pmid: 17339324
10 Bertozzi  CC, Schmaier  AA, Mericko  P, Hess  PR, Zou  Z, Chen  M, Chen  CY, Xu  B, Lu  MM, Zhou  D, Sebzda  E, Santore  MT, Merianos  DJ, Stadtfeld  M, Flake  AW, Graf  T, Skoda  R, Maltzman  JS, Koretzky  GA, Kahn  ML. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 2010; 116(4): 661–670
https://doi.org/10.1182/blood-2010-02-270876 pmid: 20363774
11 Herzog  BH, Fu  J, Wilson  SJ, Hess  PR, Sen  A, McDaniel  JM, Pan  Y, Sheng  M, Yago  T, Silasi-Mansat  R, McGee  S, May  F, Nieswandt  B, Morris  AJ, Lupu  F, Coughlin  SR, McEver  RP, Chen  H, Kahn  ML, Xia  L. Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature 2013; 502(7469): 105–109
https://doi.org/10.1038/nature12501 pmid: 23995678
12 Alitalo  K, Tammela  T, Petrova  TV. Lymphangiogenesis in development and human disease. Nature 2005; 438(7070): 946–953
https://doi.org/10.1038/nature04480 pmid: 16355212
13 Oliver  G, Srinivasan  RS. Lymphatic vasculature development: current concepts. Ann N Y Acad Sci 2008; 1131(1): 75–81
https://doi.org/10.1196/annals.1413.006 pmid: 18519960
14 Lohela  M, Bry  M, Tammela  T, Alitalo  K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol 2009; 21(2): 154–165
https://doi.org/10.1016/j.ceb.2008.12.012 pmid: 19230644
15 Srinivasan  RS, Dillard  ME, Lagutin  OV, Lin  FJ, Tsai  S, Tsai  MJ, Samokhvalov  IM, Oliver  G. Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev 2007; 21(19): 2422–2432
https://doi.org/10.1101/gad.1588407 pmid: 17908929
16 Hong  YK, Harvey  N, Noh  YH, Schacht  V, Hirakawa  S, Detmar  M, Oliver  G. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 2002; 225(3): 351–357
https://doi.org/10.1002/dvdy.10163 pmid: 12412020
17 Johnson  NC, Dillard  ME, Baluk  P, McDonald  DM, Harvey  NL, Frase  SL, Oliver  G. Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev 2008; 22(23): 3282–3291
https://doi.org/10.1101/gad.1727208 pmid: 19056883
18 Wigle  JT, Oliver  G. Prox1 function is required for the development of the murine lymphatic system. Cell 1999; 98(6): 769–778
https://doi.org/10.1016/S0092-8674(00)81511-1 pmid: 10499794
19 Wigle  JT, Harvey  N, Detmar  M, Lagutina  I, Grosveld  G, Gunn  MD, Jackson  DG, Oliver  G. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 2002; 21(7): 1505–1513
https://doi.org/10.1093/emboj/21.7.1505 pmid: 11927535
20 Tammela  T, Alitalo  K. Lymphangiogenesis: molecular mechanisms and future promise. Cell 2010; 140(4): 460–476
https://doi.org/10.1016/j.cell.2010.01.045 pmid: 20178740
21 Oliver  G, Sosa-Pineda  B, Geisendorf  S, Spana  EP, Doe  CQ, Gruss  P. Prox 1, a prospero-related homeobox gene expressed during mouse development. Mech Dev 1993; 44(1): 3–16
https://doi.org/10.1016/0925-4773(93)90012-M pmid: 7908825
22 Hong  YK, Foreman  K, Shin  JW, Hirakawa  S, Curry  CL, Sage  DR, Libermann  T, Dezube  BJ, Fingeroth  JD, Detmar  M. Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nat Genet 2004; 36(7): 683–685
https://doi.org/10.1038/ng1383 pmid: 15220917
23 Lee  S, Kang  J, Yoo  J, Ganesan  SK, Cook  SC, Aguilar  B, Ramu  S, Lee  J, Hong  YK. Prox1 physically and functionally interacts with COUP-TFII to specify lymphatic endothelial cell fate. Blood 2009; 113(8): 1856–1859
https://doi.org/10.1182/blood-2008-03-145789 pmid: 18815287
24 Dumont  DJ, Jussila  L, Taipale  J, Lymboussaki  A, Mustonen  T, Pajusola  K, Breitman  M, Alitalo  K. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 1998; 282(5390): 946–949
https://doi.org/10.1126/science.282.5390.946 pmid: 9794766
25 Colvin  JS, Bohne  BA, Harding  GW, McEwen  DG, Ornitz  DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 1996; 12(4): 390–397
https://doi.org/10.1038/ng0496-390 pmid: 8630492
26 Gu  C, Rodriguez  ER, Reimert  DV, Shu  T, Fritzsch  B, Richards  LJ, Kolodkin  AL, Ginty  DD. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev Cell 2003; 5(1): 45–57
https://doi.org/10.1016/S1534-5807(03)00169-2 pmid: 12852851
27 Kitsukawa  T, Shimizu  M, Sanbo  M, Hirata  T, Taniguchi  M, Bekku  Y, Yagi  T, Fujisawa  H. Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron  1997; 19(5): 995–1005
https://doi.org/10.1016/S0896-6273(00)80392-X pmid: 9390514
28 Petrova  TV, Karpanen  T, Norrmén  C, Mellor  R, Tamakoshi  T, Finegold  D, Ferrell  R, Kerjaschki  D, Mortimer  P, Ylä-Herttuala  S, Miura  N, Alitalo  K. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 2004; 10(9): 974–981
https://doi.org/10.1038/nm1094 pmid: 15322537
29 Norrmén  C, Ivanov  KI, Cheng  J, Zangger  N, Delorenzi  M, Jaquet  M, Miura  N, Puolakkainen  P, Horsley  V, Hu  J, Augustin  HG, Ylä-Herttuala  S, Alitalo  K, Petrova  TV. FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J Cell Biol 2009; 185(3): 439–457
https://doi.org/10.1083/jcb.200901104 pmid: 19398761
30 Navarro  A, Perez  RE, Rezaiekhaligh  M, Mabry  SM, Ekekezie  II. T1α/podoplanin is essential for capillary morphogenesis in lymphatic endothelial cells. Am J Physiol Lung Cell Mol Physiol 2008; 295(4): L543–L551
https://doi.org/10.1152/ajplung.90262.2008 pmid: 18658274
31 Fu  J, Gerhardt  H, McDaniel  JM, Xia  B, Liu  X, Ivanciu  L, Ny  A, Hermans  K, Silasi-Mansat  R, McGee  S, Nye  E, Ju  T, Ramirez  MI, Carmeliet  P, Cummings  RD, Lupu  F, Xia  L. Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice. J Clin Invest 2008; 118(11): 3725–3737
https://doi.org/10.1172/JCI36077 pmid: 18924607
32 Pan  Y, Wang  WD, Yago  T. Transcriptional regulation of podoplanin expression by Prox1 in lymphatic endothelial cells. Microvasc Res 2014; 94: 96–102
https://doi.org/10.1016/j.mvr.2014.05.006 pmid: 24944097
33 Durchdewald  M, Guinea-Viniegra  J, Haag  D, Riehl  A, Lichter  P, Hahn  M, Wagner  EF, Angel  P, Hess  J. Podoplanin is a novel fos target gene in skin carcinogenesis. Cancer Res 2008; 68(17): 6877–6883
https://doi.org/10.1158/0008-5472.CAN-08-0299 pmid: 18757399
34 Kunita  A, Kashima  TG, Ohazama  A, Grigoriadis  AE, Fukayama  M. Podoplanin is regulated by AP-1 and promotes platelet aggregation and cell migration in osteosarcoma. Am J Pathol 2011; 179(2): 1041–1049
https://doi.org/10.1016/j.ajpath.2011.04.027 pmid: 21801875
35 Peterziel  H, Müller  J, Danner  A, Barbus  S, Liu  HK, Radlwimmer  B, Pietsch  T, Lichter  P, Schütz  G, Hess  J, Angel  P. Expression of podoplanin in human astrocytic brain tumors is controlled by the PI3K-AKT-AP-1 signaling pathway and promoter methylation. Neuro-oncol 2012; 14(4): 426–439
https://doi.org/10.1093/neuonc/nos055 pmid: 22394497
36 An  G, Wei  B, Xia  B, McDaniel  JM, Ju  T, Cummings  RD, Braun  J, Xia  L. Increased susceptibility to colitis and colorectal tumors in mice lacking core 3-derived O-glycans. J Exp Med 2007; 204(6): 1417–1429
https://doi.org/10.1084/jem.20061929 pmid: 17517967
37 Ju  T, Brewer  K, D’Souza  A, Cummings  RD, Canfield  WM. Cloning and expression of human core 1 β1,3-galactosyltransferase. J Biol Chem 2002; 277(1): 178–186
https://doi.org/10.1074/jbc.M109060200 pmid: 11677243
38 Xia  L, Ju  T, Westmuckett  A, An  G, Ivanciu  L, McDaniel  JM, Lupu  F, Cummings  RD, McEver  RP. Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans. J Cell Biol  2004; 164(3): 451–459
https://doi.org/10.1083/jcb.200311112 pmid: 14745002
39 Ju  T, Cummings  RD, Canfield  WM. Purification, characterization, and subunit structure of rat core 1 β1,3-galactosyltransferase. J Biol Chem 2002; 277(1): 169–177
https://doi.org/10.1074/jbc.M109056200 pmid: 11673471
40 Kaneko  M, Kato  Y, Kunita  A, Fujita  N, Tsuruo  T, Osawa  M. Functional sialylated O-glycan to platelet aggregation on Aggrus (T1α/Podoplanin) molecules expressed in Chinese hamster ovary cells. J Biol Chem 2004; 279(37): 38838–38843
https://doi.org/10.1074/jbc.M407210200 pmid: 15231832
41 Kaneko  MK, Kato  Y, Kameyama  A, Ito  H, Kuno  A, Hirabayashi  J, Kubota  T, Amano  K, Chiba  Y, Hasegawa  Y, Sasagawa  I, Mishima  K, Narimatsu  H. Functional glycosylation of human podoplanin: glycan structure of platelet aggregation-inducing factor. FEBS Lett 2007; 581(2): 331–336
https://doi.org/10.1016/j.febslet.2006.12.044 pmid: 17222411
42 Pan  Y, Yago  T, Fu  J, Herzog  B, McDaniel  JM, Mehta-D’Souza  P, Cai  X, Ruan  C, McEver  RP, West  C, Dai  K, Chen  H, Xia  L. Podoplanin requires sialylated O-glycans for stable expression on lymphatic endothelial cells and for interaction with platelets. Blood 2014; 124(24): 3656–3665
https://doi.org/10.1182/blood-2014-04-572107 pmid: 25336627
43 Kato  Y, Kaneko  MK, Kunita  A, Ito  H, Kameyama  A, Ogasawara  S, Matsuura  N, Hasegawa  Y, Suzuki-Inoue  K, Inoue  O, Ozaki  Y, Narimatsu  H. Molecular analysis of the pathophysiological binding of the platelet aggregation-inducing factor podoplanin to the C-type lectin-like receptor CLEC-2. Cancer Sci 2008; 99(1): 54–61
pmid: 17944973
44 Kato  Y, Fujita  N, Kunita  A, Sato  S, Kaneko  M, Osawa  M, Tsuruo  T. Molecular identification of Aggrus/T1α as a platelet aggregation-inducing factor expressed in colorectal tumors. J Biol Chem 2003; 278(51): 51599–51605
https://doi.org/10.1074/jbc.M309935200 pmid: 14522983
45 Bianchi  R, Fischer  E, Yuen  D, Ernst  E, Ochsenbein  AM, Chen  L, Otto  VI, Detmar  M. Mutation of threonine 34 in mouse podoplanin-Fc reduces CLEC-2 binding and toxicity in vivo while retaining antilymphangiogenic activity. J Biol Chem 2014; 289(30): 21016–21027
https://doi.org/10.1074/jbc.M114.550525 pmid: 24907275
46 Nagae  M, Morita-Matsumoto  K, Kato  M, Kaneko  MK, Kato  Y, Yamaguchi  Y. A platform of C-type lectin-like receptor CLEC-2 for binding O-glycosylated podoplanin and nonglycosylated rhodocytin. Structure 2014; 22(12): 1711–1721
https://doi.org/10.1016/j.str.2014.09.009 pmid: 25458834
47 Abtahian  F, Guerriero  A, Sebzda  E, Lu  MM, Zhou  R, Mocsai  A, Myers  EE, Huang  B, Jackson  DG, Ferrari  VA, Tybulewicz  V, Lowell  CA, Lepore  JJ, Koretzky  GA, Kahn  ML. Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science 2003; 299(5604): 247–251
https://doi.org/10.1126/science.1079477 pmid: 12522250
48 Sebzda  E, Hibbard  C, Sweeney  S, Abtahian  F, Bezman  N, Clemens  G, Maltzman  JS, Cheng  L, Liu  F, Turner  M, Tybulewicz  V, Koretzky  GA, Kahn  ML. Syk and Slp-76 mutant mice reveal a cell-autonomous hematopoietic cell contribution to vascular development. Dev Cell 2006; 11(3): 349–361
https://doi.org/10.1016/j.devcel.2006.07.007 pmid: 16950126
49 Shivdasani  RA, Rosenblatt  MF, Zucker-Franklin  D, Jackson  CW, Hunt  P, Saris  CJ, Orkin  SH. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell 1995; 81(5): 695–704
https://doi.org/10.1016/0092-8674(95)90531-6 pmid: 7774011
50 Osada  M, Inoue  O, Ding  G, Shirai  T, Ichise  H, Hirayama  K, Takano  K, Yatomi  Y, Hirashima  M, Fujii  H, Suzuki-Inoue  K, Ozaki  Y. Platelet activation receptor CLEC-2 regulates blood/lymphatic vessel separation by inhibiting proliferation, migration, and tube formation of lymphatic endothelial cells. J Biol Chem 2012; 287(26): 22241–22252
https://doi.org/10.1074/jbc.M111.329987 pmid: 22556408
51 Uhrin  P, Zaujec  J, Breuss  JM, Olcaydu  D, Chrenek  P, Stockinger  H, Fuertbauer  E, Moser  M, Haiko  P, Fässler  R, Alitalo  K, Binder  BR, Kerjaschki  D. Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation. Blood 2010; 115(19): 3997–4005
https://doi.org/10.1182/blood-2009-04-216069 pmid: 20110424
52 Hess  PR, Rawnsley  DR, Jakus  Z, Yang  Y, Sweet  DT, Fu  J, Herzog  B, Lu  M, Nieswandt  B, Oliver  G, Makinen  T, Xia  L, Kahn  ML. Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life. J Clin Invest 2014; 124(1): 273–284
https://doi.org/10.1172/JCI70422 pmid: 24292710
53 Ngo  VN, Cornall  RJ, Cyster  JG. Splenic T zone development is B cell dependent. J Exp Med 2001; 194(11): 1649–1660
https://doi.org/10.1084/jem.194.11.1649 pmid: 11733579
54 Bekiaris  V, Withers  D, Glanville  SH, McConnell  FM, Parnell  SM, Kim  MY, Gaspal  FM, Jenkinson  E, Sweet  C, Anderson  G, Lane  PJ. Role of CD30 in B/T segregation in the spleen. J Immunol 2007; 179(11): 7535–7543
https://doi.org/10.4049/jimmunol.179.11.7535 pmid: 18025198
55 Peters  A, Pitcher  LA, Sullivan  JM, Mitsdoerffer  M, Acton  SE, Franz  B, Wucherpfennig  K, Turley  S, Carroll  MC, Sobel  RA, Bettelli  E, Kuchroo  VK. Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity 2011; 35(6): 986–996
https://doi.org/10.1016/j.immuni.2011.10.015 pmid: 22177922
56 Ji  RC. Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: new insights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev 2006; 25(4): 677–694
https://doi.org/10.1007/s10555-006-9026-y pmid: 17160713
57 Swartz  MA, Lund  AW. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer 2012; 12(3): 210–219
https://doi.org/10.1038/nrc3186 pmid: 22362216
58 Ordóñez  NG. Podoplanin: a novel diagnostic immunohistochemical marker. Adv Anat Pathol 2006; 13(2): 83–88
https://doi.org/10.1097/01.pap.0000213007.48479.94 pmid: 16670463
59 Lowe  KL, Navarro-Nunez  L, Watson  SP. Platelet CLEC-2 and podoplanin in cancer metastasis. Thromb Res 2012; 129(Suppl 1): S30–S37
https://doi.org/10.1016/S0049-3848(12)70013-0 pmid: 22682130
60 Dang  Q, Liu  J, Li  J, Sun  Y. Podoplanin: a novel regulator of tumor invasion and metastasis. Med Oncol 2014; 31(9): 24
https://doi.org/10.1007/s12032-014-0024-6 pmid: 25142945
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed