Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2016, Vol. 10 Issue (1) : 18-27    https://doi.org/10.1007/s11684-015-0427-6
REVIEW
Therapeutic application of hydrogen sulfide donors: the potential and challenges
Dan Wu1,2,Qingxun Hu1,Yizhun Zhu1,*()
1. Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
2. Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
 Download: PDF(478 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hydrogen sulfide (H2S), a colorless gas smelling of rotten egg, has long been considered a toxic gas and environment hazard. However, evidences show that H2S plays a great role in many physiological and pathological activities, and it exhibits different effects when applied at various doses. In this review, we summarize the chemistry and biomedical applications of H2S-releasing compounds, including inorganic salts, phosphorodithioate derivatives, derivatives of Allium sativum extracts, derivatives of thioaminoacids, and derivatives of anti-inflammatory drugs.

Keywords hydrogen sulfide      cardiovascular      cancer      hypertension     
Corresponding Author(s): Yizhun Zhu   
Just Accepted Date: 09 November 2015   Online First Date: 23 November 2015    Issue Date: 31 March 2016
 Cite this article:   
Dan Wu,Qingxun Hu,Yizhun Zhu. Therapeutic application of hydrogen sulfide donors: the potential and challenges[J]. Front. Med., 2016, 10(1): 18-27.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-015-0427-6
https://academic.hep.com.cn/fmd/EN/Y2016/V10/I1/18
Fig.1  Production and metabolism of H2S. In mammalian cells, endogenous H2S is produced from desulfhydration of cysteine catalyzed by two enzymes, cystathionine b-synthase (CBS) and cystathionine g-lyase (CSE). Cysteine is catalyzed by the tandem enzymes cysteine aminotransferase (CAT) and 3-mercaptopyruvate sulfurtransferase (3-MST) to form H2S in mitochondria. Sulfide is first oxidized into thiosulfate and then thiosulfate is reduced into sulfite by thiosulfate reductase (TSR) and thiosulfate sulfurtransferase (TST). Sulfite is oxidized into sulfate in the presence of glutathione.
Fig.2  Inhibitors of CSE and CBS. Propargylglycine (PAG) is an irreversibly selective inhibitor of CSE, and b-cyanoalanine (BCA) is a reversible inhibitor of CSE. Minooxy-acetic acid (AOAA) and hydroxylamine (HA) inhibit the activities of both CBS and CSE.
H2S donors Pathway of H2S generation Potential therapeutic effects Development stage
Inorganic salts Hydrolytic action Ischemia reperfusion injury Phase I
GYY4137 Hydrolytic action Cancer/hypertension/ischemia reperfusion injury Preclinical
SPRC H2S generation enzyme Cancer/ inflammation /ischemia reperfusion injury Preclinical
SAC H2S generation enzyme Hypertension Phase II
DADS Glutathione Cancer/coronary artery disease Preclinical
Thioglycine Mild alkaline pH values Hypertension Preclinical
H2S-releasing NSAIDs Glutathione Cancer/inflammation Preclinical
N-(Benzoylthio) benzamides Cysteine No effects were reported to date Preclinical
Ketoprofenate-caged compound Light No effects were reported to date Preclinical
Tab.1  H2S donors in development
Fig.3  H2S donating compounds (I). (A) Morpholin-4-ium 4 methoxyphenyl (morpholino) phosphinodithioate (GYY4137) is a water-soluble and slowly released H2S donor. (B, C) S-allycysteine (SAC) and S-propargyl- cysteine (SPRC) are derivatives of Allium sativum extracts. (D) LEO is obtained as a combination of SPRC and leonurine.
Fig.4  H2S donating compounds (II). (A, B) The chemical structure and mechanism of H2S release of derivatives of the Allium sativum extracts diallyl sulfide (DAS), diallyl disulfide (DADS), diallyl trisulfide (DATS), and ajoene. (C) The chemical structure and mechanism of H2S release of derivatives of the thioaminoacids thioglycine and thiovaline.
Fig.5  H2S-releasing non-steroidal anti-inflammatory drugs (NSAIDs) that prevent gastrointestinal side effects and increase anti-inflammatory effects.
Fig.6  Chemical structure of NOSH-aspirin, which can release both H2S and NO.
Fig.7  H2S donating compounds (III). The chemical structure and H2S generation pathway of (A) N-(benzoylthio)benzamides and (B) the light-activated donor propane-2,2-diylbis((1-(4,5-dimethoxy-2-nitro-phenyl)ethyl)sulfane).
1 Szabó C. Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 2007; 6(11): 917–935
https://doi.org/10.1038/nrd2425 pmid: 17948022
2 Wang R. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 2002; 16(13): 1792–1798
https://doi.org/10.1096/fj.02-0211hyp pmid: 12409322
3 Kamoun P. Endogenous production of hydrogen sulfide in mammals. Amino Acids 2004; 26(3): 243–254 doi:10.1007/s00726-004-0072-x
pmid: 15221504
4 Asimakopoulou A, Panopoulos P, Chasapis CT, Coletta C, Zhou Z, Cirino G, Giannis A, Szabo C, Spyroulias GA, Papapetropoulos A. Selectivity of commonly used pharmacological inhibitors for cystathionine b synthase (CBS) and cystathionine g lyase (CSE). Br J Pharmacol 2013; 169(4): 922–932 doi:10.1111/bph.12171
pmid: 23488457
5 Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science 2008; 322(5901): 587–590 PMID:18948540
https://doi.org/10.1126/science.1162667
6 Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 2012; 92(2): 791–796
https://doi.org/10.1152/physrev.00017.2011 pmid: 22535897
7 Whiteman M, Le Trionnaire S, Chopra M, Fox B, Whatmore J. Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. Clin Sci (Lond) 2011; 121(11): 459–488
https://doi.org/10.1042/CS20110267 pmid: 21843150
8 Sun Q, Collins R, Huang S, Holmberg-Schiavone L, Anand GS, Tan CH, van-den-Berg S, Deng LW, Moore PK, Karlberg T, Sivaraman J. Structural basis for the inhibition mechanism of human cystathionine γ-lyase, an enzyme responsible for the production of H(2)S. J Biol Chem 2009; 284(5): 3076–3085
https://doi.org/10.1074/jbc.M805459200 pmid: 19019829
9 Asimakopoulou A, Panopoulos P, Chasapis CT, Coletta C, Zhou Z, Cirino G, Giannis A, Szabo C, Spyroulias GA, Papapetropoulos A. Selectivity of commonly used pharmacological inhibitors for cystathionine b synthase (CBS) and cystathionine g lyase (CSE). Br J Pharmacol 2013; 169(4): 922–932
https://doi.org/10.1111/bph.12171 pmid: 23488457
10 Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 2001; 20(21): 6008–6016
https://doi.org/10.1093/emboj/20.21.6008 pmid: 11689441
11 Kashfi K, Olson KR. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras. Biochem Pharmacol 2013; 85(5): 689–703
https://doi.org/10.1016/j.bcp.2012.10.019 pmid: 23103569
12 Takeuchi H, Setoguchi T, Machigashira M, Kanbara K, Izumi Y. Hydrogen sulfide inhibits cell proliferation and induces cell cycle arrest via an elevated p21 Cip1 level in Ca9-22 cells. J Periodontal Res 2008; 43(1): 90–95
https://doi.org/10.1111/j.1600-0765.2007.00999.x pmid: 18086166
13 Yan H, Du J, Tang C. The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats. Biochem Biophys Res Commun 2004; 313(1): 22–27
https://doi.org/10.1016/j.bbrc.2003.11.081 pmid: 14672692
14 Ariyaratnam P, Loubani M, Morice AH. Hydrogen sulphide vasodilates human pulmonary arteries: a possible role in pulmonary hypertension? Microvasc Res 2013; 90: 135–137
https://doi.org/10.1016/j.mvr.2013.09.002 pmid: 24035755
15 Holwerda KM, Burke SD, Faas MM, Zsengeller Z, Stillman IE, Kang PM, van Goor H, McCurley A, Jaffe IZ, Karumanchi SA, Lely AT. Hydrogen sulfide attenuates sFlt1-induced hypertension and renal damage by upregulating vascular endothelial growth factor. J Am Soc Nephrol 2014; 25(4): 717–725
https://doi.org/10.1681/ASN.2013030291 pmid: 24335973
16 Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, Darley-Usmar VM, Doeller JE, Kraus DW. Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci USA 2007; 104(46): 17977–17982
https://doi.org/10.1073/pnas.0705710104 pmid: 17951430
17 Rodriguez J, Maloney RE, Rassaf T, Bryan NS, Feelisch M. Chemical nature of nitric oxide storage forms in rat vascular tissue. Proc Natl Acad Sci USA 2003; 100(1): 336–341
https://doi.org/10.1073/pnas.0234600100 pmid: 12502793
18 Kondo K, Bhushan S, King AL, Prabhu SD, Hamid T, Koenig S, Murohara T, Predmore BL, Gojon G Sr, Gojon G Jr, Wang R, Karusula N, Nicholson CK, Calvert JW, Lefer DJ. H₂S protects against pressure overload-induced heart failure via upregulation of endothelial nitric oxide synthase. Circulation 2013; 127(10): 1116–1127
https://doi.org/10.1161/CIRCULATIONAHA.112.000855 pmid: 23393010
19 Klocke R, Tian W, Kuhlmann MT, Nikol S. Surgical animal models of heart failure related to coronary heart disease. Cardiovasc Res 2007; 74(1): 29–38
https://doi.org/10.1016/j.cardiores.2006.11.026 pmid: 17188668
20 Zunnunov ZR. Efficacy and safety of hydrogen sulfide balneotherapy in ischemic heart disease the arid zone. Ter Arkh 2004; 76(8): 15–18 (in Russian)
pmid: 15471388
21 Liu Z, Han Y, Li L, Lu H, Meng G, Li X, Shirhan M, Peh MT, Xie L, Zhou S, Wang X, Chen Q, Dai W, Tan CH, Pan S, Moore PK, Ji Y. The hydrogen sulfide donor, GYY4137, exhibits anti-atherosclerotic activity in high fat fed apolipoprotein E(-/-) mice. Br J Pharmacol 2013; 169(8): 1795–1809
https://doi.org/10.1111/bph.12246 pmid: 23713790
22 Huang Y, Li F, Tong W, Zhang A, He Y, Fu T, Liu B. Hydrogen sulfide, a gaseous transmitter, stimulates proliferation of interstitial cells of Cajal via phosphorylation of AKT protein kinase. Tohoku J Exp Med 2010; 221(2): 125–132
https://doi.org/10.1620/tjem.221.125 pmid: 20484843
23 Toombs CF, Insko MA, Wintner EA, Deckwerth TL, Usansky H, Jamil K, Goldstein B, Cooreman M, Szabo C. Detection of exhaled hydrogen sulphide gas in healthy human volunteers during intravenous administration of sodium sulphide. Br J Clin Pharmacol 2010; 69(6): 626–636
https://doi.org/10.1111/j.1365-2125.2010.03636.x pmid: 20565454
24 Lee ZW, Zhou J, Chen CS, Zhao Y, Tan CH, Li L, Moore PK, Deng LW. The slow-releasing hydrogen sulfide donor, GYY4137, exhibits novel anti-cancer effects in vitro and in vivo. PLoS ONE 2011; 6(6): e21077
https://doi.org/10.1371/journal.pone.0021077 pmid: 21701688
25 Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, Zhao Y, Baskar R, Tan CH, Moore PK. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation 2008; 117(18): 2351–2360
https://doi.org/10.1161/CIRCULATIONAHA.107.753467 pmid: 18443240
26 Li L, Salto-Tellez M, Tan CH, Whiteman M, Moore PK. GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radic Biol Med 2009; 47(1): 103–113
https://doi.org/10.1016/j.freeradbiomed.2009.04.014 pmid: 19375498
27 Lee ZW, Teo XY, Tay EYW, Tan CH, Hagen T, Moore PK, Deng LW. Utilizing hydrogen sulfide as a novel anti-cancer agent by targeting cancer glycolysis and pH imbalance. Br J Pharmacol 2014; 171(18): 4322–4336
https://doi.org/10.1111/bph.12773 pmid: 24827113
28 Tang FY, Chiang EP, Pai MH. Consumption of S-allylcysteine inhibits the growth of human non-small-cell lung carcinoma in a mouse xenograft model. J Agric Food Chem 2010; 58(20): 11156–11164
https://doi.org/10.1021/jf102539k pmid: 20866043
29 Ried K, Frank OR, Stocks NP. Aged garlic extract lowers blood pressure in patients with treated but uncontrolled hypertension: a randomised controlled trial. Maturitas 2010; 67(2): 144–150
https://doi.org/10.1016/j.maturitas.2010.06.001 pmid: 20594781
30 Chuah SC, Moore PK, Zhu YZ. S-allylcysteine mediates cardioprotection in an acute myocardial infarction rat model via a hydrogen sulfide-mediated pathway. Am J Physiol Heart Circ Physiol 2007; 293(5): H2693–H2701
https://doi.org/10.1152/ajpheart.00853.2007 pmid: 17766469
31 Wang Q, Wang XL, Liu HR, Rose P, Zhu YZ. Protective effects of cysteine analogues on acute myocardial ischemia: novel modulators of endogenous H2S production. Antioxid Redox Signal 2010; 12(10):1155–1165. doi: 10.1089/ars.2009.2947 PMID: 19842912
32 Kan J, Guo W, Huang C, Bao G, Zhu Y, Zhu YZ. S-propargyl-cysteine, a novel water-soluble modulator of endogenous hydrogen sulfide, promotes angiogenesis through activation of signal transducer and activator of transcription 3. Antioxid Redox Signal 2014; 20(15): 2303–2316
https://doi.org/10.1089/ars.2013.5449 pmid: 24180631
33 Pan LL, Liu XH, Gong QH, Zhu YZ. S-Propargyl-cysteine (SPRC) attenuated lipopolysaccharide-induced inflammatory response in H9c2 cells involved in a hydrogen sulfide-dependent mechanism. Amino Acids 2011; 41(1): 205–215
https://doi.org/10.1007/s00726-011-0834-1 pmid: 21308383
34 Gong QH, Wang Q, Pan LL, Liu XH, Xin H, Zhu YZ. S-propargyl-cysteine, a novel hydrogen sulfide-modulated agent, attenuates lipopolysaccharide-induced spatial learning and memory impairment: involvement of TNF signaling and NF-kB pathway in rats. Brain Behav Immun 2011; 25(1): 110–119
https://doi.org/10.1016/j.bbi.2010.09.001 pmid: 20828607
35 Ma K, Liu Y, Zhu Q, Liu CH, Duan JL, Tan BK, Zhu YZ. H2S donor, S-propargyl-cysteine, increases CSE in SGC-7901 and cancer-induced mice: evidence for a novel anti-cancer effect of endogenous H2S? PLoS ONE 2011; 6(6): e20525
https://doi.org/10.1371/journal.pone.0020525 pmid: 21738579
36 Liu C, Gu X, Zhu YZ. Synthesis and biological evaluation of novel leonurine-SPRC conjugate as cardioprotective agents. Bioorg Med Chem Lett 2010; 20(23): 6942–6946
https://doi.org/10.1016/j.bmcl.2010.09.135 pmid: 20980147
37 Amagase H. Clarifying the real bioactive constituents of garlic. J Nutr 2006; 136(3 Suppl): 716S–725S
pmid: 16484550
38 Yun HM, Ban JO, Park KR, Lee CK, Jeong HS, Han SB, Hong JT. Potential therapeutic effects of functionally active compounds isolated from garlic. Pharmacol Ther 2014; 142(2): 183–195
https://doi.org/10.1016/j.pharmthera.2013.12.005 pmid: 24333688
39 Kalra N, Arora A, Shukla Y. Involvement of multiple signaling pathways in diallyl sulfide mediated apoptosis in mouse skin tumors. Asian Pac J Cancer Prev 2006; 7(4): 556–562
pmid: 17250426
40 Wu PP, Liu KC, Huang WW, Chueh FS, Ko YC, Chiu TH, Lin JP, Kuo JH, Yang JS, Chung JG. Diallyl trisulfide (DATS) inhibits mouse colon tumor in mouse CT-26 cells allograft model in vivo. Phytomedicine 2011; 18(8-9): 672–676
https://doi.org/10.1016/j.phymed.2011.01.006 pmid: 21315571
41 Filomeni G, Aquilano K, Rotilio G, Ciriolo MR. Reactive oxygen species-dependent c-Jun NH2-terminal kinase/c-Jun signaling cascade mediates neuroblastoma cell death induced by diallyl disulfide. Cancer Res 2003; 63(18): 5940–5949
pmid: 14522920
42 Zhou Z, von Wantoch Rekowski M, Coletta C, Szabo C, Bucci M, Cirino G, Topouzis S, Papapetropoulos A, Giannis A. Thioglycine and L-thiovaline: biologically active H₂S-donors. Bioorg Med Chem 2012; 20(8): 2675–2678
https://doi.org/10.1016/j.bmc.2012.02.028 pmid: 22436388
43 Wallace JL, Caliendo G, Santagada V, Cirino G, Fiorucci S. Gastrointestinal safety and anti-inflammatory effects of a hydrogen sulfide-releasing diclofenac derivative in the rat. Gastroenterology 2007; 132(1): 261–271
https://doi.org/10.1053/j.gastro.2006.11.042 pmid: 17241876
44 Thun MJ, Henley SJ, Patrono C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst 2002; 94(4): 252–266
https://doi.org/10.1093/jnci/94.4.252 pmid: 11854387
45 Chattopadhyay M, Kodela R, Nath N, Dastagirzada YM, Velázquez-Martínez CA, Boring D, Kashfi K. Hydrogen sulfide-releasing NSAIDs inhibit the growth of human cancer cells: a general property and evidence of a tissue type-independent effect. Biochem Pharmacol 2012; 83(6): 715–722
https://doi.org/10.1016/j.bcp.2011.12.018 pmid: 22222427
46 Hanif R, Pittas A, Feng Y, Koutsos MI, Qiao L, Staiano-Coico L, Shiff SI, Rigas B. Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandin-independent pathway. Biochem Pharmacol 1996; 52(2): 237–245
https://doi.org/10.1016/0006-2952(96)00181-5 pmid: 8694848
47 Kodela R, Chattopadhyay M, Kashfi K. NOSH-aspirin: a novel nitric oxide-hydrogen sulfide-releasing hybrid: a new class of anti-inflammatory pharmaceuticals. ACS Med Chem Lett 2012; 3(3): 257–262
https://doi.org/10.1021/ml300002m pmid: 22916316
48 Zhao Y, Wang H, Xian M. Cysteine-activated hydrogen sulfide (H2S) donors. JACS 2011;133 (1) 15–17 DOI: 10.1021/ja1085723
49 Zhao Y, Bhushan S, Yang C, Otsuka H, Stein JD, Pacheco A, Peng B, Devarie-Baez NO, Aguilar HC, Lefer DJ, Xian M. Controllable hydrogen sulfide donors and their activity against myocardial ischemia-reperfusion injury. ACS Chem Biol 2013; 8(6): 1283–1290
https://doi.org/10.1021/cb400090d pmid: 23547844
50 Chen WS, Zang QG, Wang LQ, Tang FY, Han YJ, Yang CJ, Deng L, Liu YN. NIR light controlled release of caged hydrogen sulfide based on upconversion nanoparticles. Chem Commun 2015; 51:9193–9196 DOI: 10.1039/C5CC02508G
51 Eghbal MA, Pennefather PS, O’Brien PJ. H2S cytotoxicity mechanism involves reactive oxygen species formation and mitochondrial depolarisation. Toxicology 2004; 203(1-3): 69–76
https://doi.org/10.1016/j.tox.2004.05.020 pmid: 15363583
52 Huang C, Kan J, Liu X, Ma F, Tran BH, Zou Y, Wang S, Zhu YZ. Cardioprotective effects of a novel hydrogen sulfide agent-controlled release formulation of S-propargyl-cysteine on heart failure rats and molecular mechanisms. PLoS ONE 2013; 8(7): e69205 doi: 10.1371/journal.pone.0069205
pmid: 23874913
53 Han Y, Qin J, Chang X, Yang Z, Du J. Hydrogen sulfide and carbon monoxide are in synergy with each other in the pathogenesis of recurrent febrile seizures. Cell Mol Neurobiol 2006; 26(1): 101–107
https://doi.org/10.1007/s10571-006-8848-z pmid: 16633905
54 Wang YF, Shi LN, Du JB, Tang CS. Impact of L-arginine on hydrogen sulfide/cystathionine-γ-lyase pathway in rats with high blood flow-induced pulmonary hypertension. Biochem Biophys Res Commun 2006; 345(2): 851–857
https://doi.org/10.1016/j.bbrc.2006.04.162 pmid: 16701554
55 Whiteman M, Li L, Kostetski I, Chu SH, Siau JL, Bhatia M, Moore PK. Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem Biophys Res Commun 2006; 343(1): 303–310
https://doi.org/10.1016/j.bbrc.2006.02.154 pmid: 16540095
56 Ryter SW, Alam J, Choi AMK. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 2006; 86(2): 583–650
https://doi.org/10.1152/physrev.00011.2005 pmid: 16601269
[1] Yong Fan, Yan Geng, Lin Shen, Zhuoli Zhang. Advances on immune-related adverse events associated with immune checkpoint inhibitors[J]. Front. Med., 2021, 15(1): 33-42.
[2] Solmaz Ohadian Moghadam, Seyed Ali Momeni. Human microbiome and prostate cancer development: current insights into the prevention and treatment[J]. Front. Med., 2021, 15(1): 11-32.
[3] Hongnan Mo, Binghe Xu. Progress in systemic therapy for triple-negative breast cancer[J]. Front. Med., 2021, 15(1): 1-10.
[4] Jiuyang Xu, Chaolin Huang, Guohui Fan, Zhibo Liu, Lianhan Shang, Fei Zhou, Yeming Wang, Jiapei Yu, Luning Yang, Ke Xie, Zhisheng Huang, Lixue Huang, Xiaoying Gu, Hui Li, Yi Zhang, Yimin Wang, Frederick G. Hayden, Peter W. Horby, Bin Cao, Chen Wang. Use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in context of COVID-19 outbreak: a retrospective analysis[J]. Front. Med., 2020, 14(5): 601-612.
[5] Jiahui Xu, Qianqian Wang, Elaine Lai Han Leung, Ying Li, Xingxing Fan, Qibiao Wu, Xiaojun Yao, Liang Liu. Compound C620-0696, a new potent inhibitor targeting BPTF, the chromatin-remodeling factor in non-small-cell lung cancer[J]. Front. Med., 2020, 14(1): 60-67.
[6] Jiajia Hu, Wenbin Shen, Qian Qu, Xiaochun Fei, Ying Miao, Xinyun Huang, Jiajun Liu, Yingli Wu, Biao Li. NES1/KLK10 and hNIS gene therapy enhanced iodine-131 internal radiation in PC3 proliferation inhibition[J]. Front. Med., 2019, 13(6): 646-657.
[7] Rui Zhou, Yuanshu Liu, Wenjun Huang, Xitong Dang. Potential functions of esophageal cancer-related gene-4 in the cardiovascular system[J]. Front. Med., 2019, 13(6): 639-645.
[8] Hong Zhang, Ying Chang, Qingqing Zheng, Rong Zhang, Cheng Hu, Weiping Jia. Altered intestinal microbiota associated with colorectal cancer[J]. Front. Med., 2019, 13(4): 461-470.
[9] Yumeng Wang, Guiling Li. PD-1/PD-L1 blockade in cervical cancer: current studies and perspectives[J]. Front. Med., 2019, 13(4): 438-450.
[10] Ruoxi Zhang, Jing Chen, Diangang Liu, Yu Wang. Urotensin II receptor antagonist reduces hepatic resistance and portal pressure through enhanced eNOS-dependent HSC vasodilatation in CCl4-induced cirrhotic rats[J]. Front. Med., 2019, 13(3): 398-408.
[11] Tao Wang, Florent Chuffart, Ekaterina Bourova-Flin, Jin Wang, Jianqing Mi, Sophie Rousseaux, Saadi Khochbin. Histone variants: critical determinants in tumour heterogeneity[J]. Front. Med., 2019, 13(3): 289-297.
[12] Xiuxiu Wu, Wenshuai Xu, Jun Wang, Xinlun Tian, Zhuang Tian, Kaifeng Xu. Clinical characteristics in lymphangioleiomyomatosis-related pulmonary hypertension: an observation on 50 patients[J]. Front. Med., 2019, 13(2): 259-266.
[13] Qiongna Dong, Bizhi Shi, Min Zhou, Huiping Gao, Xiaoying Luo, Zonghai Li, Hua Jiang. Growth suppression of colorectal cancer expressing S492R EGFR by monoclonal antibody CH12[J]. Front. Med., 2019, 13(1): 83-93.
[14] Synat Kang, Yanyan Li, Yifeng Bao, Yi Li. High-affinity T cell receptors redirect cytokine-activated T cells (CAT) to kill cancer cells[J]. Front. Med., 2019, 13(1): 69-82.
[15] Zhao Zhang, Jun Jiang, Xiaodong Wu, Mengyao Zhang, Dan Luo, Renyu Zhang, Shiyou Li, Youwen He, Huijie Bian, Zhinan Chen. Chimeric antigen receptor T cell targeting EGFRvIII for metastatic lung cancer therapy[J]. Front. Med., 2019, 13(1): 57-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed