Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2016, Vol. 10 Issue (1) : 85-90    https://doi.org/10.1007/s11684-016-0435-1
RESEARCH ARTICLE
Coronary leukocyte activation in relation to progression of coronary artery disease
Marijke A. de Vries1,*(),Arash Alipour1,Erwin Birnie2,Andrew Westzaan1,Selvetta van Santen1,Ellen van der Zwan3,Anho H. Liem4,Noëlle van der Meulen1,Manuel Castro Cabezas1
1. Department of Internal Medicine, Centre for Diabetes and Vascular Medicine
2. Department of Statistics and Education
3. Department of Clinical Chemistry
4. Department of Cardiology, Sint Franciscus Gasthuis, Rotterdam, P.O. Box 10900, 3004 BA, The Netherlands
 Download: PDF(109 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Leukocyte activation has been linked to atherogenesis, but there is little in vivo evidence for its role in the progression of atherosclerosis. We evaluated the predictive value for progression of coronary artery disease (CAD) of leukocyte activation markers in the coronary circulation. Monocyte and neutrophil CD11b, neutrophil CD66b expression and intracellular neutrophil myeloperoxidase (MPO) in the coronary arteries were determined by flow cytometry in patients undergoing coronary angiography. The primary outcome included fatal and nonfatal myocardial infarction or arterial vascular intervention due to unstable angina pectoris. In total 99 subjects who were included, 70 had CAD at inclusion (26 patients had single-vessel disease, 18 patients had two-vessel disease and 26 patients had three-vessel disease). The median follow-up duration was 2242 days (interquartile range: 2142–2358). During follow-up, 13 patients (13%) developed progression of CAD. Monocyte CD11b, neutrophil CD11b and CD66b expression and intracellular MPO measured in blood obtained from the coronary arteries were not associated with the progression of CAD. These data indicate that coronary monocyte CD11b, neutrophil CD11b and CD66b expression and intracellular MPO do not predict the risk of progression of CAD.

Keywords coronary artery disease      inflammation      integrin      myeloperoxidase      leukocyte activation     
Corresponding Author(s): Marijke A. de Vries   
Just Accepted Date: 14 January 2016   Online First Date: 18 February 2016    Issue Date: 31 March 2016
 Cite this article:   
Marijke A. de Vries,Arash Alipour,Erwin Birnie, et al. Coronary leukocyte activation in relation to progression of coronary artery disease[J]. Front. Med., 2016, 10(1): 85-90.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-016-0435-1
https://academic.hep.com.cn/fmd/EN/Y2016/V10/I1/85
Total group (n = 99) Progression CAD (n = 13) No progression CAD (n = 86) P value
Age (year) 65±12 67±11 64±12 0.50
Gender (% male) 60 62 60 >0.99
CAD (%) 71 100 66 0.009
DM (%) 28 15 30 0.34
Smoking (%) 14 15 14 >0.99
Statin use (%) 68 92 64 0.06
ASA use (%) 67 92 63 0.06
ACE-i use (%) 33 23 35 0.54
BMI (kg/m2) 27.6±4.1 25.5±4.6 27.9±4.0 0.06
SBP (mmHg) 144±22 154±27 143±21 0.09
Glucose (mmol/L) 6.8±1.7 6.5±1.3 6.8±1.8 0.59
LDL-c (mmol/L) 2.8±1.0 2.8±1.2 2.8±1.0 0.95
HDL-c (mmol/L) 1.3±0.3 1.3±0.3 1.2±0.3 0.56
Triglycerides (mmol/L) 1.55 (1.07?2.19) 1.46 (0.90??1.78) 1.56 (1.08?2.25) 0.43
CRP (mg/L) 2.0 (1.0?4.0) 1.0 (1.0?5.0) 2.0 (1.0?4.0) 0.64
Leukocyte count (109/L) 7.1 (6.0?8.3) 7.1 (5.6?7.7) 7.1 (6.1?8.4) 0.32
Complement C3 (g/L) 1.23±0.24 1.28±0.24 1.22±0.24 0.39
Mono CD11b LCA (au) 31.8 (25.5?40.8) 28.9 (21.0?42.4) 32.2 (25.6?40.7) 0.66
Mono CD11b RCA (au) 32.2 (26.5?41.8) 29.8 (23.0?42.0) 32.2 (26.7?41.7) 0.56
Neutro CD11b LCA (au) 30.9 (24.3?38.6) 29.0 (22.2?38.8) 31.8 (24.4?38.6) 0.51
Neutro CD11b RCA (au) 31.5 (25.6?37.6) 23.7 (20.0?43.8) 31.8 (26.2?37.6) 0.26
Neutro CD66b LCA (au) 7.2 (6.0?9.0) 7.6 (5.5?9.8) 7.1 (6.1?8.9) 0.70
Neutro CD66b RCA (au) 7.3 (5.8?9.3) 7.7 (5.0?11.3) 7.3 (5.8?9.0) 0.72
MPO LCA (au) 162.5 (130.2?202.9) 160.4 (136.4?169.4) 169.6 (129.8?205.0) 0.69
MPO RCA (au) 165.3 (130.1?194.7) 166.9 (147.1?177.3) 164.0 (129.3?196.5) 0.99
Tab.1  Baseline characteristics of study participants (n = 99)
HR (95% CI) P value
Monocyte CD11b in LCA 0.97 (0.94 – 1.04) 0.61
Monocyte CD11b in RCA 0.97 (0.90 – 1.04) 0.42
Neutrophil CD11b in LCA 1.00 (0.94 – 1.06) 0.87
Neutrophil CD11b in RCA 0.97 (0.90 – 1.04) 0.38
Neutrophil CD66b in LCA 1.10 (0.86 – 1.34) 0.45
Neutrophil CD66b in RCA 1.06 (0.82 – 1.37) 0.65
Myeloperoxidase in LCA 1.00 (0.99 – 1.01) 0.95
Myeloperoxidase in RCA 1.00 (0.99 – 1.01) 0.70
Tab.2  Coronary leukocyte activation and risk of future CAD
1 Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, Lisheng L; INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364(9438): 937–952 PMID:15364185
https://doi.org/10.1016/S0140-6736(04)17018-9
2 Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 2012; 32(9): 2045–2051
https://doi.org/10.1161/ATVBAHA.108.179705 pmid: 22895665
3 Friedman GD, Klatsky AL, Siegelaub AB. The leukocyte count as a predictor of myocardial infarction. N Engl J Med 1974; 290(23): 1275–1278
https://doi.org/10.1056/NEJM197406062902302 pmid: 4827627
4 Danesh J, Whincup P, Walker M, Lennon L, Thomson A, Appleby P, Gallimore JR, Pepys MB. Low grade inflammation and coronary heart disease: prospective study and updated meta-analyses. BMJ 2000; 321(7255): 199–204
https://doi.org/10.1136/bmj.321.7255.199 pmid: 10903648
5 Muscari A, Bozzoli C, Puddu GM, Sangiorgi Z, Dormi A, Rovinetti C, Descovich GC, Puddu P. Association of serum C3 levels with the risk of myocardial infarction. Am J Med 1995; 98(4): 357–364
https://doi.org/10.1016/S0002-9343(99)80314-3 pmid: 7709948
6 Alipour A, van Oostrom AJHHM, Izraeljan A, Verseyden C, Collins JM, Frayn KN, Plokker TWM, Elte JWF, Castro Cabezas M. Leukocyte activation by triglyceride-rich lipoproteins. Arterioscler Thromb Vasc Biol 2008; 28(4): 792–797
https://doi.org/10.1161/ATVBAHA.107.159749 pmid: 18218988
7 van Oostrom AJHHM, Rabelink TJ, Verseyden C, Sijmonsma TP, Plokker HWM, De Jaegere PPT, Cabezas MC. Activation of leukocytes by postprandial lipemia in healthy volunteers. Atherosclerosis 2004; 177(1): 175–182
https://doi.org/10.1016/j.atherosclerosis.2004.07.004 pmid: 15488881
8 Gower RM, Wu H, Foster GA, Devaraj S, Jialal I, Ballantyne CM, Knowlton AA, Simon SI. CD11c/CD18 expression is upregulated on blood monocytes during hypertriglyceridemia and enhances adhesion to vascular cell adhesion molecule-1. Arterioscler Thromb Vasc Biol 2011; 31(1): 160–166
https://doi.org/10.1161/ATVBAHA.110.215434 pmid: 21030716
9 Sampson MJ, Davies IR, Brown JC, Ivory K, Hughes DA. Monocyte and neutrophil adhesion molecule expression during acute hyperglycemia and after antioxidant treatment in type 2 diabetes and control patients. Arterioscler Thromb Vasc Biol 2002; 22(7): 1187–1193
https://doi.org/10.1161/01.ATV.0000021759.08060.63 pmid: 12117736
10 Motton DD, Keim NL, Tenorio FA, Horn WF, Rutledge JC. Postprandial monocyte activation in response to meals with high and low glycemic loads in overweight women. Am J Clin Nutr 2007; 85(1): 60–65
pmid: 17209178
11 Mazzone A, Ricevuti G. Leukocyte CD11/CD18 integrins: biological and clinical relevance. Haematologica 1995; 80(2): 161–175
pmid: 7628754
12 Yoon J, Terada A, Kita H. CD66b regulates adhesion and activation of human eosinophils. J Immunol 2007; 179(12): 8454–8462
https://doi.org/10.4049/jimmunol.179.12.8454 pmid: 18056392
13 Barouch FC, Miyamoto K, Allport JR, Fujita K, Bursell SE, Aiello LP, Luscinskas FW, Adamis AP. Integrin-mediated neutrophil adhesion and retinal leukostasis in diabetes. Invest Ophthalmol Vis Sci 2000; 41(5): 1153–1158
pmid: 10752954
14 Simpson PJ, Todd RF 3rd, Fantone JC, Mickelson JK, Griffin JD, Lucchesi BR. Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti-Mo1, anti-CD11b) that inhibits leukocyte adhesion. J Clin Invest 1988; 81(2): 624–629
https://doi.org/10.1172/JCI113364 pmid: 3339135
15 Chavakis T, Bierhaus A, Al-Fakhri N, Schneider D, Witte S, Linn T, Nagashima M, Morser J, Arnold B, Preissner KT, Nawroth PP. The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med 2003; 198(10): 1507–1515
https://doi.org/10.1084/jem.20030800 pmid: 14623906
16 Ducker TP, Skubitz KM. Subcellular localization of CD66, CD67, and NCA in human neutrophils. J Leukoc Biol 1992; 52(1): 11–16
pmid: 1640165
17 Nauseef WM. Myeloperoxidase in human neutrophil host defence. Cell Microbiol 2014; 16(8): 1146–1155
https://doi.org/10.1111/cmi.12312 pmid: 24844117
18 Mazzone A, De Servi S, Mazzucchelli I, Fossati G, Gritti D, Canale C, Cusa C, Ricevuti G. Increased expression of CD11b/CD18 on phagocytes in ischaemic disease: a bridge between inflammation and coagulation. Eur J Clin Invest 1997; 27(8): 648–652
https://doi.org/10.1046/j.1365-2362.1997.1610710.x pmid: 9279527
19 de Servi S, Mazzone A, Ricevuti G, Mazzucchelli I, Fossati G, Angoli L, Valentini P, Boschetti E, Specchia G. Expression of neutrophil and monocyte CD11B/CD18 adhesion molecules at different sites of the coronary tree in unstable angina pectoris. Am J Cardiol 1996; 78(5): 564–568
https://doi.org/10.1016/S0002-9149(96)00367-0 pmid: 8806345
20 De Servi S, Mazzone A, Ricevuti G, Mazzucchelli I, Fossati G, Gritti D, Angoli L, Specchia G. Clinical and angiographic correlates of leukocyte activation in unstable angina. J Am Coll Cardiol 1995; 26(5): 1146–1150
https://doi.org/10.1016/0735-1097(95)00308-8 pmid: 7594025
21 Mazzone A, De Servi S, Ricevuti G, Mazzucchelli I, Fossati G, Pasotti D, Bramucci E, Angoli L, Marsico F, Specchia G, . Increased expression of neutrophil and monocyte adhesion molecules in unstable coronary artery disease. Circulation 1993; 88(2): 358–363 PMID:8101771
https://doi.org/10.1161/01.CIR.88.2.358
22 Berliner S, Rogowski O, Rotstein R, Fusman R, Shapira I, Bornstein NM, Prochorov V, Roth A, Keren G, Eldor A, Zeltser D. Activated polymorphonuclear leukocytes and monocytes in the peripheral blood of patients with ischemic heart and brain conditions correspond to the presence of multiple risk factors for atherothrombosis. Cardiology 2000; 94(1): 19–25
https://doi.org/10.1159/000007041 pmid: 11111140
23 Biasucci LM, D’Onofrio G, Liuzzo G, Zini G, Monaco C, Caligiuri G, Tommasi M, Rebuzzi AG, Maseri A. Intracellular neutrophil myeloperoxidase is reduced in unstable angina and acute myocardial infarction, but its reduction is not related to ischemia. J Am Coll Cardiol 1996; 27(3): 611–616
https://doi.org/10.1016/0735-1097(95)00524-2 pmid: 8606272
24 Fasching P, Veitl M, Rohac M, Streli C, Schneider B, Waldhäusl W, Wagner OF. Elevated concentrations of circulating adhesion molecules and their association with microvascular complications in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1996; 81(12): 4313–4317
pmid: 8954033
25 Joussen AM, Murata T, Tsujikawa A, Kirchhof B, Bursell SE, Adamis AP. Leukocyte-mediated endothelial cell injury and death in the diabetic retina. Am J Pathol 2001; 158(1): 147–152
https://doi.org/10.1016/S0002-9440(10)63952-1 pmid: 11141487
26 Alipour A, Ribalta J, Njo TL, Janssen HW, Birnie E, van Miltenburg AJM, Elte JWF, Castro Cabezas M. Trans-vessel gradient of myeloperoxidase in coronary artery disease. Eur J Clin Invest 2013; 43(9): 920–925
https://doi.org/10.1111/eci.12121 pmid: 23869443
27 Naruko T, Ueda M, Haze K, van der Wal AC, van der Loos CM, Itoh A, Komatsu R, Ikura Y, Ogami M, Shimada Y, Ehara S, Yoshiyama M, Takeuchi K, Yoshikawa J, Becker AE. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation 2002; 106(23): 2894–2900
https://doi.org/10.1161/01.CIR.0000042674.89762.20 pmid: 12460868
28 Morrow DA, Sabatine MS, Brennan ML, de Lemos JA, Murphy SA, Ruff CT, Rifai N, Cannon CP, Hazen SL. Concurrent evaluation of novel cardiac biomarkers in acute coronary syndrome: myeloperoxidase and soluble CD40 ligand and the risk of recurrent ischaemic events in TACTICS-TIMI 18. Eur Heart J 2008; 29(9): 1096–1102
https://doi.org/10.1093/eurheartj/ehn071 pmid: 18339606
29 Rana JS, Arsenault BJ, Després JP, Côté M, Talmud PJ, Ninio E, Wouter Jukema J, Wareham NJ, Kastelein JJP, Khaw KT, Boekholdt SM. Inflammatory biomarkers, physical activity, waist circumference, and risk of future coronary heart disease in healthy men and women. Eur Heart J 2011; 32(3): 336–344
https://doi.org/10.1093/eurheartj/ehp010 pmid: 19224930
30 Grammer TB, Fuchs D, Boehm BO, Winkelmann BR, Maerz W. Neopterin as a predictor of total and cardiovascular mortality in individuals undergoing angiography in the Ludwigshafen Risk and Cardiovascular Health study. Clin Chem 2009; 55(6): 1135–1146
https://doi.org/10.1373/clinchem.2008.118844 pmid: 19395439
31 Sulo G, Vollset SE, Nygård O, Midttun Ø, Ueland PM, Eussen SJPM, Pedersen ER, Tell GS. Neopterin and kynurenine-tryptophan ratio as predictors of coronary events in older adults, the Hordaland Health Study. Int J Cardiol 2013; 168(2): 1435–1440
https://doi.org/10.1016/j.ijcard.2012.12.090 pmid: 23336953
32 Arai M, Lefer DJ, So T, DiPaula A, Aversano T, Becker LC. An anti-CD18 antibody limits infarct size and preserves left ventricular function in dogs with ischemia and 48-hour reperfusion. J Am Coll Cardiol 1996; 27(5): 1278–1285
https://doi.org/10.1016/0735-1097(95)00578-1 pmid: 8609356
33 Weber C. Novel mechanistic concepts for the control of leukocyte transmigration: specialization of integrins, chemokines, and junctional molecules. J Mol Med (Berl) 2003; 81(1): 4–19
pmid: 12545245
34 Jerke U, Rolle S, Purfürst B, Luft FC, Nauseef WM, Kettritz R. b2 integrin-mediated cell-cell contact transfers active myeloperoxidase from neutrophils to endothelial cells. J Biol Chem 2013; 288(18): 12910–12919
https://doi.org/10.1074/jbc.M112.434613 pmid: 23532856
[1] Min Fei, Li Xiang, Xichen Chai, Jingchun Jin, Tao You, Yiming Zhao, Changgeng Ruan, Yiwen Hao, Li Zhu. Plasma soluble C-type lectin-like receptor-2 is associated with the risk of coronary artery disease[J]. Front. Med., 2020, 14(1): 81-90.
[2] Jian Liu, Pingyan Shen, Xiaobo Ma, Xialian Yu, Liyan Ni, Xu Hao, Weiming Wang, Nan Chen. White blood cell count and the incidence of hyperuricemia: insights from a community-based study[J]. Front. Med., 2019, 13(6): 741-746.
[3] Nikolay V. Tsygan, Alexandr P. Trashkov, Igor V. Litvinenko, Viktoriya A. Yakovleva, Alexandr V. Ryabtsev, Andrey G. Vasiliev, Leonid P. Churilov. Autoimmunity in acute ischemic stroke and the role of blood--brain barrier: the dark side or the light one?[J]. Front. Med., 2019, 13(4): 420-426.
[4] Ning Jiang, Yao Li, Ting Shu, Jing Wang. Cytokines and inflammation in adipogenesis: an updated review[J]. Front. Med., 2019, 13(3): 314-329.
[5] Zhen Zhang, Na Jiang, Zhaohui Ni. Strategies for preventing peritoneal fibrosis in peritoneal dialysis patients: new insights based on peritoneal inflammation and angiogenesis[J]. Front. Med., 2017, 11(3): 349-358.
[6] Jiansong Huang,Yulan Zhou,Xiaoyu Su,Yuanjing Lyu,Lanlan Tao,Xiaofeng Shi,Ping Liu,Zhangbiao Long,Zheng Ruan,Bing Xiao,Wenda Xi,Quansheng Zhou,Jianhua Mao,Xiaodong Xi. Roles of integrin β3 cytoplasmic tail in bidirectional signal transduction in a trans-dominant inhibition model[J]. Front. Med., 2016, 10(3): 311-319.
[7] Jianping Ye. Beneficial metabolic activities of inflammatory cytokine interleukin 15 in obesity and type 2 diabetes[J]. Front. Med., 2015, 9(2): 139-145.
[8] Zhicheng Zhang,Jun Yang,Mingchao Li,Wei Cai,Qingquan Liu,Tao Wang,Xiaolin Guo,Shaogang Wang,Jihong Liu,Zhangqun Ye. Paratesticular fibrous pseudotumor: a report of five cases and literature review[J]. Front. Med., 2014, 8(4): 484-488.
[9] David P. Taggart. Contemporary coronary artery bypass grafting[J]. Front. Med., 2014, 8(4): 395-398.
[10] Feng Ye, Adam K. Snider, Mark H. Ginsberg. Talin and kindlin: the one-two punch in integrin activation[J]. Front Med, 2014, 8(1): 6-16.
[11] Khurram Siddique, Shirin Mirza, Gandra Harinath. Appendiceal inflammation affects the length of stay following appendicectomy amongst children: a myth or reality?[J]. Front Med, 2013, 7(2): 264-269.
[12] Jianping Ye. Mechanisms of insulin resistance in obesity[J]. Front Med, 2013, 7(1): 14-24.
[13] Tao Li, Nanfu Luo, Lei Du, Jin Liu, Lina Gong, Jing Zhou. Early and marked up-regulation of TNF-α in acute respiratory distress syndrome after cardiopulmonary bypass[J]. Front Med, 2012, 6(3): 296-301.
[14] Min-Hao WU, Ping ZHANG, Xi HUANG, . Toll-like receptors in innate immunity and infectious diseases[J]. Front. Med., 2010, 4(4): 385-393.
[15] Wei HAN MM, Ming-Xing XIE MD, Qing LV MD, Xin-Fang WANG MD, Li ZHANG MM, . Assessment of global and regional left ventricular twist and displacement in anterior myocardial infarction using 2-dimensional strain imaging[J]. Front. Med., 2010, 4(1): 71-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed