Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2017, Vol. 11 Issue (3) : 403-409    https://doi.org/10.1007/s11684-017-0522-y
RESEARCH ARTICLE
Endogenous tissue factor pathway inhibitor in vascular smooth muscle cells inhibits arterial thrombosis
Jichun Yang1, Kaiyue Jin2, Jiajun Xiao2, Jing Ma2, Duan Ma1,2()
1. Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
2. Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
 Download: PDF(257 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Tissue factor pathway inhibitor (TFPI) is the main inhibitor of tissue factor-mediated coagulation. TFPI is expressed by endothelial and smooth muscle cells in the vasculature. Endothelium-derived TFPI has been reported to play a regulatory role in arterial thrombosis. However, the role of endogenous TFPI in vascular smooth muscle cells (VSMCs) in thrombosis and vascular disease development has yet to be elucidated. In this TFPIFlox mice crossbred with Sma–Cre mice were utilized to establish TFPI conditional knockout mice and to examine the effects of VSMC-directed TFPI deletion on development, hemostasis, and thrombosis. The mice with deleted TFPI in VSMCs (TFPISma) reproduced viable offspring. Plasma TFPI concentration was reduced 7.2% in the TFPISma mice compared with TFPIFlox littermate controls. Plasma TFPI concentration was also detected in the TFPITie2 (mice deleted TFPI in endothelial cells and cells of hematopoietic origin) mice. Plasma TFPI concentration of the TFPITie2 mice was 80.4% lower (P<0.001) than that of the TFPIFlox mice. No difference in hemostatic measures (PT, APTT, and tail bleeding) was observed between TFPISma and TFPIFlox mice. However, TFPISma mice had increased ferric chloride–induced arterial thrombosis compared with TFPIFlox littermate controls. Taken together, these data indicated that endogenous TFPI from VSMCs inhibited ferric chloride–induced arterial thrombosis without causing hemostatic effects.

Keywords arterial thrombosis      conditional knockout mice      tissue factor pathway inhibitor      vascular smooth muscle cells     
Corresponding Author(s): Duan Ma   
Just Accepted Date: 19 April 2017   Online First Date: 26 May 2017    Issue Date: 29 August 2017
 Cite this article:   
Jichun Yang,Kaiyue Jin,Jiajun Xiao, et al. Endogenous tissue factor pathway inhibitor in vascular smooth muscle cells inhibits arterial thrombosis[J]. Front. Med., 2017, 11(3): 403-409.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-017-0522-y
https://academic.hep.com.cn/fmd/EN/Y2017/V11/I3/403
Fig.1  Transcriptional efficiency of Cre-mediated deletion. (A) Genotyping of the offspring derived from crossing TFPIFlox mice with Sma–Cre mice. (B) Relative mRNA levels of TFPISma (n = 3) and TFPIFlox (n = 3) mice. (C) Immunohistochemical analysis of TFPI expression in TFPISma and TFPIFlox mice. Representative positive staining areas were pointed by the black arrow.
Fig.2  Plasma TFPI concentration in TFPIFlox, TFPISma, and TFPITie2 mice. Plasma TFPI concentration was measured in TFPIFlox (n = 8), TFPISma (n = 11), and TFPITie2 (n = 4) mice using a mouse TFPI ELISA assay. ***P<0.001, compared with TFPIFlox mice.
Fig.3  Hemostasis in TFPIFlox and TFPISma mice. (A) Tail bleeding times were determined in TFPIFlox (n = 18) and TFPISma (n = 21) mice. Horizontal bars represent the median tail bleeding time. (B) Blood loss during the bleeding time experiments was determined by measuring the absorbance at 575 nm of hemoglobin in PBS in which the mouse tails were immersed. Horizontal bars indicated the median absorbance of hemoglobin. (C) PT of TFPIFlox (n = 7) and TFPISma (n = 5) mice. (D) APTT of TFPIFlox (n = 7) and TFPISma (n = 5) mice.
Fig.4  VSMC-derived TFPI deficiency promotes FeCl3-induced carotid artery occlusion. (A) The mouse carotid artery was treated with 10% FeCl3, as previously described. Traces of blood flow in the carotid arteries of TFPIFlox and TFPISma mice were presented. (B) The times to occlusion were measured in TFPIFlox (n = 10) and TFPISma (n = 20) mice (**, P<0.01).
1 Broze GJ Jr, Miletich JP. Isolation of the tissue factor inhibitor produced by HepG2 hepatoma cells. Proc Natl Acad Sci USA 1987; 84(7): 1886–1890
https://doi.org/10.1073/pnas.84.7.1886 pmid: 3031657
2 Drake TA, Morrissey JH, Edgington TS. Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis. Am J Pathol 1989; 134(5): 1087–1097
pmid: 2719077
3 Baugh RJ, Broze GJ Jr, Krishnaswamy S. Regulation of extrinsic pathway factor Xa formation by tissue factor pathway inhibitor. J Biol Chem 1998; 273(8): 4378–4386
https://doi.org/10.1074/jbc.273.8.4378 pmid: 9468488
4 Girard TJ, Warren LA, Novotny WF, Likert KM, Brown SG, Miletich JP, Broze GJ Jr. Functional significance of the Kunitz-type inhibitory domains of lipoprotein-associated coagulation inhibitor. Nature 1989; 338(6215): 518–520
https://doi.org/10.1038/338518a0 pmid: 2927510
5 Maroney SA, Ellery PE, Wood JP, Ferrel JP, Martinez ND, Mast AE. Comparison of the inhibitory activities of human tissue factor pathway inhibitor (TFPI) a and TFPI b. J Thromb Haemost 2013; 11(5): 911–918
https://doi.org/10.1111/jth.12188 pmid: 23480518
6 Wood JP, Ellery PE, Maroney SA, Mast AE. Biology of tissue factor pathway inhibitor. Blood 2014; 123(19): 2934–2943
https://doi.org/10.1182/blood-2013-11-512764 pmid: 24620349
7 Wood JP, Bunce MW, Maroney SA, Tracy PB, Camire RM, Mast AE. Tissue factor pathway inhibitor- a inhibits prothrombinase during the initiation of blood coagulation. Proc Natl Acad Sci USA 2013; 110(44): 17838–17843
https://doi.org/10.1073/pnas.1310444110 pmid: 24127605
8 Huang ZF, Higuchi D, Lasky N, Broze GJ Jr. Tissue factor pathway inhibitor gene disruption produces intrauterine lethality in mice. Blood 1997; 90(3): 944–951
pmid: 9242522
9 Pedersen B, Holscher T, Sato Y, Pawlinski R, Mackman N. A balance between tissue factor and tissue factor pathway inhibitor is required for embryonic development and hemostasis in adult mice. Blood 2005; 105(7): 2777–2782
https://doi.org/10.1182/blood-2004-09-3724 pmid: 15598816
10 White TA, Johnson T, Zarzhevsky N, Tom C, Delacroix S, Holroyd EW, Maroney SA, Singh R, Pan S, Fay WP, van Deursen J, Mast AE, Sandhu GS, Simari RD. Endothelial-derived tissue factor pathway inhibitor regulates arterial thrombosis but is not required for development or hemostasis. Blood 2010; 116(10): 1787–1794
https://doi.org/10.1182/blood-2009-10-250910 pmid: 20516367
11 Caplice NM, Mueske CS, Kleppe LS, Peterson TE, Broze GJ Jr, Simari RD. Expression of tissue factor pathway inhibitor in vascular smooth muscle cells and its regulation by growth factors. Circ Res 1998; 83(12): 1264–1270
https://doi.org/10.1161/01.RES.83.12.1264 pmid: 9851943
12 Maroney SA, Mast AE. Expression of tissue factor pathway inhibitor by endothelial cells and platelets. Transfus Apheresis Sci 2008; 38(1): 9–14
https://doi.org/10.1016/j.transci.2007.12.001 pmid: 18261960
13 McGee MP, Foster S, Wang X. Simultaneous expression of tissue factor and tissue factor pathway inhibitor by human monocytes. A potential mechanism for localized control of blood coagulation. J Exp Med 1994; 179(6): 1847–1854
https://doi.org/10.1084/jem.179.6.1847 pmid: 8195712
14 Werling RW, Zacharski LR, Kisiel W, Bajaj SP, Memoli VA, Rousseau SM. Distribution of tissue factor pathway inhibitor in normal and malignant human tissues. Thromb Haemost 1993; 69(4): 366–369
pmid: 8497849
15 Petit L, Lesnik P, Dachet C, Moreau M, Chapman MJ. Tissue factor pathway inhibitor is expressed by human monocyte-derived macrophages: relationship to tissue factor induction by cholesterol and oxidized LDL. Arterioscler Thromb Vasc Biol 1999; 19(2): 309–315
https://doi.org/10.1161/01.ATV.19.2.309 pmid: 9974412
16 Bajaj MS, Kuppuswamy MN, Saito H, Spitzer SG, Bajaj SP. Cultured normal human hepatocytes do not synthesize lipoprotein-associated coagulation inhibitor: evidence that endothelium is the principal site of its synthesis. Proc Natl Acad Sci USA 1990; 87(22): 8869–8873
https://doi.org/10.1073/pnas.87.22.8869 pmid: 2247459
17 Winckers K, ten Cate H, Hackeng TM. The role of tissue factor pathway inhibitor in atherosclerosis and arterial thrombosis. Blood Rev 2013; 27(3): 119–132
https://doi.org/10.1016/j.blre.2013.03.001 pmid: 23631910
18 Maroney SA, Mast AE. New insights into the biology of tissue factor pathway inhibitor. J Thromb Haemost 2015; 13(Suppl 1): S200–S207
https://doi.org/10.1111/jth.12897 pmid: 26149025
19 Pan S, Kleppe LS, Witt TA, Mueske CS, Simari RD. The effect of vascular smooth muscle cell-targeted expression of tissue factor pathway inhibitor in a murine model of arterial thrombosis. Thromb Haemost 2004; 92(3): 495–502
pmid: 15351845
20 Maroney SA, Cooley BC, Ferrel JP, Bonesho CE, Mast AE. Murine hematopoietic cell tissue factor pathway inhibitor limits thrombus growth. Arterioscler Thromb Vasc Biol 2011; 31(4): 821–826
https://doi.org/10.1161/ATVBAHA.110.220293 pmid: 21233452
21 Wang J, Xiao J, Wen D, Wu X, Mao Z, Zhang J, Ma D. Endothelial cell-anchored tissue factor pathway inhibitor regulates tumor metastasis to the lung in mice. Mol Carcinog 2016; 55(5): 882–896
https://doi.org/10.1002/mc.22329 pmid: 25945811
22 Grossi M, Phanstiel O, Rippe C, Swärd K, Alajbegovic A, Albinsson S, Forte A, Persson L, Hellstrand P, Nilsson BO. Inhibition of polyamine uptake potentiates the anti-proliferative effect of polyamine synthesis inhibition and preserves the contractile phenotype of vascular smooth muscle cells. J Cell Physiol 2016; 231(6): 1334–1342
https://doi.org/10.1002/jcp.25236 pmid: 26529275
23 Sambrano GR, Weiss EJ, Zheng YW, Huang W, Coughlin SR. Role of thrombin signalling in platelets in haemostasis and thrombosis. Nature 2001; 413(6851): 74–78 
https://doi.org/10.1038/35092573 pmid: 11544528 
24 Xu Z, Chen X, Zhi H, Gao J, Bialkowska K, Byzova TV, Pluskota E, White GC 2nd, Liu J, Plow EF, Ma YQ. Direct interaction of kindlin-3 with integrin  aIIb b3 in platelets is required for supporting arterial thrombosis in mice. Arterioscler Thromb Vasc Biol 2014; 34(9): 1961–1967
https://doi.org/10.1161/ATVBAHA.114.303851 pmid: 24969775
25 Mack CP, Owens GK. Regulation of smooth muscle  a-actin expression in vivo is dependent on CArG elements within the 5′ and first intron promoter regions. Circ Res 1999; 84(7): 852–861 
https://doi.org/10.1161/01.RES.84.7.852 pmid:  10205154 
26 He WQ, Qiao YN, Peng YJ, Zha JM, Zhang CH, Chen C, Chen CP, Wang P, Yang X, Li CJ, Kamm KE, Stull JT, Zhu MS. Altered contractile phenotypes of intestinal smooth muscle in mice deficient in myosin phosphatase target subunit 1. Gastroenterology 2013;144(7):1456–65, 1465 e1–5 
https://doi.org/ 10.1053/j.gastro.2013.02.045 pmid:  23499953 
27 Sood R, Kalloway S, Mast AE, Hillard CJ, Weiler H. Fetomaternal cross talk in the placental vascular bed: control of coagulation by trophoblast cells. Blood 2006; 107(8): 3173–3180
https://doi.org/10.1182/blood-2005-10-4111 pmid: 16380449
28 Ahnström J, Andersson HM, Hockey V, Meng Y, McKinnon TA, Hamuro T, Crawley JT, Lane DA. Identification of functionally important residues in TFPI Kunitz domain 3 required for the enhancement of its activity by protein S. Blood 2012; 120(25): 5059–5062
https://doi.org/10.1182/blood-2012-05-432005 pmid: 23074276
29 Hackeng TM, Seré KM, Tans G, Rosing J. Protein S stimulates inhibition of the tissue factor pathway by tissue factor pathway inhibitor. Proc Natl Acad Sci USA 2006; 103(9): 3106–3111
https://doi.org/10.1073/pnas.0504240103 pmid: 16488980
30 Ndonwi M, Tuley EA, Broze GJ Jr. The Kunitz-3 domain of TFPI-α  is required for protein S-dependent enhancement of factor Xa inhibition. Blood 2010; 116(8): 1344–1351
https://doi.org/10.1182/blood-2009-10-246686 pmid: 20479289
31 Kereveur A, Enjyoji K, Masuda K, Yutani C, Kato H. Production of tissue factor pathway inhibitor in cardiomyocytes and its upregulation by interleukin-1. Thromb Haemost 2001; 86(5): 1314–1319
pmid: 11816723
32 Marmur JD, Rossikhina M, Guha A, Fyfe B, Friedrich V, Mendlowitz M, Nemerson Y, Taubman MB. Tissue factor is rapidly induced in arterial smooth muscle after balloon injury. J Clin Invest 1993; 91(5): 2253–2259
https://doi.org/10.1172/JCI116452 pmid: 7683701
33 Marmur JD, Thiruvikraman SV, Fyfe BS, Guha A, Sharma SK, Ambrose JA, Fallon JT, Nemerson Y, Taubman MB. Identification of active tissue factor in human coronary atheroma. Circulation 1996; 94(6): 1226–1232
https://doi.org/10.1161/01.CIR.94.6.1226 pmid: 8822973
[1] Wen YAN MD, Min FENG MD, Pei-Hua WANG MD, Dao-Wen WANG MD, . Effect of bradykinin on bradykinin-B2 receptor in rat aortic vascular smooth muscle cells and the involved signal transduction pathways[J]. Front. Med., 2010, 4(2): 225-228.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed