Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2018, Vol. 12 Issue (2) : 164-173    https://doi.org/10.1007/s11684-017-0540-9
RESEARCH ARTICLE
Comparison in executive function in Chinese preterm and full-term infants at eight months
Yao Feng1, Hong Zhou1, Yan Zhang1, Anthony Perkins2, Yan Wang1(), Jing Sun2,3()
1. Department of Child, Adolescent and Women’s Health, School of Public Health, Peking University, Beijing 100191, China
2. Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, QLD 4222, Australia
3. School of Medicine, Griffith University, Gold Coast, Queensland, QLD 4222, Australia
 Download: PDF(198 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Executive function (EF) is increasingly recognized as being responsible for adverse developmental outcomes in preterm-born infants. Several perinatal factors may lead to poor EF development in infancy, and the deficits in EF can be identified in infants as young as eight months. A prospective cohort study was designed to study the EF in Chinese preterm infants and examine the relationship between EF in preterm infants and maternal factors during perinatal period. A total of 88 preterm infants and 88 full-term infants were followed from birth to eight months (corrected age). Cup Task and Planning Test was applied to assess the EF of infants, and the Bayley Scale of Infant Development (BSID-III) was used to evaluate cognitive (MDI) and motor abilities (PDI) of infants. In comparison with full-term infants, the preterm infants performed more poorly on all measures of EF including working memory, inhibition to prepotent responses, inhibition to distraction, and planning, and the differences remained after controlling the MDI and PDI. Anemia and selenium deficiency in mothers during pregnancy contributed to the differences in EF performance. However, maternal depression, hypertension, and diabetes during pregnancy were not related to the EF deficits in preterm infants. Future research should focus on the prevention of anemia and selenium deficiency during pregnancy and whether supplementing selenium in mothers during pregnancy can prevent further deterioration and the development of adverse outcomes of their offspring.

Keywords executive function (EF)      preterm infant      working memory      inhibition to prepotent response      inhibition to distraction      planning     
Corresponding Author(s): Yan Wang,Jing Sun   
Just Accepted Date: 16 May 2017   Online First Date: 19 June 2017    Issue Date: 02 April 2018
 Cite this article:   
Yao Feng,Hong Zhou,Yan Zhang, et al. Comparison in executive function in Chinese preterm and full-term infants at eight months[J]. Front. Med., 2018, 12(2): 164-173.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-017-0540-9
https://academic.hep.com.cn/fmd/EN/Y2018/V12/I2/164
Fig.1  Arrangement of the test room and toys used in the EF task.
Number of cups Delay time between hiding and reaching (s) Sequence of the trails in each time delay
1 2 3 4 5 6 7 8 9
1 cup 0 L L L
4 L L L
10 L L L
2 cups 0 L L L R R R L L L
2 R R R L L L R R R
4 L L L R R R L L L
10 R R R L L L R R R
3 cups 0 L L L R R R L L L
2 R R R L L L R R R
4 L L L R R R L L L
10 R R R L L L R R R
Tab.1  Infant working memory and inhibition task
Fig.2  Step one of the planning task (pull a cloth; retrieve the toy).
Fig.3  Step two of the planning task (remove an obstacle; pull a cloth; retrieve the toy).
Fig.4  Step three of the planning task (remove an obstacle; pull a cloth; pull a string; retrieve the toy).
Variables Preterm infants (n = 88) Full-term infants (n = 88) t or c2 P
Sex of child
?Male, n (%)
44 (50.0) 44 (50.0) ?<?0.001 1.000
Maternal age
?Mean (SD) (year)
30.47 (4.63) 30.33 (3.45) 0.222 0.825
Maternal education
?Grade≤12, n (%)
?Grade>12, n (%)
10 (11.4)
78 (88.6)
5 (5.7)
83 (94.3)
1.822 0.177
Family annual income per capita (CNY)
?30 000 and less, n (%)
?30 000–59 999, n (%)
?60 000 and above, n (%)
36 (40.9)
31 (35.2)
21 (23.9)
25 (28.4)
33 (37.5)
30 (34.1)
3.634 0.162
Maternal psychological well-being (EPDS scores)
?Score?<?9.5, n (%)
?Score≥9.5, n (%)
80 (90.9)
8 (9.1)
80 (90.9)
8 (9.1)
?<?0.001 1.000
Bayley Cognitive
?Mean (SD)
103.75 (8.17) 106.25 (8.52) –1.987 0.049
Bayley Motor
?Mean (SD)
98.23 (8.67) 102.51 (8.04) –3.398 0.001
Tab.2  Characteristics of the preterm and full-term infant groups
Variables Preterm infants (n = 88) Full-term infants (n = 88) Unadjusted model Adjusted model
F P F P
1. Working memory, mean (SD) 3.80 (4.57) 7.98 (5.38) 30.833 ?<?0.001 23.009 ?<?0.001
2. Distraction, mean (SD) 0.39 (0.24) 0.29 (0.20) 8.978 0.003 6.173 0.014
3. Inhibition, mean (SD) 0.35 (0.60) 0.80 (0.70) 20.527 ?<?0.001 15.165 ?<?0.001
4. Planning, mean (SD) 11.44 (10.60) 17.56 (11.67) 13.231 ?<?0.001 9.512 0.002
Tab.3  Executive function scores for preterm and full-term infants at 8 months corrected age
Variables 28–31 weeks (n = 9) 32–36 weeks (n = 79) t P
1. Working memory, mean (SD) 3.78 (5.36) 3.80 (4.52) –0.012 0.990
2. Distraction, mean (SD) 0.40 (0.31) 0.39 (0.23) 0.202 0.840
3. Inhibition, mean (SD) 0.45 (0.92) 0.34 (0.55) 0.352 0.733
4. Planning, mean (SD) 11.67 (10.95) 11.42 (10.63) 0.066 0.947
Tab.4  Executive function scores at 8 months corrected age for preterm infants 28–31 weeks gestation and 32–36 weeks gestation
Variables 1000–1499 g birth weight
(n = 11)
1500–2499 g birth weight
(n = 53)
t P
1. Working memory, mean (SD) 3.36 (4.06) 4.21 (5.02) –0.523 0.603
2. Distraction, mean (SD) 0.34 (0.27) 0.39 (0.26) –0.567 0.573
3. Inhibition, mean (SD) 0.50 (0.72) 0.36 (0.61) 0.665 0.509
4. Planning, mean (SD) 10.73 (8.58) 10.62 (10.92) 0.030 0.976
Tab.5  Executive function scores at 8 months corrected age for low birth weight infants with birth weights of 1000–1499 g and 1500–2499 g
Variables Preterm infants (n = 88)
Hypertension during pregnancy, n (%)
?Yes
?No
23 (26.4)
64 (73.6)
Diabetes, n (%)
?Yes
?No
20 (22.7)
68 (77.3)
Selenium (ng/ml)
?Mean (SD)
60.20 (10.33)
Anemia, n (%)
?Yes
?No
66 (75.9)
21 (24.1)
Tab.6  Maternal factors of preterm infants
Variables Working memory Distraction Inhibition Planning
B (95%CI) P B (95%CI) P B (95%CI) P B (95%CI) P
Hypertension 1.53 (–0.66 to 3.71) 0.17 –0.005 (–0.12 to 0.11) 0.94 0.22 (–0.07 to 0.52) 0.14 –1.84 (–7.25 to 3.56) 0.50
Diabetes –1.99 (–4.34 to 0.35) 0.09 0.10 (–0.02 to 0.22) 0.11 –0.13 (–0.45 to 0.19) 0.42 –0.64 (–6.46 to 5.78) 0.83
Selenium 0.12 (0.02 to 0.22) 0.02 –0.004 (–0.009 to 0.001) 0.11 0.01 (0.001 to 0.03) 0.06 –0.12 (–0.36 to 0.13) 0.36
Anemia 3.09 (0.86 to 5.32) 0.001 −0.19 (0.31 to 0.07) 0.002 0.46 (0.16 to 0.76) 0.003 3.99 (–1.53 to 9.51) 0.15
R square 15.5% 15.4% 14.3% 5.9%
Adjusted R square 10.8% 10.7% 9.5% 0.7%
ANOVA F 3.31 3.28 3.00 1.12
ANOVA P 0.01 0.02 0.02 0.35
Tab.7  Multiple linear regression (preterm infants)
1 Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, Adler A, Vera Garcia C, Rohde S, Say L, Lawn JE. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 2012; 379(9832): 2162–2172
https://doi.org/10.1016/S0140-6736(12)60820-4 pmid: 22682464
2 Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 2008; 371(9608): 261–269
https://doi.org/10.1016/S0140-6736(08)60136-1 pmid: 18207020
3 Doyle LW. Evaluation of neonatal intensive care for extremely-low-birth-weight infants. Semin Fetal Neonatal Med 2006; 11(2): 139–145
https://doi.org/10.1016/j.siny.2005.11.009 pmid: 16406835
4 Bayless S, Stevenson J. Executive functions in school-age children born very prematurely. Early Hum Dev 2007; 83(4): 247–254
https://doi.org/10.1016/j.earlhumdev.2006.05.021 pmid: 16837146
5 Sun J, Mohay H, O’Callaghan M. A comparison of executive function in very preterm and term infants at 8 months corrected age. Early Hum Dev 2009; 85(4): 225–230
https://doi.org/10.1016/j.earlhumdev.2008.10.005 pmid: 19006652
6 Anderson SW, Damasio H, Tranel D, Damasio AR. Long-term sequelae of prefrontal cortex damage acquired in early childhood. Dev Neuropsychol 2000; 18(3): 281–296
https://doi.org/10.1207/S1532694202Anderson pmid: 11385828
7 Stuss DT. Biological and psychological development of executive functions. Brain Cogn 1992; 20(1): 8–23
https://doi.org/10.1016/0278-2626(92)90059-U pmid: 1389124
8 Anderson V, Spencer-Smith M, Leventer R, Coleman L, Anderson P, Williams J, Greenham M, Jacobs R. Childhood brain insult: can age at insult help us predict outcome? Brain 2009; 132(1): 45–56
https://doi.org/10.1093/brain/awn293 pmid: 19168454
9 Diamond A, Churchland A, Cruess L, Kirkham NZ. Early developments in the ability to understand the relation between stimulus and reward. Dev Psychol 1999; 35(6): 1507–1517
https://doi.org/10.1037/0012-1649.35.6.1507 pmid: 10563738
10 Barkley RA. Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 1997; 121(1): 65–94
11 van Wassenaer AG, Westera J, van Schie PEM, Houtzager BA, Cranendonk A, de Groot L, Ganzevoort W, Wolf H, de Vries JIP. Outcome at 4.5 years of children born after expectant management of early-onset hypertensive disorders of pregnancy. Am J Obstet Gynecol 2011;204(6):510.e1–.e9
https://doi.org/DOI: 10.1016/j.ajog.2011.02.032 pmid: 21459356
12 Whitehouse AJO, Robinson M, Newnham JP, Pennell CE. Do hypertensive diseases of pregnancy disrupt neurocognitive development in offspring? Paediatr Perinat Epidemiol 2012; 26(2): 101–108
https://doi.org/10.1111/j.1365-3016.2011.01257.x pmid: 22324495
13 Robinson M, Mattes E, Oddy WH, de Klerk NH, Li J, McLean NJ, Silburn SR, Zubrick SR, Stanley FJ, Newnham JP. Hypertensive diseases of pregnancy and the development of behavioral problems in childhood and adolescence: the Western Australian Pregnancy Cohort Study. J Pediatr 2009; 154(2): 218–224.e2
https://doi.org/10.1016/j.jpeds.2008.07.061 pmid: 18814885
14 Tuovinen S, Räikkönen K, Kajantie E, Henriksson M, Leskinen JT, Pesonen AK, Heinonen K, Lahti J, Pyhälä R, Alastalo H, Lahti M, Osmond C, Barker DJ, Eriksson JG. Hypertensive disorders in pregnancy and cognitive decline in the offspring up to old age. Neurology 2012; 79(15): 1578–1582
https://doi.org/10.1212/WNL.0b013e31826e2606 pmid: 23035059
15 Gerner G, Baron IS. Pregnancy complications and neuropsychological outcomes: a review. Child Neuropsychol 2015; 21(3): 269–284
https://doi.org/10.1080/09297049.2014.910301 pmid: 24801883
16 Polanska K, Krol A, Sobala W, Gromadzinska J, Brodzka R, Calamandrei G, Chiarotti F, Wasowicz W, Hanke W. Selenium status during pregnancy and child psychomotor development—Polish Mother and Child Cohort study. Pediatr Res 2016; 79(6): 863–869
https://doi.org/10.1038/pr.2016.32 pmid: 26885758
17 Zhang Q, Ananth CV, Li Z, Smulian JC. Maternal anaemia and preterm birth: a prospective cohort study. Int J Epidemiol 2009; 38(5): 1380–1389
https://doi.org/10.1093/ije/dyp243 pmid: 19578127
18 Freitas RG, Nogueira RJ, Antonio MA, Barros-Filho AA, Hessel G. Selenium deficiency and the effects of supplementation on preterm infants. Rev Paul Pediatr 2014; 32(1): 126–135
https://doi.org/10.1590/S0103-05822014000100019 pmid: 24676200
19 Schweizer U, Bräuer AU, Köhrle J, Nitsch R, Savaskan NE. Selenium and brain function: a poorly recognized liaison. Brain Res Brain Res Rev 2004; 45(3): 164–178
https://doi.org/10.1016/j.brainresrev.2004.03.004 pmid: 15210302
20 Watanabe C, Satoh H. Brain selenium status and behavioral development in selenium-deficient preweanling mice. Physiol Behav 1994; 56(5): 927–932
https://doi.org/10.1016/0031-9384(94)90325-5 pmid: 7824593
21 Willatts P. Effects of object novelty on the visual and manual exploration of infants. Infant Behav Dev 1983; 6(2-3): 145–149
https://doi.org/10.1016/S0163-6383(83)80021-6
22 Willatts P. The stage-IV infant’s solution of problems requiring the use of supports. Infant Behav Dev 1984; 7(2): 125–134
https://doi.org/10.1016/S0163-6383(84)80053-3
23 Willatts P. Stages in the development of intentional search by young infants. Dev Psychol 1984; 20(3): 389–396
https://doi.org/10.1037/0012-1649.20.3.389
24 Bayley N. Bayley Scale of Infant Development: Manual. 2nd ed. San Antonio, TX: The Psychological Corporation, 2006. 374
25 Cox JL, Holden JM, Sagovsky R. Detection of postnatal depression. Development of the 10-item Edinburgh Postnatal Depression Scale. Br J Psychiatry 1987; 150(6): 782–786
https://doi.org/10.1192/bjp.150.6.782 pmid: 3651732
26 Lee DT, Yip SK, Chiu HF, Leung TY, Chan KP, Chau IO, Leung HC, Chung TK. Detecting postnatal depression in Chinese women. Validation of the Chinese version of the Edinburgh Postnatal Depression Scale. Br J Psychiatry 1998; 172(5): 433–437
https://doi.org/10.1192/bjp.172.5.433 pmid: 9747407
27 World Health Organization. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Vitamin and Mineral Nutrition Information System. Geneva: World Health Organization, 2011
28 Ge K. An Overview of Nutrition Sciences. Beijing: People’s Medical Publishing House, 2004
29 Kiselev SY, L'Vova O A, Gliga T, Bakushkina NI, Suleimanova EV, Grishina KI, Baranov DA, Ksenofontova OL, Martirosyan SV. The assessment of neurocognitive functions in premature infants in the first year of life using Bayley Scales. Zh Nevrol Psikhiatr Im S S Korsakova 2016;116(4 Pt 2):62–67 (in Russian)
pmid: 27456723
30 Heikura U, Hartikainen AL, Nordström T, Pouta A, Taanila A, Järvelin MR. Maternal hypertensive disorders during pregnancy and mild cognitive limitations in the offspring. Paediatr Perinat Epidemiol 2013; 27(2): 188–198
https://doi.org/10.1111/ppe.12028 pmid: 23374064
31 Koren G. Systematic review of the effects of maternal hypertension in pregnancy and antihypertensive therapies on child neurocognitive development. Reprod Toxicol 2013; 39: 1–5
https://doi.org/10.1016/j.reprotox.2013.03.006 pmid: 23542230
32 Tuovinen S, Eriksson JG, Kajantie E, Räikkönen K. Maternal hypertensive pregnancy disorders and cognitive functioning of the offspring: a systematic review. J Am Soc Hypertens 2014; 8(11): 832–847.e1
https://doi.org/10.1016/j.jash.2014.09.005 pmid: 25455009
33 Petrides M. Frontal lobe and working memory: evidence from investigations of the effects of cortical excisions in nonhuman primates. In: Boller F, Spinnler H, Hendler JA. Handbook of Neuropsychology. Vol. 9. Amsterdam: Elsevier Science, 1994. 59–82
34 Milner B. Effects of different brain lesions on card sorting. Arch Neurol 1963; 9(1): 90–100
https://doi.org/10.1001/archneur.1963.00460070100010
35 Shallice T, Burgess PW. Deficits in strategy application following frontal lobe damage in man. Brain 1991; 114(Pt 2): 727–741
https://doi.org/10.1093/brain/114.2.727 pmid: 2043945
36 Bastian TW, Santarriaga S, Nguyen TA, Prohaska JR, Georgieff MK, Anderson GW. Fetal and neonatal iron deficiency but not copper deficiency increases vascular complexity in the developing rat brain. Nutr Neurosci 2015;18(8): 365–375
https://doi.org/10.1179/1476830515Y.0000000037 pmid: 26177275
37 Mensink GBM, Fletcher R, Gurinovic M, Huybrechts I, Lafay L, Serra-Majem L, Szponar L, Tetens I, Verkaik-Kloosterman J, Baka A, Stephen AM. Mapping low intake of micronutrients across Europe. Br J Nutr 2013; 110(4): 755–773
https://doi.org/10.1017/S000711451200565X pmid: 23312136
38 Gu J, Royland JE, Wiggins RC, Konat GW. Selenium is required for normal upregulation of myelin genes in differentiating oligodendrocytes. J Neurosci Res 1997; 47(6): 626–635
https://doi.org/10.1002/(SICI)1097-4547(19970315)47:6?<?626::AID-JNR8>3.0.CO;2-F pmid: 9089211
39 Watanabe C, Satoh H. Brain selenium status and behavioral development in selenium-deficient preweanling mice. Physiol Behav 1994; 56(5): 927–932
https://doi.org/10.1016/0031-9384(94)90325-5 pmid: 7824593
40 Yang X, Yu X, Fu H, Li L, Ren T. Different levels of prenatal zinc and selenium had different effects on neonatal neurobehavioral development. Neurotoxicology 2013; 37: 35–39
https://doi.org/10.1016/j.neuro.2013.04.001 pmid: 23570748
41 Skröder HM, Hamadani JD, Tofail F, Persson LÅ, Vahter ME, Kippler MJ. Selenium status in pregnancy influences children’s cognitive function at 1.5 years of age. Clin Nutr 2015; 34(5): 923–930
https://doi.org/10.1016/j.clnu.2014.09.020 pmid: 25444556
42 Rao R, de Ungria M, Sullivan D, Wu P, Wobken JD, Nelson CA, Georgieff MK. Perinatal brain iron deficiency increases the vulnerability of rat hippocampus to hypoxic ischemic insult. J Nutr 1999; 129(1): 199–206
pmid: 9915900
43 Collette F, Van der Linden M. Brain imaging of the central executive component of working memory. Neurosci Biobehav Rev 2002; 26(2): 105–125
https://doi.org/10.1016/S0149-7634(01)00063-X pmid: 11856556
44 Lie CH, Specht K, Marshall JC, Fink GR. Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test. Neuroimage 2006; 30(3): 1038–1049
https://doi.org/10.1016/j.neuroimage.2005.10.031 pmid: 16414280
45 Rothmayr C, Sodian B, Hajak G, Döhnel K, Meinhardt J, Sommer M. Common and distinct neural networks for false-belief reasoning and inhibitory control. Neuroimage 2011; 56(3): 1705–1713
https://doi.org/10.1016/j.neuroimage.2010.12.052 pmid: 21195194
46 Spreng RN, Mar RA, Kim AS. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J Cogn Neurosci 2009; 21(3): 489–510
https://doi.org/10.1162/jocn.2008.21029 pmid: 18510452
[1] Ke Sheng. Artificial intelligence in radiotherapy: a technological review[J]. Front. Med., 2020, 14(4): 431-449.
[2] Shang-Chun WU. Family planning technical services in China[J]. Front Med Chin, 2010, 4(3): 285-289.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed