Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2017, Vol. 11 Issue (4) : 554-562    https://doi.org/10.1007/s11684-017-0543-6
RESEARCH ARTICLE
CRISPR-Cas9 mediated LAG-3 disruption in CAR-T cells
Yongping Zhang1, Xingying Zhang2,3, Chen Cheng2,4, Wei Mu2,3, Xiaojuan Liu2, Na Li2, Xiaofei Wei6, Xiang Liu2, Changqing Xia1,5(), Haoyi Wang2,3()
1. Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
2. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100190, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
4. Graduate School, University of Science and Technology of China, Hefei 230026, China
5. Department of Pathology, Immunology and Laboratory Medicine, University of Florida, FL 32611, USA
6. Beijing Cord Blood Bank, Beijing100176, China
 Download: PDF(452 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

T cells engineered with chimeric antigen receptor (CAR) have been successfully applied to treat advanced refractory B cell malignancy. However, many challenges remain in extending its application toward the treatment of solid tumors. The immunosuppressive nature of tumor microenvironment is considered one of the key factors limiting CAR-T efficacy. One negative regulator of T cell activity is lymphocyte activation gene-3 (LAG-3). We successfully generated LAG-3 knockout T and CAR-T cells with high efficiency using CRISPR-Cas9 mediated gene editing and found that the viability and immune phenotype were not dramatically changed during in vitro culture. LAG-3 knockout CAR-T cells displayed robust antigen-specific antitumor activity in cell culture and in murine xenograft model, which is comparable to standard CAR-T cells. Our study demonstrates an efficient approach to silence immune checkpoint in CAR-T cells via gene editing.

Keywords CAR-T      CRISPR-Cas9      LAG-3     
Corresponding Author(s): Changqing Xia,Haoyi Wang   
Just Accepted Date: 10 May 2017   Online First Date: 19 June 2017    Issue Date: 04 December 2017
 Cite this article:   
Yongping Zhang,Xingying Zhang,Chen Cheng, et al. CRISPR-Cas9 mediated LAG-3 disruption in CAR-T cells[J]. Front. Med., 2017, 11(4): 554-562.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-017-0543-6
https://academic.hep.com.cn/fmd/EN/Y2017/V11/I4/554
Fig.1  Gene editing of LAG-3 in human primary T cells using CRISPR-Cas9. (A) Schematic of sgRNA5 targeting site at LAG-3 locus. The red color represents the sgRNA targeting sequence, and the green color represents the PAM sequence. (B) LAG-3 knockout efficiency using different sgRNAs. Column plot shows the indel frequency (mean±SEM, n = 2) of LAG-3 analyzed by TIDE analysis using either forward (F) or reverse (R) sequencing primer. Experiments are performed in two biological replicates. (C) Representative mutant alleles in RNP-transfected cells compared with wild-type sequence (WT). sgRNA targeting sites are colored in red, PAM sequence in green, and mutations in blue; PCR products from each sample are sub-cloned, and each cloned allele was sequenced. 30/49 indicates the number of clones containing mutant alleles out of total clones sequenced.
Fig.2  Analysis of proliferation and phenotype of LAG-3 knockout T cells. (A) Fold expansion of control and LAG-3 knockout T cells. Total cell numbers were counted on days 3 and 7. (B) Immunophenotype of the gene-edited T cell was assessed 10 days after electroporation by the expression of CD4 and CD8, as well as the characteristics of naïve (CD45RO/CD62L+, TN), central memory (CD45RO+/CD62L+, TCM), and effector memory (CD45RO+ /CD62L, TEM) T cell subsets. Data shown are mean±SEM of two independent experiments. T-CTRL-UE and T-CTRL-E indicate T cells with or without mock electroporation, and LAG-3-KO-T indicates RNP-treated T cells.
Fig.3  Generation of LAG-3 knockout CAR-T cells. (A) LAG-3 knockout efficiency in CAR-T cells from three donors. (B) Representative sequences of mutated alleles in RNP-transfected CAR-T cells compared with wild-type CAR-T sequence (WT). sgRNA targeting sites are colored in red, PAM sequence in green, and mutations in blue; 60/71 indicates the number of clones containing mutant alleles out of total clones sequenced. (C) Flow cytometric analysis (mean±SEM, n = 2) of LAG-3 surface expression of control and LAG-3-KO-CAR-T cells from two donors, at day 3 post-electroporation. (D) Fold expansion (mean±SEM, n = 2) of RNP-treated CAR-T cells and control CAR-T cells from three donors. Data shown are mean±SEM of two independent experiments. CAR-T-CTRL-UE and CAR-T-CTRL-E indicate T cells with or without mock electroporation, and LAG-3-KO-CAR-T indicates RNP-treated cells.
Fig.4  In vitro characterization of LAG-3 knockout CD19 CAR-T cells. (A) Immunophenotype of the gene-edited CAR-T cell was assessed 10 days after electroporation by the expression of CD4 and CD8 as well as the characteristics of naïve, central memory, and effector memory T cell subsets. Data shown are mean±SEM of three independent experiments. (B) IL-2 and IFN-g production (mean±SEM, n = 2). (C) Cytotoxicity assay evaluating the cell lytic activity of T, CAR-T, and LAG-3-KO-CAR-T cells against K19 cells.
Fig.5  Evaluation of the antitumor activity of LAG-3 knockout CAR-T cellsin vivo. On day 0, NPG mice were injected intraperitoneally with 2×105Raji-luciferase cells. On day 3, mice received 1×107 CAR-T cells, LAG-3-KO-CAR-T cells, T cells, or PBS intraperitoneally. (A) Bioluminescent imaging result of NPG mice treated with CAR-T and LAG-3-KO-CAR-T cells on days 3, 10, and 31 (n = 4). (B) Bioluminescent signal (mean±SEM, n = 4) of NPG mice treated with CAR-T cells, LAG-3-KO-CAR-T cells, and T cells. (C) Survival curve of 50-day post treatment.
1 Kakarla S, Gottschalk S. CAR T cells for solid tumors: armed and ready to go? Cancer J 2014; 20(2): 151–155
https://doi.org/10.1097/PPO.0000000000000032 pmid: 24667962
2 Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, Chung SS, Stefanski J, Borquez-Ojeda O, Olszewska M, Qu J, Wasielewska T, He Q, Fink M, Shinglot H, Youssif M, Satter M, Wang Y, Hosey J, Quintanilla H, Halton E, Bernal Y, Bouhassira DC, Arcila ME, Gonen M, Roboz GJ, Maslak P, Douer D, Frattini MG, Giralt S, Sadelain M, Brentjens R. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 2014; 6(224): 224ra25
https://doi.org/10.1126/scitranslmed.3008226 pmid: 24553386
3 Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, Mahnke YD, Melenhorst JJ, Rheingold SR, Shen A, Teachey DT, Levine BL, June CH, Porter DL, Grupp SA. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014; 371(16): 1507–1517
https://doi.org/10.1056/NEJMoa1407222 pmid: 25317870
4 Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, Steinberg SM, Stroncek D, Tschernia N, Yuan C, Zhang H, Zhang L, Rosenberg SA, Wayne AS, Mackall CL. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 2015; 385(9967): 517–528
https://doi.org/10.1016/S0140-6736(14)61403-3 pmid: 25319501
5 McClanahan F, Riches JC, Miller S, Day WP, Kotsiou E, Neuberg D, Croce CM, Capasso M, Gribben JG. Mechanisms of PD-L1/PD-1-mediated CD8 T-cell dysfunction in the context of aging-related immune defects in the Eµ-TCL1 CLL mouse model. Blood 2015; 126(2): 212–221
https://doi.org/10.1182/blood-2015-02-626754 pmid: 25979947
6 Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 2016; 13(5): 273–290
https://doi.org/10.1038/nrclinonc.2016.25 pmid: 26977780
7 Triebel F, Jitsukawa S, Baixeras E, Roman-Roman S, Genevee C, Viegas-Pequignot E, Hercend T. LAG-3, a novel lymphocyte activation gene closely related to CD4. J Exp Med 1990; 171(5): 1393–1405
https://doi.org/10.1084/jem.171.5.1393 pmid: 1692078
8 Huard B, Prigent P, Tournier M, Bruniquel D, Triebel F. CD4/major histocompatibility complex class II interaction analyzed with CD4- and lymphocyte activation gene-3 (LAG-3)-Ig fusion proteins. Eur J Immunol 1995; 25(9): 2718–2721
https://doi.org/10.1002/eji.1830250949 pmid: 7589152
9 Xu F, Liu J, Liu D, Liu B, Wang M, Hu Z, Du X, Tang L, He F. LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res 2014; 74(13): 3418–3428
https://doi.org/10.1158/0008-5472.CAN-13-2690 pmid: 24769443
10 Baixeras E, Huard B, Miossec C, Jitsukawa S, Martin M, Hercend T, Auffray C, Triebel F, Piatier-Tonneau D. Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens. J Exp Med 1992; 176(2): 327–337
https://doi.org/10.1084/jem.176.2.327 pmid: 1380059
11 Huard B, Gaulard P, Faure F, Hercend T, Triebel F. Cellular expression and tissue distribution of the human LAG-3-encoded protein, an MHC class II ligand. Immunogenetics 1994; 39(3): 213–217
https://doi.org/10.1007/BF00241263 pmid: 7506235
12 Workman CJ, Rice DS, Dugger KJ, Kurschner C, Vignali DA. Phenotypic analysis of the murine CD4-related glycoprotein, CD223 (LAG-3). Eur J Immunol 2002; 32(8): 2255–2263
https://doi.org/10.1002/1521-4141(200208)32:8<2255::AID-IMMU2255>3.0.CO;2-A pmid: 12209638
13 Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G, Hipkiss EL, Ravi S, Kowalski J, Levitsky HI, Powell JD, Pardoll DM, Drake CG, Vignali DA. Role of LAG-3 in regulatory T cells. Immunity 2004; 21(4): 503–513
https://doi.org/10.1016/j.immuni.2004.08.010 pmid: 15485628
14 Kisielow M, Kisielow J, Capoferri-Sollami G, Karjalainen K. Expression of lymphocyte activation gene 3 (LAG-3) on B cells is induced by T cells. Eur J Immunol 2005; 35(7): 2081–2088
https://doi.org/10.1002/eji.200526090 pmid: 15971272
15 Workman CJ, Wang Y, El Kasmi KC, Pardoll DM, Murray PJ, Drake CG, Vignali DA. LAG-3 regulates plasmacytoid dendritic cell homeostasis. J Immunol 2009; 182(4): 1885–1891
https://doi.org/10.4049/jimmunol.0800185 pmid: 19201841
16 Hannier S, Triebel F. The MHC class II ligand lymphocyte activation gene-3 is co-distributed with CD8 and CD3-TCR molecules after their engagement by mAb or peptide-MHC class I complexes. Int Immunol 1999; 11(11): 1745–1752
https://doi.org/10.1093/intimm/11.11.1745 pmid: 10545478
17 Workman CJ, Dugger KJ, Vignali DA. Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. J Immunol 2002; 169(10): 5392–5395
https://doi.org/10.4049/jimmunol.169.10.5392 pmid: 12421911
18 Sierro S, Romero P, Speiser DE. The CD4-like molecule LAG-3, biology and therapeutic applications. Expert Opin Ther Targets 2011; 15(1): 91–101
https://doi.org/10.1517/14712598.2011.540563 pmid: 21142803
19 Okamura T, Fujio K, Shibuya M, Sumitomo S, Shoda H, Sakaguchi S, Yamamoto K. CD4+CD25-LAG3+ regulatory T cells controlled by the transcription factor Egr-2. Proc Natl Acad Sci USA 2009; 106(33): 13974–13979
https://doi.org/10.1073/pnas.0906872106 pmid: 19666526
20 Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V, Subramaniam S, Blattman JN, Barber DL, Ahmed R. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 2007; 27(4): 670–684
https://doi.org/10.1016/j.immuni.2007.09.006 pmid: 17950003
21 Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, Beck A, Miller A, Tsuji T, Eppolito C, Qian F, Lele S, Shrikant P, Old LJ, Odunsi K. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci USA 2010; 107(17): 7875–7880
https://doi.org/10.1073/pnas.1003345107 pmid: 20385810
22 Workman CJ, Cauley LS, Kim IJ, Blackman MA, Woodland DL, Vignali DA. Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo. J Immunol 2004; 172(9): 5450–5455
https://doi.org/10.4049/jimmunol.172.9.5450 pmid: 15100286
23 Maçon-Lemaître L, Triebel F. The negative regulatory function of the lymphocyte-activation gene-3 co-receptor (CD223) on human T cells. Immunology 2005; 115(2): 170–178
https://doi.org/10.1111/j.1365-2567.2005.02145.x pmid: 15885122
24 Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, Betts MR, Freeman GJ, Vignali DA, Wherry EJ. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 2009; 10(1): 29–37
https://doi.org/10.1038/ni.1679 pmid: 19043418
25 Richter K, Agnellini P, Oxenius A. On the role of the inhibitory receptor LAG-3 in acute and chronic LCMV infection. Int Immunol 2010; 22(1): 13–23
https://doi.org/10.1093/intimm/dxp107 pmid: 19880580
26 Butler NS, Moebius J, Pewe LL, Traore B, Doumbo OK, Tygrett LT, Waldschmidt TJ, Crompton PD, Harty JT. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection. Nat Immunol 2011; 13(2): 188–195
https://doi.org/10.1038/ni.2180 pmid: 22157630
27 Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, Bettini ML, Gravano DM, Vogel P, Liu CL, Tangsombatvisit S, Grosso JF, Netto G, Smeltzer MP, Chaux A, Utz PJ, Workman CJ, Pardoll DM, Korman AJ, Drake CG, Vignali DA. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 2012; 72(4): 917–927
https://doi.org/10.1158/0008-5472.CAN-11-1620 pmid: 22186141
28 Goding SR, Wilson KA, Xie Y, Harris KM, Baxi A, Akpinarli A, Fulton A, Tamada K, Strome SE, Antony PA. Restoring immune function of tumor-specific CD4+ T cells during recurrence of melanoma. J Immunol 2013; 190(9): 4899–4909
https://doi.org/10.4049/jimmunol.1300271 pmid: 23536636
29 Menger L, Sledzinska A, Bergerhoff K, Vargas FA, Smith J, Poirot L, Pule M, Hererro J, Peggs KS, Quezada SA. TALEN-mediated inactivation of PD-1 in tumor-reactive lymphocytes promotes intratumoral T-cell persistence and rejection of established tumors. Cancer Res 2016; 76(8): 2087–2093
https://doi.org/10.1158/0008-5472.CAN-15-3352 pmid: 27197251
30 Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res 2017 ; 23(9): 2255–2266 
pmid: 27815355
31 Liu X, Zhang Y, Cheng C, Cheng AW, Zhang X, Li N, Xia C, Wei X, Liu X, Wang H. CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Res 2017; 27(1): 154–157
https://doi.org/10.1038/cr.2016.142 pmid: 27910851
32 Su S, Hu B, Shao J, Shen B, Du J, Du Y, Zhou J, Yu L, Zhang L, Chen F, Sha H, Cheng L, Meng F, Zou Z, Huang X, Liu B. Corrigendum: CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep 2017; 7: 40272
https://doi.org/10.1038/srep40272 pmid: 28102301
33 Brinkman EK, Chen T, Amendola M, van Steensel B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 2014; 42(22): e168
https://doi.org/10.1093/nar/gku936 pmid: 25300484
34 Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 2013; 31(9): 827–832
https://doi.org/10.1038/nbt.2647 pmid: 23873081
[1] FMD-17028-OF-WHY_suppl_1 Download
[1] Houli Zhao, Yiyun Wang, Elaine Tan Su Yin, Kui Zhao, Yongxian Hu, He Huang. A giant step forward: chimeric antigen receptor T-cell therapy for lymphoma[J]. Front. Med., 2020, 14(6): 711-725.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed