Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2018, Vol. 12 Issue (5) : 497-508    https://doi.org/10.1007/s11684-017-0572-1
REVIEW
Genome editing for the treatment of tumorigenic viral infections and virus-related carcinomas
Lan Yu1,2,4, Xun Tian1,2, Chun Gao1,2, Ping Wu1,2, Liming Wang1,2, Bei Feng1,2, Xiaomin Li1,2, Hui Wang1,2, Ding Ma1,2(), Zheng Hu2,3()
1. Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
2. Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
3. Department of Gynecological Oncology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
4. Department of Gynecology and Obstetrics, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
 Download: PDF(326 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Viral infections cause at least 10%–15% of all human carcinomas. Over the last century, the elucidation of viral oncogenic roles in many cancer types has provided fundamental knowledge on carcinogenetic mechanisms and established a basis for the early intervention of virus-related cancers. Meanwhile, rapidly evolving genome-editing techniques targeting viral DNA/RNA have emerged as novel therapeutic strategies for treating virus-related carcinogenesis and have begun showing promising results. This review discusses the recent advances of genome-editing tools for treating tumorigenic viruses and their corresponding cancers, the challenges that must be overcome before clinically applying such genome-editing technologies, and more importantly, the potential solutions to these challenges.

Keywords genome-editing tools      tumorigenic virus      delivery method      off-target effect      virus-related carcinoma     
Corresponding Author(s): Ding Ma,Zheng Hu   
Just Accepted Date: 21 December 2017   Online First Date: 12 April 2018    Issue Date: 29 September 2018
 Cite this article:   
Lan Yu,Xun Tian,Chun Gao, et al. Genome editing for the treatment of tumorigenic viral infections and virus-related carcinomas[J]. Front. Med., 2018, 12(5): 497-508.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-017-0572-1
https://academic.hep.com.cn/fmd/EN/Y2018/V12/I5/497
Fig.1  Schematic overview of HPV genome editing mediated by ZFNs, TALENs, and the CRISPR/Cas9 system.
Fig.2  Methods to stop the HIV-1 virus from infection. (A) Disruption of CCR5 ORF mediated by genome-editing tools leads to resistance to CCR5-tropic HIV-1 infection. (B) Disruption of CXCR4 ORF mediated by genome-editing tools leads to resistance to CXCR4-tropic HIV-1 infection. (C) Provirus excision using ZFNs and CRISPR/Cas9 system targeting the 5′-LTR and 3′-LTR regions. (D) CRISPR/Cas9 cleaves the integrated HIV-1 genome.
1 Hollingworth R, Grand RJ. Modulation of DNA damage and repair pathways by human tumour viruses. Viruses 2015; 7(5): 2542–2591
https://doi.org/10.3390/v7052542 pmid: 26008701
2 Shlomai A, de Jong YP, Rice CM. Virus associated malignancies: the role of viral hepatitis in hepatocellular carcinoma. Semin Cancer Biol 2014; 26: 78–88
https://doi.org/10.1016/j.semcancer.2014.01.004 pmid: 24457013
3 Shih C, Chou SF, Yang CC, Huang JY, Choijilsuren G, Jhou RS. Control and eradication strategies of hepatitis B virus. Trends Microbiol 2016; 24(9): 739–749
https://doi.org/10.1016/j.tim.2016.05.006 pmid: 27287929
4 Jonson AL, Rogers LM, Ramakrishnan S, Downs LS Jr. Gene silencing with siRNA targeting E6/E7 as a therapeutic intervention in a mouse model of cervical cancer. Gynecol Oncol 2008; 111(2): 356–364
https://doi.org/10.1016/j.ygyno.2008.06.033 pmid: 18755502
5 Zanier K, Charbonnier S, Baltzinger M, Nominé Y, Altschuh D, Travé G. Kinetic analysis of the interactions of human papillomavirus E6 oncoproteins with the ubiquitin ligase E6AP using surface plasmon resonance. J Mol Biol 2005; 349(2): 401–412
https://doi.org/10.1016/j.jmb.2005.03.071 pmid: 15890204
6 Chung CH, Gillison ML. Human papillomavirus in head and neck cancer: its role in pathogenesis and clinical implications. Clin Cancer Res 2009; 15:6758–6762
https://doi.org/DOI: 10.1158/1078-0432.CCR-09-0784 pmid: 19861444
7 Pett M, Coleman N. Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis? J Pathol 2007; 212(4): 356–367
https://doi.org/10.1002/path.2192 pmid: 17573670
8 Drake MJ, Bates P. Application of gene-editing technologies to HIV-1. Curr Opin HIV AIDS 2015; 10(2): 123–127
https://doi.org/10.1097/COH.0000000000000139 pmid: 25612322
9 Zimmerman KA, Fischer KP, Joyce MA, Tyrrell DL. Zinc finger proteins designed to specifically target duck hepatitis B virus covalently closed circular DNA inhibit viral transcription in tissue culture. J Virol 2008; 82(16): 8013–8021
https://doi.org/10.1128/JVI.00366-08 pmid: 18524822
10 Zhen S, Hua L, Liu YH, Gao LC, Fu J, Wan DY, Dong LH, Song HF, Gao X. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther 2015; 22(5): 404–412
https://doi.org/10.1038/gt.2015.2 pmid: 25652100
11 Zhen S, Hua L, Takahashi Y, Narita S, Liu YH, Li Y. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem Biophys Res Commun 2014; 450(4): 1422–1426
https://doi.org/10.1016/j.bbrc.2014.07.014 pmid: 25044113
12 Hu Z, Ding W, Zhu D, Yu L, Jiang X, Wang X, Zhang C, Wang L, Ji T, Liu D, He D, Xia X, Zhu T, Wei J, Wu P, Wang C, Xi L, Gao Q, Chen G, Liu R, Li K, Li S, Wang S, Zhou J, Ma D, Wang H. TALEN-mediated targeting of HPV oncogenes ameliorates HPV-related cervical malignancy. J Clin Invest 2015; 125(1): 425–436
https://doi.org/10.1172/JCI78206 pmid: 25500889
13 Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 1996; 93(3): 1156–1160
https://doi.org/10.1073/pnas.93.3.1156 pmid: 8577732
14 Kim YG, Smith J, Durgesha M, Chandrasegaran S. Chimeric restriction enzyme: Gal4 fusion to FokI cleavage domain. Biol Chem 1998; 379(4-5): 489–496
https://doi.org/10.1515/bchm.1998.379.4-5.489 pmid: 9628342
15 Kim YG, Chandrasegaran S. Chimeric restriction endonuclease. Proc Natl Acad Sci USA 1994; 91(3): 883–887
https://doi.org/10.1073/pnas.91.3.883 pmid: 7905633
16 Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 2012; 335(6069): 716–719
https://doi.org/10.1126/science.1216211 pmid: 22223736
17 Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 2011; 39(12): e82
https://doi.org/10.1093/nar/gkr218 pmid: 21493687
18 Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121): 819–823
https://doi.org/10.1126/science.1231143 pmid: 23287718
19 Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science 2013; 339(6121): 823–826
https://doi.org/10.1126/science.1232033 pmid: 23287722
20 Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157(6): 1262–1278
https://doi.org/10.1016/j.cell.2014.05.010 pmid: 24906146
21 Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816–821
https://doi.org/10.1126/science.1225829 pmid: 22745249
22 Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. eLife 2013; 2: e00471
https://doi.org/10.7554/eLife.00471 pmid: 23386978
23 Decrausaz L, Gonçalves AR, Domingos-Pereira S, Pythoud C, Stehle JC, Schiller J, Jichlinski P, Nardelli-Haefliger D. A novel mucosal orthotopic murine model of human papillomavirus-associated genital cancers. Int J Cancer 2011; 128(9): 2105–2113
https://doi.org/10.1002/ijc.25561 pmid: 20635385
24 Gravitt PE. The known unknowns of HPV natural history. J Clin Invest 2011; 121(12): 4593–4599
https://doi.org/10.1172/JCI57149 pmid: 22133884
25 McBride AA, Oliveira JG, McPhillips MG. Partitioning viral genomes in mitosis: same idea, different targets. Cell Cycle 2006; 5(14): 1499–1502
https://doi.org/10.4161/cc.5.14.3094 pmid: 16861919
26 Horner SM, DiMaio D. The DNA binding domain of a papillomavirus E2 protein programs a chimeric nuclease to cleave integrated human papillomavirus DNA in HeLa cervical carcinoma cells. J Virol 2007; 81(12): 6254–6264
https://doi.org/10.1128/JVI.00232-07 pmid: 17392356
27 Ding W, Hu Z, Zhu D, Jiang X, Yu L, Wang X, Zhang C, Wang L, Ji T, Li K, He D, Xia X, Liu D, Zhou J, Ma D, Wang H. Zinc finger nucleases targeting the human papillomavirus E7 oncogene induce E7 disruption and a transformed phenotype in HPV16/18-positive cervical cancer cells. Clin Cancer Res 2014; 20:6495–6503 PMID: 25336692
https://doi.org/DOI: 10.1158/1078-0432.CCR-14-0250
28 Hu Z, Yu L, Zhu D, Ding W, Wang X, Zhang C, Wang L, Jiang X, Shen H, He D, Li K, Xi L, Ma D, Wang H. Disruption of HPV16–E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. Biomed Res Int 2014; 2014:612823
https://doi.org/DOI: 10.1155/2014/612823
29 Kennedy EM, Kornepati AV, Goldstein M, Bogerd HP, Poling BC, Whisnant AW, Kastan MB, Cullen BR. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J Virol 2014; 88(20): 11965–11972
https://doi.org/10.1128/JVI.01879-14 pmid: 25100830
30 Muñoz N, Kjaer SK, Sigurdsson K, Iversen OE, Hernandez-Avila M, Wheeler CM, Perez G, Brown DR, Koutsky LA, Tay EH, Garcia PJ, Ault KA, Garland SM, Leodolter S, Olsson SE, Tang GW, Ferris DG, Paavonen J, Steben M, Bosch FX, Dillner J, Huh WK, Joura EA, Kurman RJ, Majewski S, Myers ER, Villa LL, Taddeo FJ, Roberts C, Tadesse A, Bryan JT, Lupinacci LC, Giacoletti KE, Sings HL, James MK, Hesley TM, Barr E, Haupt RM. Impact of human papillomavirus (HPV)-6/11/16/18 vaccine on all HPV-associated genital diseases in young women. J Natl Cancer Inst 2010; 102(5): 325–339
https://doi.org/10.1093/jnci/djp534 pmid: 20139221
31 Lacey CJ, Woodhall SC, Wikstrom A, Ross J. 2012 European guideline for the management of anogenital warts. J Eur Acad Dermatol Venereol 2013; 27(3): e263–e270
https://doi.org/10.1111/j.1468-3083.2012.04493.x pmid: 22409368
32 Liu YC, Cai ZM, Zhang XJ. Reprogrammed CRISPR-Cas9 targeting the conserved regions of HPV6/11 E7 genes inhibits proliferation and induces apoptosis in E7-transformed keratinocytes. Asian J Androl 2016; 18(3): 475–479
https://doi.org/10.4103/1008-682X.157399 pmid: 26228041
33 Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 2006; 45(4): 529–538
https://doi.org/10.1016/j.jhep.2006.05.013 pmid: 16879891
34 Chan SL, Wong VW, Qin S, Chan HL. Infection and cancer: the case of hepatitis B. J Clin Oncol 2016; 34(1): 83–90
https://doi.org/10.1200/JCO.2015.61.5724 pmid: 26578611
35 Lin CL, Kao JH. Risk stratification for hepatitis B virus related hepatocellular carcinoma. J Gastroenterol Hepatol 2013; 28(1): 10–17
https://doi.org/10.1111/jgh.12010 pmid: 23094699
36 Chen J, Zhang W, Lin J, Wang F, Wu M, Chen C, Zheng Y, Peng X, Li J, Yuan Z. An efficient antiviral strategy for targeting hepatitis B virus genome using transcription activator-like effector nucleases. Mol Ther 2014; 22:303–311
https://doi.org/DOI: 10.1038/mt.2013.212
37 Caruntu FA, Molagic V. cccDNA persistence during natural evolution of chronic VHB infection. Rom J Gastroenterol 2005; 14(4): 373–377
pmid: 16400354
38 Seeger C, Sohn JA. Targeting hepatitis B virus with CRISPR/Cas9. Mol Ther Nucleic Acids 2014; 3: e216
https://doi.org/10.1038/mtna.2014.68 pmid: 25514649
39 Wu TT, Coates L, Aldrich CE, Summers J, Mason WS. In hepatocytes infected with duck hepatitis B virus, the template for viral RNA synthesis is amplified by an intracellular pathway. Virology 1990; 175(1): 255–261
https://doi.org/10.1016/0042-6822(90)90206-7 pmid: 2155510
40 Lin G, Zhang K, Li J. Application of CRISPR/Cas9 technology to HBV. Int J Mol Sci 2015; 16(11): 26077–26086
https://doi.org/10.3390/ijms161125950 pmid: 26540039
41 Tiollais P, Pourcel C, Dejean A. The hepatitis B virus. Nature 1985; 317(6037): 489–495
https://doi.org/10.1038/317489a0 pmid: 2995835
42 Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. Control of cccDNA function in hepatitis B virus infection. J Hepatol 2009; 51(3): 581–592
https://doi.org/10.1016/j.jhep.2009.05.022 pmid: 19616338
43 Li G, Jiang G, Lu J, Chen S, Cui L, Jiao J, Wang Y. Inhibition of hepatitis B virus cccDNA by siRNA in transgenic mice. Cell Biochem Biophys 2014; 69(3): 649–654
https://doi.org/10.1007/s12013-014-9847-1 pmid: 24569930
44 Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 2013; 31(7): 397–405
https://doi.org/10.1016/j.tibtech.2013.04.004 pmid: 23664777
45 Kennedy EM, Bassit LC, Mueller H, Kornepati AV, Bogerd HP, Nie T, Chatterjee P, Javanbakht H, Schinazi RF, Cullen BR. Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease. Virology 2015; 476: 196–205
https://doi.org/10.1016/j.virol.2014.12.001 pmid: 25553515
46 Bloom K, Ely A, Mussolino C, Cathomen T, Arbuthnot P.Inactivation of hepatitis B virus replication in cultured cells and in vivo with engineered transcription activator-like effector nucleases. Mol Ther 2013; 21:1889–1897
https://doi.org/DOI: 10.1038/mt.2013.170
47 Cradick TJ, Keck K, Bradshaw S, Jamieson AC, McCaffrey AP. Zinc-finger nucleases as a novel therapeutic strategy for targeting hepatitis B virus DNAs. Mol Ther 2010; 18:947–954
https://doi.org/DOI: 10.1038/mt.2010.20
48 Ramanan V, Shlomai A, Cox DB, Schwartz RE, Michailidis E, Bhatta A, Scott DA, Zhang F, Rice CM, Bhatia SN. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci Rep 2015; 5(1): 10833
https://doi.org/10.1038/srep10833 pmid: 26035283
49 Lin SR, Yang HC, Kuo YT, Liu CJ, Yang TY, Sung KC, Lin YY, Wang HY, Wang CC, Shen YC, Wu FY, Kao JH, Chen DS, Chen PJ. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol Ther Nucleic Acids 2014; 3: e186
https://doi.org/10.1038/mtna.2014.38 pmid: 25137139
50 Karimova M, Beschorner N, Dammermann W, Chemnitz J, Indenbirken D, Bockmann JH, Grundhoff A, Lüth S, Buchholz F, Schulze zur Wiesch J, Hauber J. CRISPR/Cas9 nickase-mediated disruption of hepatitis B virus open reading frame S and X. Sci Rep 2015; 5(1): 13734
https://doi.org/10.1038/srep13734 pmid: 26334116
51 Liu X, Hao R, Chen S, Guo D, Chen Y. Inhibition of hepatitis B virus by the CRISPR/Cas9 system via targeting the conserved regions of the viral genome. J Gen Virol 2015; 96(8): 2252–2261
https://doi.org/10.1099/vir.0.000159 pmid: 25904148
52 Wang J, Xu ZW, Liu S, Zhang RY, Ding SL, Xie XM, Long L, Chen XM, Zhuang H, Lu FM. Dual gRNAs guided CRISPR/Cas9 system inhibits hepatitis B virus replication. World J Gastroenterol 2015; 21(32): 9554–9565
https://doi.org/10.3748/wjg.v21.i32.9554 pmid: 26327763
53 Bobbin ML, Burnett JC, Rossi JJ. RNA interference approaches for treatment of HIV-1 infection. Genome Med 2015; 7(1): 50
https://doi.org/10.1186/s13073-015-0174-y pmid: 26019725
54 Obel N, Thomsen HF, Kronborg G, Larsen CS, Hildebrandt PR, Sørensen HT, Gerstoft J. Ischemic heart disease in HIV-infected and HIV-uninfected individuals: a population-based cohort study. Clin Infect Dis 2007; 44(12): 1625–1631
https://doi.org/10.1086/518285 pmid: 17516408
55 Brown TT, Qaqish RB. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS 2006; 20(17): 2165–2174
https://doi.org/10.1097/QAD.0b013e32801022eb pmid: 17086056
56 Odden MC, Scherzer R, Bacchetti P, Szczech LA, Sidney S, Grunfeld C, Shlipak MG. Cystatin C level as a marker of kidney function in human immunodeficiency virus infection: the FRAM study. Arch Intern Med 2007; 167(20): 2213–2219
https://doi.org/10.1001/archinte.167.20.2213 pmid: 17998494
57 Qin XF, An DS, Chen IS, Baltimore D. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci USA 2003; 100(1): 183–188
https://doi.org/10.1073/pnas.232688199 pmid: 12518064
58 Martínez MA, Gutiérrez A, Armand-Ugón M, Blanco J, Parera M, Gómez J, Clotet B, Esté JA. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS 2002; 16(18): 2385–2390
https://doi.org/10.1097/00002030-200212060-00002 pmid: 12461411
59 Hütter G, Nowak D, Mossner M, Ganepola S, Müssig A, Allers K, Schneider T, Hofmann J, Kücherer C, Blau O, Blau IW, Hofmann WK, Thiel E. Long-term control of HIV by CCR5 D32/D32 stem-cell transplantation. N Engl J Med 2009; 360(7): 692–698
https://doi.org/10.1056/NEJMoa0802905 pmid: 19213682
60 Hütter G, Ganepola S. Eradication of HIV by transplantation of CCR5-deficient hematopoietic stem cells. Sci World J 2011; 11: 1068–1076
https://doi.org/10.1100/tsw.2011.102
61 Allers K, Hütter G, Hofmann J, Loddenkemper C, Rieger K, Thiel E, Schneider T. Evidence for the cure of HIV infection by CCR5D32/D32 stem cell transplantation. Blood 2011; 117(10): 2791–2799
https://doi.org/10.1182/blood-2010-09-309591 pmid: 21148083
62 Westby M, Lewis M, Whitcomb J, Youle M, Pozniak AL, James IT, Jenkins TM, Perros M, van der Ryst E. Emergence of CXCR4-using human immunodeficiency virus type 1 (HIV-1) variants in a minority of HIV-1-infected patients following treatment with the CCR5 antagonist maraviroc is from a pretreatment CXCR4-using virus reservoir. J Virol 2006; 80(10): 4909–4920
https://doi.org/10.1128/JVI.80.10.4909-4920.2006 pmid: 16641282
63 Scarlatti G, Tresoldi E, Björndal A, Fredriksson R, Colognesi C, Deng HK, Malnati MS, Plebani A, Siccardi AG, Littman DR, Fenyö EM, Lusso P. In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression. Nat Med 1997; 3(11): 1259–1265
https://doi.org/10.1038/nm1197-1259 pmid: 9359702
64 Connor RI, Sheridan KE, Ceradini D, Choe S, Landau NR. Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. J Exp Med 1997; 185(4): 621–628
https://doi.org/10.1084/jem.185.4.621 pmid: 9034141
65 Kordelas L, Verheyen J, Beelen DW, Horn PA, Heinold A, Kaiser R, Trenschel R, Schadendorf D, Dittmer U, Esser S; Essen HIV AlloSCT Group. Shift of HIV tropism in stem-cell transplantation with CCR5 D32 mutation. N Engl J Med 2014; 371(9): 880–882
https://doi.org/10.1056/NEJMc1405805
66 Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V, Crooks GM, Kohn DB, Gregory PD, Holmes MC, Cannon PM. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 2010; 28(8): 839–847
https://doi.org/10.1038/nbt.1663 pmid: 20601939
67 Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, Wang N, Lee G, Bartsevich VV, Lee YL, Guschin DY, Rupniewski I, Waite AJ, Carpenito C, Carroll RG, Orange JS, Urnov FD, Rebar EJ, Ando D, Gregory PD, Riley JL, Holmes MC, June CH. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 2008; 26(7): 808–816
https://doi.org/10.1038/nbt1410 pmid: 18587387
68 Wilen CB, Wang J, Tilton JC, Miller JC, Kim KA, Rebar EJ, Sherrill-Mix SA, Patro SC, Secreto AJ, Jordan AP, Lee G, Kahn J, Aye PP, Bunnell BA, Lackner AA, Hoxie JA, Danet-Desnoyers GA, Bushman FD, Riley JL, Gregory PD, June CH, Holmes MC, Doms RW. Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases. PLoS Pathog 2011; 7(4): e1002020
https://doi.org/10.1371/journal.ppat.1002020 pmid: 21533216
69 Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, Holmes MC, Gregory PD, Ando DG, Kalos M, Collman RG, Binder-Scholl G, Plesa G, Hwang WT, Levine BL, June CH. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014; 370(10): 901–910
https://doi.org/10.1056/NEJMoa1300662 pmid: 24597865
70 Mussolino C, Morbitzer R, Lütge F, Dannemann N, Lahaye T, Cathomen T. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 2011; 39(21): 9283–9293
https://doi.org/10.1093/nar/gkr597 pmid: 21813459
71 Mock U, Machowicz R, Hauber I, Horn S, Abramowski P, Berdien B, Hauber J, Fehse B. mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR5. Nucleic Acids Res 2015; 43(11): 5560–5571
https://doi.org/10.1093/nar/gkv469 pmid: 25964300
72 Liao HK, Gu Y, Diaz A, Marlett J, Takahashi Y, Li M, Suzuki K, Xu R, Hishida T, Chang CJ, Esteban CR, Young J, Izpisua Belmonte JC. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun 2015; 6: 6413
https://doi.org/10.1038/ncomms7413 pmid: 25752527
73 De Silva Feelixge HS, Stone D, Pietz HL, Roychoudhury P, Greninger AL, Schiffer JT, Aubert M, Jerome KR. Detection of treatment-resistant infectious HIV after genome-directed antiviral endonuclease therapy. Antiviral Res 2016; 126: 90–98
https://doi.org/10.1016/j.antiviral.2015.12.007 pmid: 26718067
74 Yuan J, Wang J, Crain K, Fearns C, Kim KA, Hua KL, Gregory PD, Holmes MC, Torbett BE. Zinc-finger nuclease editing of human cxcr4 promotes HIV-1 CD4+ T cell resistance and enrichment. Mol Ther 2012; 20:849–859
https://doi.org/DOI: 10.1038/mt.2011.310
75 Philpott S, Weiser B, Anastos K, Kitchen CM, Robison E, Meyer WA 3rd, Sacks HS, Mathur-Wagh U, Brunner C, Burger H. Preferential suppression of CXCR4-specific strains of HIV-1 by antiviral therapy. J Clin Invest 2001; 107(4): 431–438
https://doi.org/10.1172/JCI11526 pmid: 11181642
76 Fadel HJ, Morrison JH, Saenz DT, Fuchs JR, Kvaratskhelia M, Ekker SC, Poeschla EM. TALEN knockout of the PSIP1 gene in human cells: analyses of HIV-1 replication and allosteric integrase inhibitor mechanism. J Virol 2014; 88(17): 9704–9717
https://doi.org/10.1128/JVI.01397-14 pmid: 24942577
77 Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 2013; 3(1): 2510
https://doi.org/10.1038/srep02510 pmid: 23974631
78 Qu X, Wang P, Ding D, Li L, Wang H, Ma L, Zhou X, Liu S, Lin S, Wang X, Zhang G, Liu S, Liu L, Wang J, Zhang F, Lu D, Zhu H. Zinc-finger-nucleases mediate specific and efficient excision of HIV-1 proviral DNA from infected and latently infected human T cells. Nucleic Acids Res 2013; 41(16): 7771–7782
https://doi.org/10.1093/nar/gkt571 pmid: 23804764
79 Rodriguez MA, Shen C, Ratner D, Paranjape RS, Kulkarni SS, Chatterjee R, Gupta P. Genetic and functional characterization of the LTR of HIV-1 subtypes A and C circulating in India. AIDS Res Hum Retroviruses 2007; 23(11): 1428–1433
https://doi.org/10.1089/aid.2007.0152 pmid: 18184086
80 Yuen KS, Chan CP, Wong NH, Ho CH, Ho TH, Lei T, Deng W, Tsao SW, Chen H, Kok KH, Jin DY. CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells. J Gen Virol 2015; 96(Pt 3): 626–636
https://doi.org/10.1099/jgv.0.000012 pmid: 25502645
81 Noh KW, Park J, Kang MS. Targeted disruption of EBNA1 in EBV-infected cells attenuated cell growth. BMB Rep 2016; 49(4): 226–231
https://doi.org/10.5483/BMBRep.2016.49.4.260 pmid: 26879316
82 Su S, Zou Z, Chen F, Ding N, Du J, Shao J, Li L, Fu Y, Hu B, Yang Y, Sha H, Meng F, Wei J, Huang X, Liu B. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. OncoImmunology 2016; 6(1): e1249558
https://doi.org/10.1080/2162402X.2016.1249558 pmid: 28197365
83 Mani M, Smith J, Kandavelou K, Berg JM, Chandrasegaran S. Binding of two zinc finger nuclease monomers to two specific sites is required for effective double-strand DNA cleavage. Biochem Biophys Res Commun 2005; 334(4): 1191–1197
https://doi.org/10.1016/j.bbrc.2005.07.021 pmid: 16043120
84 Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res 2000; 28(17): 3361–3369
https://doi.org/10.1093/nar/28.17.3361 pmid: 10954606
85 Vanamee ES, Santagata S, Aggarwal AK. FokI requires two specific DNA sites for cleavage. J Mol Biol 2001; 309(1): 69–78
https://doi.org/10.1006/jmbi.2001.4635 pmid: 11491302
86 Frock RL, Hu J, Meyers RM, Ho YJ, Kii E, Alt FW. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol 2015; 33(2): 179–186
https://doi.org/10.1038/nbt.3101 pmid: 25503383
87 Stone D, Niyonzima N, Jerome KR. Genome editing and the next generation of antiviral therapy. Hum Genet 2016; 135(9): 1071–1082
https://doi.org/10.1007/s00439-016-1686-2 pmid: 27272125
88 Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 2014; 32(6): 551–553
https://doi.org/10.1038/nbt.2884 pmid: 24681508
89 Ellis BL, Hirsch ML, Porter SN, Samulski RJ, Porteus MH. Zinc-finger nuclease-mediated gene correction using single AAV vector transduction and enhancement by Food and Drug Administration-approved drugs. Gene Ther 2013; 20(1): 35–42
https://doi.org/10.1038/gt.2011.211 pmid: 22257934
90 Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015; 520(7546): 186–191
https://doi.org/10.1038/nature14299 pmid: 25830891
91 Ortinski PI, O’Donovan B, Dong X, Kantor B. Integrase-deficient lentiviral vector as an all-in-one platform for highly efficient CRISPR/Cas9-mediated gene editing. Mol Ther Methods Clin Dev 2017; 5: 153–164
https://doi.org/10.1016/j.omtm.2017.04.002 pmid: 28497073
92 Holkers M, Maggio I, Liu J, Janssen JM, Miselli F, Mussolino C, Recchia A, Cathomen T, Gonçalves MA. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res 2013; 41(5): e63
https://doi.org/10.1093/nar/gks1446 pmid: 23275534
93 Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA, Ando D, Urnov FD, Galli C, Gregory PD, Holmes MC, Naldini L. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 2007; 25(11): 1298–1306
https://doi.org/10.1038/nbt1353 pmid: 17965707
94 Kim H, Kim JS. A guide to genome engineering with programmable nucleases. Nat Rev Genet 2014; 15(5): 321–334
https://doi.org/10.1038/nrg3686 pmid: 24690881
95 Liu X, Wang Y, Guo W, Chang B, Liu J, Guo Z, Quan F, Zhang Y. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the β-casein locus in cloned cows. Nat Commun 2013; 4: 2565
https://doi.org/10.1038/ncomms3565 pmid: 24121612
96 Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 2013; 31(9): 822–826
https://doi.org/10.1038/nbt.2623 pmid: 23792628
97 Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 2014; 24(1): 132–141
https://doi.org/10.1101/gr.162339.113 pmid: 24253446
98 Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 2014; 32(3): 279–284
https://doi.org/10.1038/nbt.2808 pmid: 24463574
99 Wyvekens N, Topkar VV, Khayter C, Joung JK, Tsai SQ. Dimeric CRISPR RNA-guided FokI-dCas9 nucleases directed by truncated gRNAs for highly specific genome editing. Hum Gene Ther 2015; 26(7): 425–431
https://doi.org/10.1089/hum.2015.084 pmid: 26068112
100 Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 2014; 32(6): 569–576
https://doi.org/10.1038/nbt.2908 pmid: 24770325
101 Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 2014; 32(6): 577–582
https://doi.org/10.1038/nbt.2909 pmid: 24770324
102 Pattanayak V, Ramirez CL, Joung JK, Liu DR. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 2011; 8(9): 765–770
https://doi.org/10.1038/nmeth.1670 pmid: 21822273
103 Guilinger JP, Pattanayak V, Reyon D, Tsai SQ, Sander JD, Joung JK, Liu DR. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods 2014; 11(4): 429–435
https://doi.org/10.1038/nmeth.2845 pmid: 24531420
104 Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 2016; 529(7587): 490–495
https://doi.org/10.1038/nature16526 pmid: 26735016
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed