Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2018, Vol. 12 Issue (3) : 262-268    https://doi.org/10.1007/s11684-017-0584-x
REVIEW |
γδ T cells in liver diseases
Xuefu Wang1(), Zhigang Tian2,3
1. School of Pharmacy, Anhui Medical University, Hefei 230032, China
2. Institute of Immunology and CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
3. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
 Download: PDF(177 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

γδ T cells display unique developmental, distributional, and functional patterns and can rapidly respond to various insults and contribute to diverse diseases. Different subtypes of γδ T cells are produced in the thymus prior to their migration to peripheral tissues. γδ T cells are enriched in the liver and exhibit liver-specific features. Accumulating evidence reveals that γδ T cells play important roles in liver infection, non-alcoholic fatty liver disease, autoimmune hepatitis, liver fibrosis and cirrhosis, and liver cancer and regeneration. In this study, we review the properties of hepatic γδ T cells and summarize the roles of γδ T cells in liver diseases. We believe that determining the properties and functions of γδ T cells in liver diseases enhances our understanding of the pathogenesis of liver diseases and is useful for the design of novel γδ T cell-based therapeutic regimens for liver diseases.

Keywords γδT cells      liver infection      non-alcoholic fatty liver disease      autoimmune hepatitis      liver fibrosis and cirrhosis      liver cancer      liver regeneration     
Corresponding Authors: Xuefu Wang   
Just Accepted Date: 14 December 2017   Online First Date: 01 March 2018    Issue Date: 04 May 2018
 Cite this article:   
Xuefu Wang,Zhigang Tian. γδ T cells in liver diseases[J]. Front. Med., 2018, 12(3): 262-268.
 URL:  
http://academic.hep.com.cn/fmd/EN/10.1007/s11684-017-0584-x
http://academic.hep.com.cn/fmd/EN/Y2018/V12/I3/262
Fig.1  γδ T cells in liver diseases. The effector functions of hepatic γδ T cells are context-dependent, although IL-17A-producing γδ T cells predominantly localize in the liver. On the one hand, hepatic IL-17A-producing γδ T cells not only play pathogen-promoting roles in infection-induced liver injury, non-alcoholic fatty liver disease, autoimmune hepatitis, liver fibrosis/cirrhosis, and liver cancer but also promote liver regeneration (shown as →). On the other hand, hepatic IFN-γ-producing γδ T cells play protective roles in liver infection and liver cancer (shown as ⊣) and also mediate autoimmune hepatitis (shown as →). In addition, hepatic γδ T cells suppress the inflammatory response by expressing inhibitory molecules (such as CD39, shown as ⊣).
1 Godfrey DI, Kennedy J, Suda T, Zlotnik A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3−CD4−CD8− triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J Immunol 1993; 150(10): 4244–4252
pmid: 8387091
2 Germain RN. T-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol 2002; 2(5): 309–322
https://doi.org/10.1038/nri798 pmid: 12033737
3 Ciofani M, Knowles GC, Wiest DL, von Boehmer H, Zúñiga-Pflücker JC. Stage-specific and differential notch dependency at the alphabeta and γδ T lineage bifurcation. Immunity 2006; 25(1): 105–116
https://doi.org/10.1016/j.immuni.2006.05.010 pmid: 16814577
4 Hoh A, Dewerth A, Vogt F, Wenz J, Baeuerle PA, Warmann SW, Fuchs J, Armeanu-Ebinger S. The activity of γδ T cells against paediatric liver tumour cells and spheroids in cell culture. Liver Int 2013; 33(1):127–136
https://doi.org/10.1111/liv.12011 pmid: 23088518
5 Haas JD, González FH, Schmitz S, Chennupati V, Föhse L, Kremmer E, Förster R, Prinz I. CCR6 and NK1.1 distinguish between IL-17A and IFN-γ-producing γδ effector T cells. Eur J Immunol 2009; 39(12): 3488–3497
https://doi.org/10.1002/eji.200939922 pmid: 19830744
6 Muñoz-Ruiz M, Sumaria N, Pennington DJ, Silva-Santos B. Thymic determinants of gd T cell differentiation. Trends Immunol 2017; 38(5): 336–344
https://doi.org/10.1016/j.it.2017.01.007 pmid: 28285814
7 Groh V, Steinle A, Bauer S, Spies T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 1998; 279(5357): 1737–1740
https://doi.org/10.1126/science.279.5357.1737 pmid: 9497295
8 Fay NS, Larson EC, Jameson JM. Chronic inflammation and gd T cells. Front Immunol 2016; 7: 210
https://doi.org/10.3389/fimmu.2016.00210 pmid: 27303404
9 Vantourout P, Hayday A. Six-of-the-best: unique contributions of gd T cells to immunology. Nat Rev Immunol 2013; 13(2): 88–100
https://doi.org/10.1038/nri3384 pmid: 23348415
10 Rajoriya N, Fergusson JR, Leithead JA, Klenerman P. γδ T-lymphocytes in hepatitis C and chronic liver disease. Front Immunol 2014; 5: 400
https://doi.org/10.3389/fimmu.2014.00400 pmid: 25206355
11 Wang X, Sun R, Wei H, Tian Z. High-mobility group box 1 (HMGB1)-Toll-like receptor (TLR)4-interleukin (IL)-23-IL-17A axis in drug-induced damage-associated lethal hepatitis: interaction of gd T cells with macrophages. Hepatology 2013; 57(1): 373–384
https://doi.org/10.1002/hep.25982 pmid: 22821628
12 Protzer U, Maini MK, Knolle PA. Living in the liver: hepatic infections. Nat Rev Immunol 2012; 12(3): 201–213
https://doi.org/10.1038/nri3169 pmid: 22362353
13 Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 2014; 14(3): 181–194
https://doi.org/10.1038/nri3623 pmid: 24566915
14 Robinson MW, Harmon C, O’Farrelly C. Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol 2016; 13(3): 267–276
https://doi.org/10.1038/cmi.2016.3 pmid: 27063467
15 Shuai Z, Leung MW, He X, Zhang W, Yang G, Leung PS, Eric Gershwin M. Adaptive immunity in the liver. Cell Mol Immunol 2016; 13(3): 354–368
https://doi.org/10.1038/cmi.2016.4 pmid: 26996069
16 Horst AK, Neumann K, Diehl L, Tiegs G. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell Mol Immunol 2016; 13(3): 277–292
https://doi.org/10.1038/cmi.2015.112 pmid: 27041638
17 Crispe IN. Immune tolerance in liver disease. Hepatology 2014; 60(6): 2109–2117
https://doi.org/10.1002/hep.27254 pmid: 24913836
18 Gao B, Jeong WI, Tian Z. Liver: an organ with predominant innate immunity. Hepatology 2008; 47(2): 729–736
https://doi.org/10.1002/hep.22034 pmid: 18167066
19 Bandyopadhyay K, Marrero I, Kumar V. NKT cell subsets as key participants in liver physiology and pathology. Cell Mol Immunol 2016; 13(3): 337–346
https://doi.org/10.1038/cmi.2015.115 pmid: 26972772
20 Peng H, Wisse E, Tian Z. Liver natural killer cells: subsets and roles in liver immunity. Cell Mol Immunol 2016; 13(3): 328–336
https://doi.org/10.1038/cmi.2015.96 pmid: 26639736
21 Ju C, Tacke F. Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cell Mol Immunol 2016; 13(3): 316–327
https://doi.org/10.1038/cmi.2015.104 pmid: 26908374
22 Zhou Z, Xu MJ, Gao B. Hepatocytes: a key cell type for innate immunity. Cell Mol Immunol 2016; 13(3): 301–315
https://doi.org/10.1038/cmi.2015.97 pmid: 26685902
23 Bonneville M, O’Brien RL, Born WK. γδ T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 2010; 10(7): 467–478
https://doi.org/10.1038/nri2781 pmid: 20539306
24 Rao R, Graffeo CS, Gulati R, Jamal M, Narayan S, Zambirinis CP, Barilla R, Deutsch M, Greco SH, Ochi A, Tomkötter L, Blobstein R, Avanzi A, Tippens DM, Gelbstein Y, Van Heerden E, Miller G. Interleukin 17-producing γδ. T cells promote hepatic regeneration in mice. Gastroenterology 2014; 147(2):473–84.e2
https://doi.org/10.1053/j.gastro.2014.04.042 pmid: 24801349
25 Li F, Hao X, Chen Y, Bai L, Gao X, Lian Z, Wei H, Sun R, Tian Z. The microbiota maintain homeostasis of liver-resident gdT-17 cells in a lipid antigen/CD1d-dependent manner. Nat Commun 2017; 7: 13839
https://doi.org/10.1038/ncomms13839 pmid: 28067223
26 Liaw YF, Chu CM. Hepatitis B virus infection. Lancet 2009; 373(9663): 582–592
https://doi.org/10.1016/S0140-6736(09)60207-5 pmid: 19217993
27 Chyuan IT, Tsai HF, Tzeng HT, Sung CC, Wu CS, Chen PJ, Hsu PN. Tumor necrosis factor-α blockage therapy impairs hepatitis B viral clearance and enhances T-cell exhaustion in a mouse model. Cell Mol Immunol 2015; 12(3): 317–325
https://doi.org/10.1038/cmi.2015.01 pmid: 25661729
28 Chen M, Zhang D, Zhen W, Shi Q, Liu Y, Ling N, Peng M, Tang K, Hu P, Hu H, Ren H. Characteristics of circulating T cell receptor gd T cells from individuals chronically infected with hepatitis B virus (HBV): an association between V(d)2 subtype and chronic HBV infection. J Infect Dis 2008; 198(11): 1643–1650
https://doi.org/10.1086/593065 pmid: 18954265
29 Chen M, Hu P, Ling N, Peng H, Lei Y, Hu H, Zhang D, Ren H. Enhanced functions of peripheral gd T cells in chronic hepatitis B infection during interferon α treatment in vivo and in vitro. PLoS One 2015; 10(3): e0120086
https://doi.org/10.1371/journal.pone.0120086 pmid: 25774808
30 Chen M, Hu P, Peng H, Zeng W, Shi X, Lei Y, Hu H, Zhang D, Ren H. Enhanced peripheral gd T cells cytotoxicity potential in patients with HBV-associated acute-on-chronic liver failure might contribute to the disease progression. J Clin Immunol 2012; 32(4): 877–885
https://doi.org/10.1007/s10875-012-9678-z pmid: 22415432
31 Kong X, Sun R, Chen Y, Wei H, Tian Z. γδ T cells drive myeloid-derived suppressor cell-mediated CD8+ T cell exhaustion in hepatitis B virus-induced immunotolerance. J Immunol 2014; 193(4): 1645–1653
https://doi.org/10.4049/jimmunol.1303432 pmid: 25015833
32 Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 2005; 5(3): 215–229
https://doi.org/10.1038/nri1573 pmid: 15738952
33 Yin W, Tong S, Zhang Q, Shao J, Liu Q, Peng H, Hu H, Peng M, Hu P, Ren H, Tian Z, Zhang D. Functional dichotomy of Vd2 gd T cells in chronic hepatitis C virus infections: role in cytotoxicity but not for IFN-g production. Sci Rep 2016; 6(1): 26296
https://doi.org/10.1038/srep26296 pmid: 27192960
34 Tseng CT, Miskovsky E, Houghton M, Klimpel GR. Characterization of liver T-cell receptor gd T cells obtained from individuals chronically infected with hepatitis C virus (HCV): evidence for these T cells playing a role in the liver pathology associated with HCV infections. Hepatology 2001; 33(5): 1312–1320
https://doi.org/10.1053/jhep.2001.24269 pmid: 11343261
35 Agrati C, Alonzi T, De Santis R, Castilletti C, Abbate I, Capobianchi MR, D’Offizi G, Siepi F, Fimia GM, Tripodi M, Poccia F. Activation of Vγ9Vδ2 T cells by non-peptidic antigens induces the inhibition of subgenomic HCV replication. Int Immunol 2006; 18(1): 11–18
https://doi.org/10.1093/intimm/dxh337 pmid: 16361319
36 Sardinha LR, Elias RM, Mosca T, Bastos KR, Marinho CR, D’Império Lima MR, Alvarez JM. Contribution of NK, NK T, γδ T, and αβ T cells to the γ interferon response required for liver protection against Trypanosoma cruzi. Infect Immun 2006; 74(4): 2031–2042
https://doi.org/10.1128/IAI.74.4.2031-2042.2006 pmid: 16552032
37 Tramonti D, Rhodes K, Martin N, Dalton JE, Andrew E, Carding SR. γδ T cell-mediated regulation of chemokine producing macrophages during Listeria monocytogenes infection-induced inflammation. J Pathol 2008; 216(2): 262–270
https://doi.org/10.1002/path.2412 pmid: 18767021
38 Chen D, Luo X, Xie H, Gao Z, Fang H, Huang J. Characteristics of IL-17 induction by Schistosoma japonicum infection in C57BL/6 mouse liver. Immunology 2013; 139(4): 523–532
https://doi.org/10.1111/imm.12105 pmid: 23551262
39 Rinella ME. Nonalcoholic fatty liver disease: a systematic review. JAMA 2015; 313(22): 2263–2273
https://doi.org/10.1001/jama.2015.5370 pmid: 26057287
40 Harley IT, Stankiewicz TE, Giles DA, Softic S, Flick LM, Cappelletti M, Sheridan R, Xanthakos SA, Steinbrecher KA, Sartor RB, Kohli R, Karp CL, Divanovic S. IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice. Hepatology 2014; 59(5): 1830–1839
https://doi.org/10.1002/hep.26746 pmid: 24115079
41 Xu R, Tao A, Zhang S, Zhang M. Neutralization of interleukin-17 attenuates high fat diet-induced non-alcoholic fatty liver disease in mice. Acta Biochim Biophys Sin (Shanghai) 2013; 45(9): 726–733
https://doi.org/10.1093/abbs/gmt065 pmid: 23786840
42 Aizawa Y, Hokari A. Autoimmune hepatitis: current challenges and future prospects. Clin Exp Gastroenterol 2017; 10: 9–18
https://doi.org/10.2147/CEG.S101440 pmid: 28176894
43 Carey EJ, Ali AH, Lindor KD. Primary biliary cirrhosis. Lancet 2015; 386(10003): 1565–1575
https://doi.org/10.1016/S0140-6736(15)00154-3 pmid: 26364546
44 Singh S, Talwalkar JA. Primary sclerosing cholangitis: diagnosis, prognosis, and management. Clin Gastroenterol Hepatol 2013;11(8):898–907
https://doi.org/10.1016/j.cgh.2013.02.016 pmid: 23454027
45 Martins EB, Graham AK, Chapman RW, Fleming KA. Elevation of gd T lymphocytes in peripheral blood and livers of patients with primary sclerosing cholangitis and other autoimmune liver diseases. Hepatology 1996; 23(5): 988–993
pmid: 8621180
46 Hua F, Wang L, Rong X, Hu Y, Zhang JM, He W, Zhang FC. Elevation of Vd1 T cells in peripheral blood and livers of patients with primary biliary cholangitis. Clin Exp Immunol 2016; 186(3): 347–355
https://doi.org/10.1111/cei.12852 pmid: 27543908
47 Wen L, Peakman M, Mieli-Vergani G, Vergani D. Elevation of activated gd T cell receptor bearing T lymphocytes in patients with autoimmune chronic liver disease. Clin Exp Immunol 1992; 89(1): 78–82
https://doi.org/10.1111/j.1365-2249.1992.tb06881.x pmid: 1385768
48 Ferri S, Longhi MS, De Molo C, Lalanne C, Muratori P, Granito A, Hussain MJ, Ma Y, Lenzi M, Mieli-Vergani G, Bianchi FB, Vergani D, Muratori L. A multifaceted imbalance of T cells with regulatory function characterizes type 1 autoimmune hepatitis. Hepatology 2010; 52(3): 999–1007
https://doi.org/10.1002/hep.23792 pmid: 20683931
49 Nishio K, Miyagi T, Tatsumi T, Mukai K, Yokoyama Y, Yoshioka T, Sakamori R, Hikita H, Kodama T, Shimizu S, Shigekawa M, Nawa T, Yoshihara H, Hiramatsu N, Yamanaka H, Seino K, Takehara T. Invariant natural killer T cell deficiency leads to the development of spontaneous liver inflammation dependent on gd T cells in mice. J Gastroenterol 2015; 50(11): 1124–1133
https://doi.org/10.1007/s00535-015-1060-5 pmid: 25791517
50 Zhang H, Bernuzzi F, Lleo A, Ma X, Invernizzi P. Therapeutic potential of IL-17-mediated signaling pathway in autoimmune liver diseases. Mediators Inflamm 2015; 2015: 436450
https://doi.org/10.1155/2015/436450 pmid: 26146463
51 Ujiie H, Shevach EM. γδ T cells protect the liver and lungs of mice from autoimmunity induced by scurfy lymphocytes. J Immunol 2016; 196(4): 1517–1528
https://doi.org/10.4049/jimmunol.1501774 pmid: 26773142
52 Zhao N, Hao J, Ni Y, Luo W, Liang R, Cao G, Zhao Y, Wang P, Zhao L, Tian Z, Flavell R, Hong Z, Han J, Yao Z, Wu Z, Yin Z. Vg4 gd T cell-derived IL-17A negatively regulates NKT cell function in Con A-induced fulminant hepatitis. J Immunol 2011; 187(10): 5007–5014
https://doi.org/10.4049/jimmunol.1101315 pmid: 21987663
53 Hammerich L, Bangen JM, Govaere O, Zimmermann HW, Gassler N, Huss S, Liedtke C, Prinz I, Lira SA, Luedde T, Roskams T, Trautwein C, Heymann F, Tacke F. Chemokine receptor CCR6-dependent accumulation of gd T cells in injured liver restricts hepatic inflammation and fibrosis. Hepatology 2014; 59(2): 630–642
https://doi.org/10.1002/hep.26697 pmid: 23959575
54 Seo W, Eun HS, Kim SY, Yi HS, Lee YS, Park SH, Jang MJ, Jo E, Kim SC, Han YM, Park KG, Jeong WI. Exosome-mediated activation of toll-like receptor 3 in stellate cells stimulates interleukin-17 production by gd T cells in liver fibrosis. Hepatology 2016; 64(2): 616–631
https://doi.org/10.1002/hep.28644 pmid: 27178735
55 Meng F, Wang K, Aoyama T, Grivennikov SI, Paik Y, Scholten D, Cong M, Iwaisako K, Liu X, Zhang M, Österreicher CH, Stickel F, Ley K, Brenner DA, Kisseleva T. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 2012; 143(3):765–776.e3
https://doi.org/10.1053/j.gastro.2012.05.049 pmid: 22687286
56 Tan Z, Qian X, Jiang R, Liu Q, Wang Y, Chen C, Wang X, Ryffel B, Sun B. IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J Immunol 2013; 191(4): 1835–1844
https://doi.org/10.4049/jimmunol.1203013 pmid: 23842754
57 Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J. Cancer statistics in China, 2015. CA Cancer J Clin 2016; 66(2): 115–132
https://doi.org/10.3322/caac.21338 pmid: 26808342
58 Yi Y, He HW, Wang JX, Cai XY, Li YW, Zhou J, Cheng YF, Jin JJ, Fan J, Qiu SJ. The functional impairment of HCC-infiltrating gd T cells, partially mediated by regulatory T cells in a TGFβ- and IL-10-dependent manner. J Hepatol 2013; 58(5): 977–983
https://doi.org/10.1016/j.jhep.2012.12.015 pmid: 23262246
59 Cai XY, Wang JX, Yi Y, He HW, Ni XC, Zhou J, Cheng YF, Jin JJ, Fan J, Qiu SJ. Low counts of γδ T cells in peritumoral liver tissue are related to more frequent recurrence in patients with hepatocellular carcinoma after curative resection. Asian Pac J Cancer Prev 2014; 15(2): 775–780
pmid: 24568494
60 Ma S, Cheng Q, Cai Y, Gong H, Wu Y, Yu X, Shi L, Wu D, Dong C, Liu H. IL-17A produced by gd T cells promotes tumor growth in hepatocellular carcinoma. Cancer Res 2014; 74(7): 1969–1982
https://doi.org/10.1158/0008-5472.CAN-13-2534 pmid: 24525743
61 Zhang BN, Watanabe S, Kohyama M, Saijo K, Kusakabe M, Ohno T. Tumor formation suppressed in gd T knock-out mice. Cancer Lett 2000; 153(1-2): 63–66
https://doi.org/10.1016/S0304-3835(00)00343-8 pmid: 10779631
62 Silva-Santos B, Serre K, Norell H. γδ T cells in cancer. Nat Rev Immunol 2015; 15(11): 683–691
https://doi.org/10.1038/nri3904 pmid: 26449179
63 Wu D, Wu P, Qiu F, Wei Q, Huang J. Human gd T-cell subsets and their involvement in tumor immunity. Cell Mol Immunol 2017; 14(3): 245–253
https://doi.org/10.1038/cmi.2016.55 pmid: 27890919
64 Toutirais O, Cabillic F, Le Friec G, Salot S, Loyer P, Le Gallo M, Desille M, de La Pintière CT, Daniel P, Bouet F, Catros V. DNAX accessory molecule-1 (CD226) promotes human hepatocellular carcinoma cell lysis by Vg9Vd2 T cells. Eur J Immunol 2009; 39(5): 1361–1368
https://doi.org/10.1002/eji.200838409 pmid: 19404979
65 Sugai S, Yoshikawa T, Iwama T, Tsuchiya N, Ueda N, Fujinami N, Shimomura M, Zhang R, Kaneko S, Uemura Y, Nakatsura T. Hepatocellular carcinoma cell sensitivity to Vg9Vd2 T lymphocyte-mediated killing is increased by zoledronate. Int J Oncol 2016; 48(5): 1794–1804
https://doi.org/10.3892/ijo.2016.3403 pmid: 26936487
66 Forbes SJ, Newsome PN. Liver regeneration — mechanisms and models to clinical application. Nat Rev Gastroenterol Hepatol 2016; 13(8): 473–485
https://doi.org/10.1038/nrgastro.2016.97 pmid: 27353402
67 Furuya S, Kono H, Hara M, Hirayama K, Tsuchiya M, Fujii H. Interleukin-17A plays a pivotal role after partial hepatectomy in mice. J Surg Res 2013; 184(2): 838–846
https://doi.org/10.1016/j.jss.2013.03.033 pmid: 23590864
68 Wu X, Sun R, Chen Y, Zheng X, Bai L, Lian Z, Wei H, Tian Z. Oral ampicillin inhibits liver regeneration by breaking hepatic innate immune tolerance normally maintained by gut commensal bacteria. Hepatology 2015; 62(1): 253–264
https://doi.org/10.1002/hep.27791 pmid: 25783863
69 Wu YL, Ding YP, Tanaka Y, Shen LW, Wei CH, Minato N, Zhang W. γδ T cells and their potential for immunotherapy. Int J Biol Sci 2014; 10(2): 119–135
https://doi.org/10.7150/ijbs.7823 pmid: 24520210
[1] Daniel Wai-Hung Ho,Alan Ka-Lun Kai,Irene Oi-Lin Ng. TCGA whole-transcriptome sequencing data reveals significantly dysregulated genes and signaling pathways in hepatocellular carcinoma[J]. Front. Med., 2015, 9(3): 322-330.
[2] Farhad Sahebjam,John M. Vierling. Autoimmune hepatitis[J]. Front. Med., 2015, 9(2): 187-219.
[3] Sandy Leung-Kuen Au, Irene Oi-Lin Ng, Chun-Ming Wong. Epigenetic dysregulation in hepatocellular carcinoma: focus on polycomb group proteins[J]. Front Med, 2013, 7(2): 231-241.
[4] Hui Dong, Fu’er Lu, Nan Wang, Xin Zou, Jingjing Rao. Type 2 diabetic patients with non-alcoholic fatty liver disease exhibit significant haemorheological abnormalities[J]. Front Med, 2011, 5(3): 288-293.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed