Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2019, Vol. 13 Issue (2) : 238-249    https://doi.org/10.1007/s11684-017-0599-3
RESEARCH ARTICLE |
Interferon-α salvage treatment is effective for patients with acute leukemia/myelodysplastic syndrome with unsatisfactory response to minimal residual disease-directed donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation
Xiaodong Mo1, Xiaohui Zhang1, Lanping Xu1, Yu Wang1, Chenhua Yan1, Huan Chen1, Yuhong Chen1, Wei Han1, Fengrong Wang1, Jingzhi Wang1, Kaiyan Liu1, Xiaojun Huang1,2()
1. Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
2. Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100044, China
 Download: PDF(408 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The efficacy of salvage interferon-α (IFN-α) treatment was investigated in patients with unsatisfactory response to minimal residual disease (MRD)-directed donor lymphocyte infusion (DLI) (n=24). Patients who did not become MRD-negative at 1 month after DLI were those with unsatisfactory response and were eligible to receive salvage IFN-α treatment within 3 months of DLI. Recombinant human IFN-α-2b injections were subcutaneously administered 2–3 times a week for 6 months. Nine (37.5%), 6 (25.0%), and 3 (12.5%) patients became MRD-negative at 1, 2, and>2 months after the salvage IFN-α treatment, respectively. Two-year cumulative incidences of relapse and non-relapse mortality were 35.9% and 8.3%, respectively. Two-year probabilities of event-free survival, disease-free survival, and overall survival were 51.6%, 54.3%, and 68.0%, respectively. Outcomes of patients subjected to salvage IFN-α treatment after DLI were significantly better than those with persistent MRD without IFN-α treatment. Moreover, clinical outcomes were comparable between the salvage DLI and IFN-α treatment groups. Thus, salvage IFN-α treatment may help improve the outcome of patients with unsatisfactory responses to MRD-directed DLI and could be a potential salvage treatment for these patients after allogeneic hematopoietic stem cell transplantation.

Keywords interferon-α      hematopoietic stem cell transplantation      minimal residual disease      donor lymphocyte infusion     
Corresponding Authors: Xiaojun Huang   
Just Accepted Date: 12 February 2018   Online First Date: 16 April 2018    Issue Date: 28 March 2019
 Cite this article:   
Xiaodong Mo,Xiaohui Zhang,Lanping Xu, et al. Interferon-α salvage treatment is effective for patients with acute leukemia/myelodysplastic syndrome with unsatisfactory response to minimal residual disease-directed donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation[J]. Front. Med., 2019, 13(2): 238-249.
 URL:  
http://academic.hep.com.cn/fmd/EN/10.1007/s11684-017-0599-3
http://academic.hep.com.cn/fmd/EN/Y2019/V13/I2/238
Fig.1  Patients enrolled in this study. Patients who were minimal residual disease (MRD) (+) at 1 month after MRD-directed DLI were eligible to receive salvage interventions within 3 months of donor lymphocyte infusion (DLI), with consent, if they had no active graft-versus-host disease (GVHD) or active infection. Salvage interventions included treatment with IFN-α and DLI, and this intervention was primarily based on the physicians’ and patients’ intentions.
Fig.2  Cumulative incidence of relapse at 2 years based on the (A) underlying disease (42.5% vs. 31.3%, P=0.969) and (B) MRD status after salvage treatment with IFN-α (20.5% vs. 51.3%, P=0.131).
Characteristics MRD (–) group (n=26) MRD (+) IFN-α (+) group (n =24) MRD (+) IFN-α (–) group (n=17) P value
Median age at allo-HSCT, years (range) 28 (8–58) 23 (3–48) 28 (2–50) 0.478
Median time from allo-HSCT to DLI, days (range) 177 (79–821) 242 (63–1239) 214 (73–1552) 0.444
Underlying disease, n (%)
?Acute myeloid leukemia 13 (50.0) 15 (62.5) 11 (64.8) 0.338
?Acute lymphoblastic leukemia 7 (26.9) 8 (33.3) 3 (17.6)
?Myelodysplastic syndrome 6 (23.1) 1 (4.2) 3 (17.6)
Disease risk at diagnosis, n (%)
?Low risk 2 (7.7) 3 (12.5) 1 (5.9) 0.484
?Intermediate risk 18 (69.2) 19 (79.2) 15 (88.2)
?High risk 6 (23.1) 2 (8.3) 1 (5.9)
Sex, n (%)
?Male 14 (53.8) 14 (58.3) 11 (64.7) 0.779
?Female 12 (46.2) 10 (41.7) 16 (35.3)
Donor–recipient sex match, n (%)
?Female–male 6 (23.1) 7 (29.2) 2 (11.8) 0.430
?Others 20 (76.9) 17 (70.8) 15 (88.2)
ABO matched, n (%)
?Matched 15 (57.7) 12 (50.0) 10 (58.8) 0.811
?Mismatched 11 (42.3) 12 (50.0) 7 (41.2)
Donor–recipient relationship, n (%)
?Father–child 9 (34.6) 9 (37.5) 7 (41.2) 0.675
?Mother–child 1 (3.8) 3 (12.5) 0 (0.0)
?Sibling–sibling 13 (50.0) 11 (45.8) 9 (52.9)
?Other related donor 3 (11.6) 0 (0.0) 0 (0.0)
?Unrelated donor 0 (0.0) 1 (4.2) 1 (5.9)
Donor type, n (%)
?HLA-identical sibling donor 8 (30.8) 6 (25.0) 6 (35.3) 0.734
?HLA-haploidentical related donor 18 (69.2) 17 (70.8) 10 (58.8)
?HLA-unrelated donor 0 (0.0) 1 (4.2) 1 (5.9)
Number of HLA-A, HLA-B, HLA-DR mismatches, n (%)
?0 8 (30.8) 7 (29.2) 6 (35.3) 0.878
?1 2 (7.7) 0 (0.0) 1 (5.8)
?2 2 (7.7) 2 (8.3) 2 (11.8)
?3 14 (53.8) 15 (62.5) 8 (47.1)
MRD prior to preemptive DLI, n (%)
?Genetic markerpositive twice 15 (57.7) 11 (45.8) 5 (29.4) 0.175
?LAIPs positive twice 2 (7.7) 0 (0.0) 1 (5.9)
?Genetic marker and LAIPs positive simultaneous 9 (34.6) 13 (54.2) 11 (64.7)
High-level MRD prior to DLI, n (%) a 21 (80.8) 17 (70.8) 15 (88.2) 0.411
Late onset MRD, n (%) b 18 (69.2) 16 (66.7) 13 (76.5) 0.789
Discontinuing immunosuppressions before DLI, n (%) 16 (61.5) 13 (54.2) 6 (35.3) 0.235
GVHD prophylaxis, n (%)
?Cyclosporine A 26 (100.0) 23 (95.8) 16 (94.1) 0.518
?Methotrexate 0 (0.0) 1 (4.2) 1 (5.9)
Subtypes of cells for DLI
?Median mononuclear cells, ×108/kg (range) 1.0
(1.0–2.3)
1.0
(0.8–1.8)
1.0
(0.8–2.0)
0.558
?Median CD3+ counts, ×107/kg (range) 3.6
(0.7–7.5)
3.3
(0.2–7.7)
3.5
(0.5–7.4)
0.565
?Median CD34+ counts, ×106/kg (range) 0.3
(0.1–0.6)
0.4
(0.1–1.2)
0.5
(0.1–1.5)
0.064
Acute GVHD after DLI, n (%) 8 (30.8) 4 (16.6) 5 (29.4) 0.459
?Grade I to II 5 (19.2) 2 (8.3) 3 (17.6) 0.570
?Grade III to IV 3 (11.6) 2 (8.3) 2 (11.8) 1.000
Chronic GVHD after DLI, n (%) 19 (73.1) 9 (37.5) 7 (41.2) 0.024
?Mild to moderate 7 (26.9) 5 (20.8) 5 (29.4) 0.824
?Severe 12 (46.2) 4 (16.7) 2 (11.8) 0.021
Median follow-up after DLI, d (range) 532 (90–1231) 557 (62–1336) 190 (16–867) 0.017
Tab.1  Patient characteristics
Fig.3  Clinical outcomes of patients with and without exposure to salvage IFN-α treatment at 2 years after MRD-directed DLI. (A) Relapse: MRD (+) IFN (+) group vs. MRD (+) IFN (–) group: 35.9% vs. 64.7%, P=0.007; MRD (+) IFN (+) group vs. MRD (–) group: 35.9% vs. 3.8%, P=0.011; MRD (+) IFN (–) group vs. MRD (–) group: 64.7% vs. 3.8%, P<0.001. (B) NRM: MRD (+) IFN (+) group vs. MRD (+) IFN (–) group: 8.3% vs. 5.9%, P=0.888; MRD (+) IFN (+) group vs. MRD (–) group: 8.3% vs. 21.3%, P=0.233; MRD (+) IFN(–) group vs. MRD (–) group: 5.9% vs. 21.3%, P=0.298. (C) DFS: MRD (+) IFN (+) group vs. MRD (+) IFN (–) group: 54.3% vs. 29.4%, P=0.004; MRD (+) IFN (+) group vs. MRD (–) group: 54.3% vs. 74.9%, P=0.206; MRD (+) IFN (–) group vs. MRD (–) group: 29.4% vs. 74.9%, P<0.001. (D) OS: MRD (+) IFN (+) group vs. MRD (+) IFN (–) group: 68.0% vs. 41.7%, P=0.076; MRD (+) IFN (+) group vs. MRD (–) group: 68.0% vs. 78.8%, P=0.441; MRD (+) IFN (–) group vs. MRD (–) group: 41.7% vs. 78.8%, P=0.015.
HR 95% CI P
Relapse
?MRD (+) after DLI, without IFN-α 1.00
?MRD (+) after DLI, received IFN-α 0.28 0.11–0.70 0.007
?MRD (−) after DLI 0.03 0.01–0.25 0.001
Treatment failure as defined by DFS
?MRD (+) after DLI, without IFN-α 1.00
?MRD (+) after DLI, received IFN-α 0.30 0.13–0.71 0.006
?MRD (−) after DLI 0.14 0.05–0.39 <0.001
Treatment failure as defined by OS
?MRD (+) after DLI, without IFN-α 1.00
?MRD (+) after DLI, received IFN-α 0.41 0.15–1.13 0.085
?MRD (−) after DLI 0.26 0.09–0.81 0.020
Tab.2  Multivariate analyses for 2-year clinical outcomes after DLI
1 PTsirigotis, M Byrne, CSchmid, FBaron, FCiceri, JEsteve, NCGorin, SGiebel, MMohty, BNSavani, ANagler. Relapse of AML after hematopoietic stem cell transplantation: methods of monitoring and preventive strategies. A review from the ALWP of the EBMT. Bone Marrow Transplant 2016; 51(11): 1431–1438
https://doi.org/10.1038/bmt.2016.167 pmid: 27295272
2 PTsirigotis, M Liga, KGkirkas, MStamouli, ETriantafyllou, MMarangos, IPessach, ASarantopoulos, NSpyridis, ASpyridonidis. Low-dose alemtuzumab for GvHD prevention followed by prophylactic donor lymphocyte infusions in high-risk leukemia. Bone Marrow Transplant 2017; 52(3): 445–451
https://doi.org/10.1038/bmt.2016.272 pmid: 27941776
3 ADominietto, S Pozzi, MMiglino, FAlbarracin, GPiaggio, FBertolotti, RGrasso, SZupo, AM Raiola, MGobbi, FFrassoni, ABacigalupo. Donor lymphocyte infusions for the treatment of minimal residual disease in acute leukemia. Blood 2007; 109(11): 5063–5064
https://doi.org/10.1182/blood-2007-02-072470 pmid: 17522340
4 CHYan, DH Liu, KYLiu, LPXu, YR Liu, HChen, WHan, Y Wang, YZQin, XJHuang. Risk stratification-directed donor lymphocyte infusion could reduce relapse of standard-risk acute leukemia patients after allogeneic hematopoietic stem cell transplantation. Blood 2012; 119(14): 3256–3262
https://doi.org/10.1182/blood-2011-09-380386 pmid: 22337715
5 XDMo, XH Zhang, LPXu, YWang, CH Yan, HChen, YHChen, WHan, FR Wang, JZWang, KYLiu, XJ Huang. Salvage chemotherapy followed by granulocyte colony-stimulating factor-primed donor leukocyte infusion with graft-vs.-host disease control for minimal residual disease in acute leukemia/myelodysplastic syndrome after allogeneic hematopoietic stem cell transplantation: prognostic factors and clinical outcomes. Eur J Haematol 2016; 96(3): 297–308
https://doi.org/10.1111/ejh.12591 pmid: 26010204
6 ENMcSweeney, CP Worman, CPTsakona, APJewel, AVHoffbrand, DWMilligan, AKBurnett, MLLewis, AHGoldstone. Low-dose recombinant alfa-2a-interferon: a feasible maintenance therapy in acute myeloid leukaemia in the older patient. Acta Haematol 1993; 89(1): 1–5
pmid: 8480480
7 ELSmits, S Anguille, ZNBerneman. Interferon α may be back on track to treat acute myeloid leukemia. OncoImmunology 2013; 2(4): e23619
https://doi.org/10.4161/onci.23619 pmid: 23734314
8 SAnguille, E Lion, YWillemen, VFVan Tendeloo, ZNBerneman, ELSmits. Interferon-α in acute myeloid leukemia: an old drug revisited. Leukemia 2011; 25(5): 739–748
https://doi.org/10.1038/leu.2010.324 pmid: 21274002
9 SSinghal, R Powles, JTreleaven, JMehta. Sensitivity of secondary acute myeloid leukemia relapsing after allogeneic bone marrow transplantation to immunotherapy with interferon-α2b. Bone Marrow Transplant 1997; 19(11): 1151–1153
https://doi.org/10.1038/sj.bmt.1700793 pmid: 9193760
10 BGesundheit, MY Shapira, IBResnick, AAmar, D Kristt, LDray, EBudowski, ROr. Successful cell-mediated cytokine-activated immunotherapy for relapsed acute myeloid leukemia after hematopoietic stem cell transplantation. Am J Hematol 2009; 84(3): 188–190
https://doi.org/10.1002/ajh.21346 pmid: 19105234
11 XTang, YH Song, ASun, XZhu, C Ruan, DWu. Successful treatment of relapsed acute myeloid leukemia without chemotherapy. J Clin Oncol 2016; 34(13): e117–e119
https://doi.org/10.1200/JCO.2012.48.0442 pmid: 24711555
12 XDMo, XH Zhang, LPXu, YWang, CH Yan, HChen, YHChen, WHan, FR Wang, JZWang, KYLiu, XJ Huang. Interferon-α: a potentially effective treatment for minimal residual disease in acute leukemia/myelodysplastic syndrome after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2015; 21(11): 1939–1947
https://doi.org/10.1016/j.bbmt.2015.06.014 pmid: 26116088
13 XMo, X Zhao, LXu, DLiu, X Zhang, HChen, YWang, X Huang. Interferon α: the salvage therapy for patients with unsatisfactory response to minimal residual disease-directed modified donor lymphocyte infusion. Chin Med J (Engl) 2014; 127(14): 2583–2587
pmid: 25043071
14 XJHuang, LP Xu , KYLiu , DHLiu , Y Wang , HChen , YHChen , WHan , JZ Wang , YChen , XHZhang , HXShi , FR Wang , FFTang . Partially matched related donor transplantation can achieve outcomes comparable with unrelated donor transplantation for patients with hematologic malignancies. Clin Cancer Res 2009; 15(14): 4777–4783
https://doi.org/10.1158/1078-0432.CCR-09-0691 pmid: 19584148
15 YWang, QF Liu, LPXu, KYLiu, XH Zhang, XMa, ZPFan, DP Wu, XJHuang. Haploidentical vs. identical-sibling transplant for AML in remission: a multicenter, prospective study. Blood 2015; 125(25): 3956–3962
https://doi.org/10.1182/blood-2015-02-627786 pmid: 25940714
16 XJHuang, DH Liu, KYLiu, LPXu, H Chen, WHan, YHChen, JZWang, ZYGao, YC Zhang, QJiang, HXShi, DP Lu. Haploidentical hematopoietic stem cell transplantation without in vitro T-cell depletion for the treatment of hematological malignancies. Bone Marrow Transplant 2006; 38(4): 291–297
https://doi.org/10.1038/sj.bmt.1705445 pmid: 16883312
17 XJHuang, DH Liu, KYLiu, LPXu, H Chen, WHan, YHChen, XHZhang, DPLu. Treatment of acute leukemia with unmanipulated HLA-mismatched/haploidentical blood and bone marrow transplantation. Biol Blood Marrow Transplant 2009; 15(2): 257–265
https://doi.org/10.1016/j.bbmt.2008.11.025 pmid: 19167686
18 XSZhao, YR Liu, HHZhu, LPXu, DH Liu, KYLiu, XJHuang. Monitoring MRD with flow cytometry: an effective method to predict relapse for ALL patients after allogeneic hematopoietic stem cell transplantation. Ann Hematol 2012; 91(2): 183–192
https://doi.org/10.1007/s00277-011-1285-1 pmid: 21710165
19 HHZhu, XH Zhang, YZQin, DHLiu, H Jiang, HChen, QJiang, LPXu, J Lu, WHan, LBao, Y Wang, YHChen, JZWang, FRWang, YYLai, JY Chai, LRWang, YRLiu, KY Liu, BJiang, XJHuang. MRD-directed risk stratification treatment may improve outcomes of t(8;21) AML in the first complete remission: results from the AML05 multicenter trial. Blood 2013; 121(20): 4056–4062
https://doi.org/10.1182/blood-2012-11-468348 pmid: 23535063
20 YWang, DP Wu, QFLiu, YZQin, JB Wang, LPXu, YRLiu, HH Zhu, JChen, MDai, XJ Huang. In adults with t(8;21)AML, posttransplant RUNX1/RUNX1T1-based MRD monitoring, rather than c-KIT mutations, allows further risk stratification. Blood 2014; 124(12): 1880–1886
https://doi.org/10.1182/blood-2014-03-563403 pmid: 25082877
21 XSZhao, S Jin, HHZhu, LPXu, DH Liu, HChen, KYLiu, XJ Huang. Wilms’ tumor gene 1 expression: an independent acute leukemia prognostic indicator following allogeneic hematopoietic SCT. Bone Marrow Transplant 2012; 47(4): 499–507
https://doi.org/10.1038/bmt.2011.121 pmid: 21643023
22 XSZhao, CH Yan, DHLiu, LPXu, YR Liu, KYLiu, YZQin, Y Wang, XJHuang. Combined use of WT1 and flow cytometry monitoring can promote sensitivity of predicting relapse after allogeneic HSCT without affecting specificity. Ann Hematol 2013; 92(8): 1111–1119
https://doi.org/10.1007/s00277-013-1733-1 pmid: 23680867
23 XDMo, XH Zhang, LPXu, YWang, CH Yan, HChen, YHChen, WHan, FR Wang, JZWang, KYLiu, XJ Huang. Comparison of outcomes after donor lymphocyte infusion with or without prior chemotherapy for minimal residual disease in acute leukemia/myelodysplastic syndrome after allogeneic hematopoietic stem cell transplantation. Ann Hematol 2017; 96(5): 829–838
https://doi.org/10.1007/s00277-017-2960-7 pmid: 28285386
24 FLDignan, A Clark, PAmrolia, JCornish, GJackson, PMahendra, JJScarisbrick, PCTaylor, NHadzic, BEShaw, MNPotter; Haemato-oncology Task Force of British Committee for Standards in Haematology; British Society for Blood and Marrow Transplantation. Diagnosis and management of acute graft-versus-host disease. Br J Haematol 2012; 158(1): 30–45
https://doi.org/10.1111/j.1365-2141.2012.09129.x pmid: 22533831
25 FLDignan, P Amrolia, AClark, JCornish, GJackson, PMahendra, JJScarisbrick, PCTaylor, BEShaw, MNPotter; Haemato-oncology Task Force of British Committee for Standards in Haematology; British Society for Blood and Marrow Transplantation. Diagnosis and management of chronic graft-versus-host disease. Br J Haematol 2012; 158(1): 46–61
https://doi.org/10.1111/j.1365-2141.2012.09128.x pmid: 22533811
26 PArmand, CJ Gibson, CCutler, VTHo, J Koreth, EPAlyea, JRitz, ML Sorror, SJLee, HJDeeg, BEStorer, FRAppelbaum, JHAntin, RJSoiffer, HTKim. A disease risk index for patients undergoing allogeneic stem cell transplantation. Blood 2012; 120(4): 905–913
https://doi.org/10.1182/blood-2012-03-418202 pmid: 22709687
27 DPrzepiorka, D Weisdorf, PMartin, HGKlingemann, PBeatty, JHows, ED Thomas. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant 1995; 15(6): 825–828
pmid: 7581076
28 AHFilipovich, D Weisdorf, SPavletic, GSocie, JRWingard, SJLee, P Martin, JChien, DPrzepiorka, DCouriel, EWCowen, PDinndorf, AFarrell, RHartzman, JHenslee-Downey, DJacobsohn, GMcDonald, BMittleman, JDRizzo, MRobinson, MSchubert, KSchultz, HShulman, MTurner, GVogelsang, MEFlowers. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol Blood Marrow Transplant 2005; 11(12): 945–956
https://doi.org/10.1016/j.bbmt.2005.09.004 pmid: 16338616
29 TAGooley, W Leisenring, JCrowley, BEStorer. Estimation of failure probabilities in the presence of competing risks: new representations of old estimators. Stat Med 1999; 18(6): 695–706
https://doi.org/10.1002/(SICI)1097-0258(19990330)18:6<695::AID-SIM60>3.0.CO;2-O pmid: 10204198
30 AZRohatiner. Growth inhibitory effects of interferon on blast cells from patients with acute myelogenous leukaemia. Br J Cancer 1984; 49(6): 805–807
https://doi.org/10.1038/bjc.1984.125 pmid: 6587902
31 SMorecki, S Revel-Vilk, CNabet, MPick, A Ackerstein, ANagler, ENaparstek, MBen Shahar, SSlavin. Immunological evaluation of patients with hematological malignancies receiving ambulatory cytokine-mediated immunotherapy with recombinant human interferon-alpha 2a and interleukin-2. Cancer Immunol Immunother 1992; 35(6): 401–411
https://doi.org/10.1007/BF01789019 pmid: 1394343
32 XDMo, XH Zhang, LPXu, YWang, CH Yan, HChen, YHChen, WHan, FR Wang, JZWang, KYLiu, XJ Huang. IFN-α is effective for treatment of minimal residual disease in patients with acute leukemia after allogeneic hematopoietic stem cell transplantation: results of a registry study. Biol Blood Marrow Transplant 2017; 23(8): 1303–1310
https://doi.org/10.1016/j.bbmt.2017.04.023 pmid: 28457953
33 HJKolb, J Mittermüller, CClemm, EHoller, GLedderose, GBrehm, MHeim, W Wilmanns. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 1990; 76(12): 2462–2465
pmid: 2265242
34 AGrigg, K Kannan, APSchwarer, ASpencer, JSzer. Chemotherapy and granulocyte colony stimulating factor-mobilized blood cell infusion followed by interferon-α for relapsed malignancy after allogeneic bone marrow transplantation. Intern Med J 2001; 31(1): 15–22
https://doi.org/10.1046/j.1445-5994.2001.00013.x pmid: 11478351
35 FBaron, M Labopin, DNiederwieser, SVigouroux, JJCornelissen, CMalm, LL Vindelov, DBlaise, JJJanssen, EPetersen, GSocié, ANagler, VRocha, MMohty. Impact of graft-versus-host disease after reduced-intensity conditioning allogeneic stem cell transplantation for acute myeloid leukemia: a report from the Acute Leukemia Working Party of the European group for blood and marrow transplantation. Leukemia 2012; 26(12): 2462–2468
https://doi.org/10.1038/leu.2012.135 pmid: 22699419
36 XDMo, LP Xu, XHZhang, DHLiu, Y Wang, HChen, CHYan, YH Chen, WHan, FRWang, JZWang, KYLiu, XJ Huang. Chronic GVHD induced GVL effect after unmanipulated haploidentical hematopoietic SCT for AML and myelodysplastic syndrome. Bone Marrow Transplant 2015; 50(1): 127–133
https://doi.org/10.1038/bmt.2014.223 pmid: 25387095
37 TSchroeder, A Czibere, UPlatzbecker, GBug, L Uharek, TLuft, AGiagounidis, FZohren, IBruns, CWolschke, KRieger, RFenk, U Germing, RHaas, NKröger, GKobbe. Azacitidine and donor lymphocyte infusions as first salvage therapy for relapse of AML or MDS after allogeneic stem cell transplantation. Leukemia 2013; 27(6): 1229–1235
https://doi.org/10.1038/leu.2013.7 pmid: 23314834
38 UPlatzbecker, M Wermke, JRadke, UOelschlaegel, FSeltmann, AKiani, IMKlut, HKnoth, CRöllig, JSchetelig, BMohr, X Graehlert, GEhninger, MBornhäuser, CThiede. Azacitidine for treatment of imminent relapse in MDS or AML patients after allogeneic HSCT: results of the RELAZA trial. Leukemia 2012; 26(3): 381–389
https://doi.org/10.1038/leu.2011.234 pmid: 21886171
39 IChoi, SR Yoon, SYPark, HKim, SJ Jung, YJJang, MKang, YI Yeom, JLLee, DYKim, YS Lee, YAKang, MJeon, M Seol, JHLee, JHLee, HJ Kim, SCYun, KHLee. Donor-derived natural killer cells infused after human leukocyte antigen-haploidentical hematopoietic cell transplantation: a dose-escalation study. Biol Blood Marrow Transplant 2014; 20(5): 696–704
https://doi.org/10.1016/j.bbmt.2014.01.031 pmid: 24525278
40 CRCruz, KP Micklethwaite, BSavoldo, CARamos, SLam, S Ku, ODiouf, ELiu, AJ Barrett, SIto, EJShpall, RAKrance, RTKamble, GCarrum, CMHosing, APGee, Z Mei, BJGrilley, HEHeslop, CMRooney, MKBrenner, CMBollard, GDotti. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood 2013; 122(17): 2965–2973
https://doi.org/10.1182/blood-2013-06-506741 pmid: 24030379
41 YBChen, S Li, AALane, CConnolly, CDel Rio, BValles, MCurtis, KBallen, CCutler, BRDey, A El-Jawahri, ATFathi, VTHo, A Joyce, SMcAfee, MRudek, TRajkhowa, SVerselis, JHAntin, TRSpitzer, MLevis, RSoiffer. Phase I trial of maintenance sorafenib after allogeneic hematopoietic stem cell transplantation for fms-like tyrosine kinase 3 internal tandem duplication acute myeloid leukemia. Biol Blood Marrow Transplant 2014; 20(12): 2042–2048
https://doi.org/10.1016/j.bbmt.2014.09.007 pmid: 25239228
42 HGKlingemann, AP Grigg, KWilkie-Boyd, MJBarnett, ACEaves, DEReece, JDShepherd, GLPhillips. Treatment with recombinant interferon (alpha-2b) early after bone marrow transplantation in patients at high risk for relapse [corrected]. Blood 1991; 78(12): 3306–3311 (corrected)
pmid: 1742491
43 CYan, L Xu, DLiu, HChen, Y Wang, KLiu, XHuang. Immunosuppression for 6-8 weeks after modified donor lymphocyte infusion reduced acute graft-versus-host disease without influencing graft-versus-leukemia effect in haploidentical transplant. Chin Med J (Engl) 2014; 127(20): 3602–3609
pmid: 25316237
[1] FMD-17084-OF-HXJ_suppl_1 Download
[1] Meng Lv, Yingjun Chang, Xiaojun Huang. Everyone has a donor: contribution of the Chinese experience to global practice of haploidentical hematopoietic stem cell transplantation[J]. Front. Med., 2019, 13(1): 45-56.
[2] Fei Gao, Jingyu Chen, Dong Wei, Bo Wu, Min Zhou. Lung transplantation for bronchiolitis obliterans syndrome after allogenic hematopoietic stem cell transplantation[J]. Front. Med., 2018, 12(2): 224-228.
[3] Xuying Pei, Xiangyu Zhao, Yu Wang, Lanping Xu, Xiaohui Zhang, Kaiyan Liu, Yingjun Chang, Xiaojun Huang. Comparison of reference values for immune recovery between event-free patients receiving haploidentical allografts and those receiving human leukocyte antigen-matched sibling donor allografts[J]. Front. Med., 2018, 12(2): 153-163.
[4] Lanping Xu,Huanling Zhu,Jianda Hu,Depei Wu,Hao Jiang,Qian Jiang,Xiaojun Huang. Superiority of allogeneic hematopoietic stem cell transplantation to nilotinib and dasatinib for adult patients with chronic myelogenous leukemia in the accelerated phase[J]. Front. Med., 2015, 9(3): 304-311.
[5] Xiaodong Mo, Xiaojun Huang. Advancement of human leukocyte antigen-partially matched related hematopoietic stem cell transplantation[J]. Front Med, 2013, 7(3): 306-315.
[6] Quan LI MD , Weiming LI MD , Ping ZOU MD , Jian ZHANG BM , . Gene and protein expression of proteinase-activated receptor-1, 2 in a murine model of acute graft host disease[J]. Front. Med., 2009, 3(3): 309-315.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed