Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2018, Vol. 12 Issue (2) : 236-238
Carcinogens that induce the A:T>T:A nucleotide substitutions in the genome
Guangbiao Zhou(), Xinchun Zhao
State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
 Download: PDF(81 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Recently, Ng et al. reported that the A:T>T:A substitutions, proposed to be a signature of aristolochic acid (AA) exposure, were detected in 76/98 (78%) of patients with hepatocellular carcinoma (HCC) from the Taiwan Province of China, and 47% to 1.7% of HCCs from the Chinese mainland and other countries harbored the nucleotide changes. However, other carcinogens, e.g., tobacco carcinogens 4-aminobiphenyl and 1,3-butadiene, air toxic vinyl chloride and its reactive metabolites chloroethylene oxide, melphalan and chlorambucil, also cause this signature in the genome. Since tobacco smoke is a worldwide public health threat and vinyl chloride distributes globally and is an air pollutant in Taiwan Province, the estimation of the patients’ exposure history is the key to determine the “culprit” of the A:T>T:A mutations. Apparently, without estimation of the patients’ exposure history, the conclusion of Ng et al. is unpersuasive and misleading.

Keywords genomic signature      carcinogen      aristolochic acid      tobacco smoke      vinyl chloride      hepatocellular carcinoma     
Corresponding Authors: Guangbiao Zhou   
Just Accepted Date: 08 November 2017   Online First Date: 01 December 2017    Issue Date: 02 April 2018
 Cite this article:   
Guangbiao Zhou,Xinchun Zhao. Carcinogens that induce the A:T>T:A nucleotide substitutions in the genome[J]. Front. Med., 2018, 12(2): 236-238.
Agents/carcinogens Sites of related cancers Affected genes References
4-aminobiphenyl Liver, bladder, urinary H-Ras [9]
1,3-Butadiene Bone marrow HPRT [10]
AA Upper urothelial cancer RAS, TP53, exosome wide [1,5,6,15,16]
Ethylene oxide Stomach, marrow H-Ras [17]
Melphalan and chlorambucil Breast, ovarian, marrow TP53, N-RAS, Hprt [13,14]
Vinyl chloride Liver TP53 [12]
Tab.1  Carcinogens causing the A:T>T:A nucleotide substitutions
1 Ng AWT, Poon SL, Huang MN, Lim JQ, Boot A, Yu W, Suzuki Y, Thangaraju S, Ng CCY, Tan P, Pang ST, Huang HY, Yu MC, Lee PH, Hsieh SY, Chang AY, Teh BT, Rozen SG. Aristolochic acids and their derivatives are widely implicated in liver cancers in Taiwan and throughout Asia. Sci Transl Med 2017; 9(412): eaan6446 pmid: 29046434
2 De Broe ME. On a nephrotoxic and carcinogenic slimming regimen. Am J Kidney Dis 1999; 33(6): 1171–1173 pmid: 10352210
3 Stiborová M, Arlt VM, Schmeiser HH. Balkan endemic nephropathy: an update on its aetiology. Arch Toxicol 2016; 90(11): 2595–2615 pmid: 27538407
4 de Jonge H, Vanrenterghem Y. Aristolochic acid: the common culprit of Chinese herbs nephropathy and Balkan endemic nephropathy. Nephrol Dial Transplant 2008; 23(1): 39–41 pmid: 17913731
5 Schmeiser HH, Janssen JWG, Lyons J, Scherf HR, Pfau W, Buchmann A, Bartram CR, Wiessler M. Aristolochic acid activates ras genes in rat tumors at deoxyadenosine residues. Cancer Res 1990; 50(17): 5464–5469
pmid: 2201437
6 Grollman AP, Shibutani S, Moriya M, Miller F, Wu L, Moll U, Suzuki N, Fernandes A, Rosenquist T, Medverec Z, Jakovina K, Brdar B, Slade N, Turesky RJ, Goodenough AK, Rieger R, Vukelić M, Jelaković B. Aristolochic acid and the etiology of endemic (Balkan) nephropathy. Proc Natl Acad Sci USA 2007; 104(29): 12129–12134 pmid: 17620607
7 Yu XJ, Yang MJ, Zhou B, Wang GZ, Huang YC, Wu LC, Cheng X, Wen ZS, Huang JY, Zhang YD, Gao XH, Li GF, He SW, Gu ZH, Ma L, Pan CM, Wang P, Chen HB, Hong ZP, Wang XL, Mao WJ, Jin XL, Kang H, Chen ST, Zhu YQ, Gu WY, Liu Z, Dong H, Tian LW, Chen SJ, Cao Y, Wang SY, Zhou GB. Characterization of somatic mutations in air pollution-related lung cancer. EBioMedicine 2015; 2(6): 583–590 pmid: 26288819
8 Chappell G, Pogribny IP, Guyton KZ, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: a systematic literature review. Mutat Res Rev Mutat Res 2016; 768(Supplement C): 27–45 pmid: 27234561
9 Manjanatha MG, Li EE, Fu PP, Heflich RH. H- and K-ras mutational profiles in chemically induced liver tumors from B6C3F1 and CD-1 mice. J Toxicol Environ Health 1996; 47(2): 195–208 pmid: 8598575
10 Ma H, Wood TG, Ammenheuser MM, Rosenblatt JI, Ward JB Jr. Molecular analysis of hprt mutant lymphocytes from 1, 3-butadiene-exposed workers. Environ Mol Mutagen 2000; 36(1): 59–71<59::AID-EM9>3.0.CO;2-# pmid: 10918361
11 Wagoner JK. Toxicity of vinyl chloride and poly(vinyl chloride): a critical review. Environ Health Perspect 1983; 52:61–66
pmid: 6360677
12 Hollstein M, Marion MJ, Lehman T, Welsh J, Harris CC, Martel-Planche G, Kusters I, Montesano R. p53 mutations at A:T base pairs in angiosarcomas of vinyl chloride-exposed factory workers. Carcinogenesis 1994; 15(1): 1–3 pmid: 8293534
13 Wang P, Bennett RAO, Povirk LF. Melphalan-induced mutagenesis in an SV40-based shuttle vector: predominance of A·T→T·A transversions. Cancer Res 1990; 50(23): 7527–7531
pmid: 2174727
14 Povirk LF, Shuker DE. DNA damage and mutagenesis induced by nitrogen mustards. Mutat Res 1994; 318(3): 205–226 pmid: 7527485
15 Hoang ML, Chen CH, Sidorenko VS, He J, Dickman KG, Yun BH, Moriya M, Niknafs N, Douville C, Karchin R, Turesky RJ, Pu YS, Vogelstein B, Papadopoulos N, Grollman AP, Kinzler KW, Rosenquist TA. Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing. Sci Transl Med 2013;5(197):197ra02 10.1126/scitranslmed.3006200 pmid: 23926200
16 Poon SL, Pang ST, McPherson JR, Yu W, Huang KK, Guan P, Weng WH, Siew EY, Liu Y, Heng HL, Chong SC, Gan A, Tay ST, Lim WK, Cutcutache I, Huang D, Ler LD, Nairismägi ML, Lee MH, Chang YH,Yu KJ, Chan-On W, Li BK, Yuan YF, Qian CN, Ng KF, Wu CF, Hsu CL, Bunte RM, Stratton MR, Futreal PA, Sung WK, Chuang CK, Ong CK, Rozen SG,Tan P, Teh BT. Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci Transl Med 2013; 5(197):197ra101 pmid: 23926199
17 Houle CD, Ton TVT, Clayton N, Huff J, Hong HHL, Sills RC. Frequent p53 and H-ras mutations in benzene- and ethylene oxide-induced mammary gland carcinomas from B6C3F1 mice. Toxicol Pathol 2006; 34(6): 752–762 pmid: 17162533
18 Huang J, Deng Q, Wang Q, Li KY, Dai JH, Li N, Zhu ZD, Zhou B, Liu XY, Liu RF, Fei QL, Chen H, Cai B, Zhou B, Xiao HS, Qin LX, Han ZG. Exome sequencing of hepatitis B virus-associated hepatoccelular carcinoma. Nat Genet 2012; 44(10): 1117–1121
[1] Min Yu, Zonghai Li. Natural killer cells in hepatocellular carcinoma: current status and perspectives for future immunotherapeutic approaches[J]. Front. Med., 2017, 11(4): 509-521.
[2] Zhen He,Cheng Hu,Weiping Jia. miRNAs in non-alcoholic fatty liver disease[J]. Front. Med., 2016, 10(4): 389-396.
[3] Xinsen Xu,Yanyan Zhou,Runchen Miao,Wei Chen,Kai Qu,Qing Pang,Chang Liu. Transcriptional modules related to hepatocellular carcinoma survival: coexpression network analysis[J]. Front. Med., 2016, 10(2): 183-190.
[4] Zhi Xu,Chunxiang Cao,Haiyan Xia,Shujing Shi,Lingzhi Hong,Xiaowei Wei,Dongying Gu,Jianmin Bian,Zijun Liu,Wenbin Huang,Yixin Zhang,Song He,Nikki Pui-Yue Lee,Jinfei Chen. Protein phosphatase magnesium-dependent 1δ is a novel tumor marker and target in hepatocellular carcinoma[J]. Front. Med., 2016, 10(1): 52-60.
[5] Felice Ho-Ching Tsang,Sandy Leung-Kuen Au,Lai Wei,Dorothy Ngo-Yin Fan,Joyce Man-Fong Lee,Carmen Chak-Lui Wong,Irene Oi-Lin Ng,Chun-Ming Wong. MicroRNA-142-3p and microRNA-142-5p are downregulated in hepatocellular carcinoma and exhibit synergistic effects on cell motility[J]. Front. Med., 2015, 9(3): 331-343.
[6] Farhad Sahebjam,John M. Vierling. Autoimmune hepatitis[J]. Front. Med., 2015, 9(2): 187-219.
[7] Guanghua Rong,Wenlin Bai,Zheng Dong,Chunping Wang,Yinying Lu,Zhen Zeng,Jianhui Qu,Min Lou,Hong Wang,Xudong Gao,Xiujuan Chang,Linjing An,Yan Chen,Yongping Yang. Cryotherapy for cirrhosis-based hepatocellular carcinoma: a single center experience from 1595 treated cases[J]. Front. Med., 2015, 9(1): 63-71.
[8] Marielle Reataza,David K. Imagawa. Advances in managing hepatocellular carcinoma[J]. Front. Med., 2014, 8(2): 175-189.
[9] Kai Qu,Ting Lin,Zhixin Wang,Sinan Liu,Hulin Chang,Xinsen Xu,Fandi Meng,Lei Zhou,Jichao Wei,Minghui Tai,Yafeng Dong,Chang Liu. Reactive oxygen species generation is essential for cisplatin-induced accelerated senescence in hepatocellular carcinoma[J]. Front. Med., 2014, 8(2): 227-235.
[10] Du Yan, Han Xue, Pu Rui, Xie Jiaxin, Zhang Yuwei, Cao Guangwen. Association of miRNA-122-binding site polymorphism at the interleukin-1 α gene and its interaction with hepatitis B virus mutations with hepatocellular carcinoma risk[J]. Front. Med., 2014, 8(2): 217-226.
[11] Carmen Chak-Lui Wong, Alan Ka-Lun Kai, Irene Oi-Lin Ng. The impact of hypoxia in hepatocellular carcinoma metastasis[J]. Front Med, 2014, 8(1): 33-41.
[12] Lunxiu Qin. Osteopontin is a promoter for hepatocellular carcinoma metastasis: a summary of 10 years of studies[J]. Front Med, 2014, 8(1): 24-32.
[13] Beicheng Sun, Michael Karin. Inflammation and liver tumorigenesis[J]. Front Med, 2013, 7(2): 242-254.
[14] Shuangwei Li, Diane DiFang Hsu, Hongyang Wang, Gen-Sheng Feng. Dual faces of SH2-containing protein-tyrosine phosphatase Shp2/PTPN11 in tumorigenesis[J]. Front Med, 2012, 6(3): 275-279.
[15] Jing H. Wang. Mechanisms and impacts of chromosomal translocations in cancers[J]. Front Med, 2012, 6(3): 263-274.
Full text