Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2019, Vol. 13 Issue (3) : 314-329    https://doi.org/10.1007/s11684-018-0625-0
REVIEW
Cytokines and inflammation in adipogenesis: an updated review
Ning Jiang, Yao Li, Ting Shu, Jing Wang()
State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100730, China
 Download: PDF(529 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The biological relevance of cytokines is known for more than 20 years. Evidence suggests that adipogenesis is one of the biological events involved in the regulation of cytokines, and pro-inflammatory cytokines (e.g., TNFα and IL-1β) inhibit adipogenesis through various pathways. This inhibitory effect can constrain the hyperplastic expandability of adipose tissues. Meanwhile, chronic low-grade inflammation is commonly observed in obese populations. In some individuals, the impaired ability of adipose tissues to recruit new adipocytes to adipose depots during overnutrition results in adipocyte hypertrophy, ectopic lipid accumulation, and insulin resistance. Intervention studies showed that pro-inflammatory cytokine antagonists improve metabolism in patients with metabolic syndrome. This review focuses on the cytokines currently known to regulate adipogenesis under physiological and pathophysiological circumstances. Recent studies on how inhibited adipogenesis leads to metabolic disorders were summarized. Although the interplay of cytokines and lipid metabolism is yet incompletely understood, cytokines represent a class of potential therapeutic targets in the treatment of metabolic disorders.

Keywords cytokines      inflammation      adipogenesis      type 2 diabetes mellitus      metabolic disorder     
Corresponding Author(s): Jing Wang   
Just Accepted Date: 28 May 2018   Online First Date: 01 August 2018    Issue Date: 05 June 2019
 Cite this article:   
Ning Jiang,Yao Li,Ting Shu, et al. Cytokines and inflammation in adipogenesis: an updated review[J]. Front. Med., 2019, 13(3): 314-329.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-018-0625-0
https://academic.hep.com.cn/fmd/EN/Y2019/V13/I3/314
Family of cytokines Symbol Cytokine name Primary property Receptor Major sources of secretion in adipose tissue Model Effect on adipogenesis References
TNFa Tumor necrosis factor a Pro-inflammatory TNFR-1, TNFR-2 Cells of the monocyte/macrophage lineage, including adipose tissue macrophages Human abdominal subcutaneous preadipocytes, 3T3-L1 cells, 3T3-F442A cells [69]
IL-1 family IL-1b Interleukin-1b Pro-inflammatory IL-1R1, IL-1R2 Cells of the monocyte/macrophage lineage Human abdominal subcutaneous preadipocytes [10]
IL-18 Interleukin-18 Pro-inflammatory IL-18R Macrophages, DC, epithelial cells, endothelial cells Unknown
IL-33 Interleukin-33 Pro-inflammatory ST2 Necrotic cells, cells under stress Wistar rat (pre)adipocytes, 3T3-L1 cells, C57BL/6 mouse (pre)adipocytes, BALB/c mouse (pre)adipocytes [11,12]
IL-1F6 Interleukin-1F6 Pro-inflammatory IL-1Rrp2 Stromal vascular fraction Human subcutaneous abdominal (pre)adipocytes, human SGBS cells [13]
IL-1Ra Interleukin-1Ra Anti-inflammatory IL-1R1 Stromal vascular fraction C57BL/6J mouse epididymal (pre)adipocytes [14]
IL-37 Interleukin Anti-inflammatory IL-18Ra Mature adipocytes and vascular stromal cells Human SGBS cells [15]
Gp130 cytokines IL-6 Interleukin-6 Pro-inflammatory IL-6Ra Adipose tissue macrophages Human subcutaneous (pre)adipocytes, 3T3-L1 cells, 3T3-F442A cells [1618]
IL-11 Interleukin-11 Pro-inflammatory IL-11R Stromal vascular cells Human long term marrow cultures, 3T3-L1 cells [19,20]
OSM Oncostatin M Pro-inflammatory Type 1 OSM receptor, type 2 OSM receptor 3T3-L1 cells, mouse embryonic fibroblasts [21]
NP Neuropoietin ? CNTFRa 3T3-L1 cells [22]
IL-4 Interleukin-4 Pro-inflammatory/ anti-inflammatory IL-4R Lymphocytes, basophils and mast cells 3T3-L1 cells [23]
IL-10 Interleukin-10 Anti-inflammatory IL-10R T helper cells, monocytes/macrophages, dendritic cells, B cells Unknown
IL-15 Interleukin-15 Pro-inflammatory IL-15Ra Adipocytes and stromal vascular cells 3T3-L1 cells [24]
IL-7 Interleukin-7 Pro-inflammatory IL-7R Stromal vascular cells Mouse epididymal (pre)adipocytes [25]
IL-17 Interleukin-17 Pro-inflammatory IL-17R T helper cells 3T3-L1 cells [2628]
IL-34 Interleukin-34 Pro-inflammatory CSF-1 receptor Adipocytes and stromal vascular cells Human subcutaneous preadipocytes [29]
Interferons IFN-a Interferon-a Pro-inflammatory Type I interferon?receptors Fibroblasts?and?monocytes 3T3-L1 cells; human primary (pre)adipocytes [30]
IFN-g Interferon-g Pro-inflammatory Type II interferon?receptors T helper cells Mouse mesenchymal stem cells, 3T3-L1 cells, primary mouse (pre)adipocytes, human visceral (pre)adipocytes ↓↑ [31,32]
MCP-1 (CCL-2) Monocyte chemoattractant protein-1 (chemokine (C-C motif) ligand 2) Pro-inflammatory CCR2 Adipocytes, macrophages and endothelial cells 3T3-L1 cells, murine tissue engineering model [33,34]
Tab.1  Cytokines that regulate adipogenesis
Fig.1  TNFa signaling regulates adipogenesis. Signaling of TNFa through TNFR leads to activation of multiple pathways including NF-kB, p38, JNK, and ERK1/2. Wnt/b-catenin/TCF dependent pathway and numerous microRNAs are also activated. The activation of these pathways results in adipogenesis inhibition and suppression of PPARg and C/EBPa expression and activity, which are important transcriptional regulators of adipogenesis.
Name Effect on adipogenesis Targets The impact of TNFa on microRNAs References
miR-221 PPARg [35]
miR-155 C/EBPb, CREB [36]
miR-27 C/EBPb, CREB [36]
miR-103 [37]
miR-143 [37]
has-miR-26b PTEN [37]
miR-378 [37]
Tab.2  Regulatory effect of microRNAs on adipogenesis
Fig.2  IL-1b signaling affects adipogenesis. IL-1b is mainly produced by macrophages in adipose tissue, with small amounts being synthesized by adipocytes. It binds to type 1 IL-1 receptor to activate intracellular signaling including NF-kB pathway, which inhibits adipogenesis.
1 MI Lefterova, MA Lazar. New developments in adipogenesis. Trends Endocrinol Metab 2009; 20(3): 107–114
https://doi.org/10.1016/j.tem.2008.11.005
2 ED Rosen, BM Spiegelman. What we talk about when we talk about fat. Cell 2014; 156(1-2): 20–44
https://doi.org/10.1016/j.cell.2013.12.012
3 TD Kanneganti, VD Dixit. Immunological complications of obesity. Nat Immunol 2012; 13(8): 707–712
https://doi.org/10.1038/ni.2343
4 SP Weisberg, D McCann, M Desai, M Rosenbaum, RL Leibel, AW Ferrante Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112(12): 1796–1808
https://doi.org/10.1172/JCI200319246
5 AG Cristancho, MA Lazar. Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 2011; 12(11): 722–734
https://doi.org/10.1038/nrm3198
6 WP Cawthorn, F Heyd, K Hegyi, JK Sethi. Tumour necrosis factor-α inhibits adipogenesis via a β-catenin/TCF4(TCF7L2)-dependent pathway. Cell Death Differ 2007; 14(7): 1361–1373
https://doi.org/10.1038/sj.cdd.4402127
7 P Isakson, A Hammarstedt, B Gustafson, U Smith. Impaired preadipocyte differentiation in human abdominal obesity: role of Wnt, tumor necrosis factor-α, and inflammation. Diabetes 2009; 58(7): 1550–1557
https://doi.org/10.2337/db08-1770
8 H Xu, JK Sethi, GS Hotamisligil. Transmembrane tumor necrosis factor (TNF)-α inhibits adipocyte differentiation by selectively activating TNF receptor 1. J Biol Chem 1999; 274(37): 26287–26295
https://doi.org/10.1074/jbc.274.37.26287
9 GN Chae, SJ Kwak. NF-κB is involved in the TNF-α induced inhibition of the differentiation of 3T3-L1 cells by reducing PPARgamma expression. Exp Mol Med 2003; 35(5): 431–437
https://doi.org/10.1038/emm.2003.56
10 A Gagnon, C Foster, A Landry, A Sorisky. The role of interleukin 1β in the anti-adipogenic action of macrophages on human preadipocytes. J Endocrinol 2013; 217(2): 197–206
https://doi.org/10.1530/JOE-12-0565
11 E Martinez-Martinez, V Cachofeiro, E Rousseau, V Alvarez, L Calvier, A Fernandez-Celis, C Leroy, M Miana, R Jurado-Lopez, AM Briones, F Jaisser, F Zannad, P Rossignol, N Lopez-Andres. Interleukin-33/ST2 system attenuates aldosterone-induced adipogenesis and inflammation. Mol Cell Endocrinol 2015; 411:20–27
https://doi.org/DOI: 10.1016/j.mce.2015.04.007
12 AM Miller, DL Asquith, AJ Hueber, LA Anderson, WM Holmes, AN McKenzie, D Xu, N Sattar, IB McInnes, FY Liew. Interleukin-33 induces protective effects in adipose tissue inflammation during obesity in mice. Circ Res 2010; 107(5): 650–658
https://doi.org/10.1161/CIRCRESAHA.110.218867
13 EJ van Asseldonk, R Stienstra, TB Koenen, LJ van Tits, LA Joosten, CJ Tack, MG Netea. The effect of the interleukin-1 cytokine family members IL-1F6 and IL-1F8 on adipocyte differentiation. Obesity (Silver Spring) 2010; 18(11): 2234–2236
https://doi.org/10.1038/oby.2010.55
14 E Somm, E Henrichot, A Pernin, CE Juge-Aubry, P Muzzin, JM Dayer, MJH Nicklin, CA Meier. Decreased fat mass in interleukin-1 receptor antagonist-deficient mice — impact on adipogenesis, food intake, and energy expenditure. Diabetes 2005; 54(12): 3503–3509
https://doi.org/10.2337/diabetes.54.12.3503
15 DB Ballak, JA van Diepen, AR Moschen, HJ Jansen, A Hijmans, GJ Groenhof, F Leenders, P Bufler, MV Boekschoten, M Muller, S Kersten, S Li, S Kim, H Eini, EC Lewis, LA Joosten, H Tilg, MG Netea, CJ Tack, CA Dinarello, R Stienstra. IL-37 protects against obesity-induced inflammation and insulin resistance. Nat Commun 2014; 5:4711 PMID: 25182023
https://doi.org/DOI: 10.1038/ncomms5711
16 S Almuraikhy, W Kafienah, M Bashah, I Diboun, M Jaganjac, F Al-Khelaifi, H Abdesselem, NA Mazloum, M Alsayrafi, V Mohamed-Ali, MA Elrayess. Interleukin-6 induces impairment in human subcutaneous adipogenesis in obesity-associated insulin resistance. Diabetologia 2016; 59(11): 2406–2416
https://doi.org/10.1007/s00125-016-4031-3
17 C Lagathu, JP Bastard, M Auclair, M Maachi, J Capeau, M Caron. Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: prevention by rosiglitazone. Biochem Biophys Res Commun 2003; 311(2): 372–379
https://doi.org/10.1016/j.bbrc.2003.10.013
18 B Bahar, JV O’Doherty, T Sweeney. A potential role of IL-6 in the chito-oligosaccharide-mediated inhibition of adipogenesis. Br J Nutr 2011; 106(8): 1142–1153
https://doi.org/10.1017/S0007114511001486
19 DC Keller, XX Du, EF Srour, R Hoffman, DA Williams. Interleukin-11 inhibits adipogenesis and stimulates myelopoiesis in human long-term marrow cultures. Blood 1993; 82(5): 1428–1435
20 I Kawashima, J Ohsumi, K Mita-Honjo, K Shimoda-Takano, H Ishikawa, S Sakakibara, K Miyadai, Y Takiguchi. Molecular cloning of cDNA encoding adipogenesis inhibitory factor and identity with interleukin-11. FEBS Lett 1991; 283(2): 199–202
https://doi.org/10.1016/0014-5793(91)80587-S
21 Y Miyaoka, M Tanaka, T Naiki, A Miyajima. Oncostatin M inhibits adipogenesis through the RAS/ERK and STAT5 signaling pathways. J Biol Chem 2006; 281(49): 37913–37920
https://doi.org/10.1074/jbc.M606089200
22 UA White, WC Stewart, RL Mynatt, JM Stephens. Neuropoietin attenuates adipogenesis and induces insulin resistance in adipocytes. J Biol Chem 2008; 283(33): 22505–22512
https://doi.org/10.1074/jbc.M710462200
23 CH Tsao, MY Shiau, PH Chuang, YH Chang, J Hwang. Interleukin-4 regulates lipid metabolism by inhibiting adipogenesis and promoting lipolysis. J Lipid Res 2014; 55(3): 385–397
https://doi.org/10.1194/jlr.M041392
24 S López. Interleukin-15 increases calcineurin expression in 3T3-L1 cells: possible involvement on in vivo adipocyte differentiation. Int J Mol Med 2009; 24(04):453–458
25 M Lee, SJ Song, MS Choi, RN Yu, T Park. IL-7 receptor deletion ameliorates diet-induced obesity and insulin resistance in mice. Diabetologia 2015; 58(10): 2361–2370
https://doi.org/10.1007/s00125-015-3684-7
26 M Ahmed, SL Gaffen. IL-17 in obesity and adipogenesis. Cytokine Growth Factor Rev 2010; 21(6): 449–453
https://doi.org/10.1016/j.cytogfr.2010.10.005
27 M Ahmed, SL Gaffen. IL-17 inhibits adipogenesis in part via C/EBPα, PPARγ and Kruppel-like factors. Cytokine 2013; 61(3): 898–905
https://doi.org/10.1016/j.cyto.2012.12.007
28 LA Zuniga, WJ Shen, B Joyce-Shaikh, EA Pyatnova, AG Richards, C Thom, SM Andrade, DJ Cua, FB Kraemer, EC Butcher. IL-17 regulates adipogenesis, glucose homeostasis, and obesity. J Immunol 2010; 185(11): 6947–6959
https://doi.org/10.4049/jimmunol.1001269
29 EJ Chang, SK Lee, YS Song, YJ Jang, HS Park, JP Hong, AR Ko, DY Kim, JH Kim, YJ Lee, YS Heo. IL-34 is associated with obesity, chronic inflammation, and insulin resistance. J Clin Endocrinol Metab 2014; 99(7): E1263–E1271
https://doi.org/10.1210/jc.2013-4409
30 K Lee, SH Um, DK Rhee, S Pyo. Interferon-α inhibits adipogenesis via regulation of JAK/STAT1 signaling. Biochim Biophys Acta 2016; 1860(11 11 Pt A): 2416–2427
https://doi.org/10.1016/j.bbagen.2016.07.009
31 C Vidal, S Bermeo, W Li, D Huang, R Kremer, G Duque. Interferon γ inhibits adipogenesis in vitro and prevents marrow fat infiltration in oophorectomized mice. Stem Cells 2012; 30(5): 1042–1048
https://doi.org/10.1002/stem.1063
32 J Todoric, B Strobl, A Jais, N Boucheron, M Bayer, S Amann, J Lindroos, R Teperino, G Prager, M Bilban, W Ellmeier, F Krempler, M Muller, O Wagner, W Patsch, JA Pospisilik, H Esterbauer. Cross-talk between interferon-γ and hedgehog signaling regulates adipogenesis. Diabetes 2011; 60(6): 1668–1676
https://doi.org/10.2337/db10-1628
33 CW Younce, A Azfer, PE Kolattukudy. MCP-1 (monocyte chemotactic protein-1)-induced protein, a recently identified zinc finger protein, induces adipogenesis in 3T3-L1 pre-adipocytes without peroxisome proliferator-activated receptor γ. J Biol Chem 2009; 284(40): 27620–27628
https://doi.org/10.1074/jbc.M109.025320
34 K Hemmrich, GP Thomas, KM Abberton, EW Thompson, JA Rophael, AJ Penington, WA Morrison. Monocyte chemoattractant protein-1 and nitric oxide promote adipogenesis in a model that mimics obesity. Obesity (Silver Spring) 2007; 15(12): 2951–2957
https://doi.org/10.1038/oby.2007.352
35 A Meerson, M Traurig, V Ossowski, JM Fleming, M Mullins, LJ Baier. Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-α. Diabetologia 2013; 56(9): 1971–1979
https://doi.org/10.1007/s00125-013-2950-9
36 S Liu, Y Yang, J Wu. TNFα-induced up-regulation of miR-155 inhibits adipogenesis by down-regulating early adipogenic transcription factors. Biochem Biophys Res Commun 2011; 414(3): 618–624
https://doi.org/10.1016/j.bbrc.2011.09.131
37 H Xie, B Lim, HF Lodish. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 2009; 58(5): 1050–1057
https://doi.org/10.2337/db08-1299
38 U Gaur, BB Aggarwal. Regulation of proliferation, survival and apoptosis by members of the TNF superfamily. Biochem Pharmacol 2003; 66(8): 1403–1408
https://doi.org/10.1016/S0006-2952(03)00490-8
39 BB Aggarwal. Tumour necrosis factors receptor associated signalling molecules and their role in activation of apoptosis, JNK and NF-κB. Ann Rheum Dis 2000; 59 (Suppl 1): i6–i16
40 DR Kaufman, Y Choi. Signaling by tumor necrosis factor receptors: pathways, paradigms and targets for therapeutic modulation. Int Rev Immunol 1999; 18(4): 405–427
https://doi.org/10.3109/08830189909088491
41 V Baud, M Karin. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 2001; 11(9): 372–377
https://doi.org/10.1016/S0962-8924(01)02064-5
42 JN Fain, SW Bahouth, AK Madan. TNFα release by the nonfat cells of human adipose tissue. Int J Obes Relat Metab Disord 2004; 28(4): 616–622
https://doi.org/10.1038/sj.ijo.0802594
43 GS Hotamisligil, NS Shargill, BM Spiegelman. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 1993; 259(5091): 87–91
https://doi.org/10.1126/science.7678183
44 SE Borst. The role of TNF-α in insulin resistance. Endocrine 2004; 23(2-3): 177–182
https://doi.org/10.1385/ENDO:23:2-3:177
45 DE Moller. Potential role of TNF-α in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol Metab 2000; 11(6): 212–217
https://doi.org/10.1016/S1043-2760(00)00272-1
46 JM Stephens, J Lee, PF Pilch. Tumor necrosis factor-α-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J Biol Chem 1997; 272(2): 971–976
https://doi.org/10.1074/jbc.272.2.971
47 GS Hotamisligil, P Arner, JF Caro, RL Atkinson, BM Spiegelman. Increased adipose tissue expression of tumor necrosis factor-α in human obesity and insulin resistance. J Clin Invest 1995; 95(5): 2409–2415
https://doi.org/10.1172/JCI117936
48 JP Kirwan, S Hauguel-De Mouzon, J Lepercq, JC Challier, L Huston-Presley, JE Friedman, SC Kalhan, PM Catalano. TNF-α is a predictor of insulin resistance in human pregnancy. Diabetes 2002; 51(7): 2207–2213
https://doi.org/10.2337/diabetes.51.7.2207
49 CH Lang, C Dobrescu, GJ Bagby. Tumor necrosis factor impairs insulin action on peripheral glucose disposal and hepatic glucose output. Endocrinology 1992; 130(1): 43–52
https://doi.org/10.1210/endo.130.1.1727716
50 S Palacios-Ortega, M Varela-Guruceaga, M Algarabel, F Ignacio Milagro, J Alfredo Martinez, C de Miguel. Effect of TNF-α on caveolin-1 expression and insulin signaling during adipocyte differentiation and in mature adipocytes. Cell Physiol Biochem 2015; 36(4): 1499–1516
https://doi.org/10.1159/000430314
51 KT Uysal, SM Wiesbrock, MW Marino, GS Hotamisligil. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 1997; 389(6651): 610–614
https://doi.org/10.1038/39335
52 E Hu, JB Kim, P Sarraf, BM Spiegelman. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARγ. Science 1996; 274(5295): 2100–2103
https://doi.org/10.1126/science.274.5295.2100
53 J Ohsumi, S Sakakibara, J Yamaguchi, K Miyadai, S Yoshioka, T Fujiwara, H Horikoshi, N Serizawa. Troglitazone prevents the inhibitory effects of inflammatory cytokines on insulin-induced adipocyte differentiation in 3T3-L1 cells. Endocrinology 1994; 135(5): 2279–2282
https://doi.org/10.1210/endo.135.5.7956951
54 I Bogacka, H Xie, GA Bray, SR Smith. The effect of pioglitazone on peroxisome proliferator-activated receptor-γ target genes related to lipid storage in vivo. Diabetes Care 2004; 27(7): 1660–1667
https://doi.org/10.2337/diacare.27.7.1660
55 C Christodoulides, C Lagathu, JK Sethi, A Vidal-Puig. Adipogenesis and WNT signalling. Trends Endocrinol Metab 2009; 20(1): 16–24
https://doi.org/10.1016/j.tem.2008.09.002
56 B Zhang, J Berger, E Hu, D Szalkowski, S White-Carrington, BM Spiegelman, DE Moller. Negative regulation of peroxisome proliferator-activated receptor-γ gene expression contributes to the antiadipogenic effects of tumor necrosis factor-α. Mol Endocrinol 1996; 10(11): 1457–1466
57 H Ruan, N Hacohen, TR Golub, L Van Parijs, HF Lodish. Tumor necrosis factor-α suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-κB activation by TNF-α is obligatory. Diabetes 2002; 51(5): 1319–1336
https://doi.org/10.2337/diabetes.51.5.1319
58 X Tang, A Guilherme, A Chakladar, AM Powelka, S Konda, JV Virbasius, SM Nicoloro, J Straubhaar, MP Czech. An RNA interference-based screen identifies MAP4K4/NIK as a negative regulator of PPARγ, adipogenesis, and insulin-responsive hexose transport. Proc Natl Acad Sci USA 2006; 103(7): 2087–2092
https://doi.org/10.1073/pnas.0507660103
59 A Guilherme, GJ Tesz, KVP Guntur, MP Czech. Tumor necrosis factor-α induces caspase-mediated cleavage of peroxisome proliferator-activated receptor in adipocytes. J Biol Chem 2009; 284(25): 17082–17091
https://doi.org/10.1074/jbc.M809042200
60 ML Gong, CG Liu, L Zhang, HB Zhang, J Pan. Loss of the TNFα function inhibits Wnt/β-catenin signaling, exacerbates obesity development in adolescent spontaneous obese mice. Mol Cell Biochem 2014; 391(1-2): 59–66
https://doi.org/10.1007/s11010-014-1987-5
61 P Arner, A Kulyte. MicroRNA regulatory networks in human adipose tissue and obesity. Nat Rev Endocrinol 2015; 11(5): 276–288
https://doi.org/10.1038/nrendo.2015.25
62 NL Price, C Fernandez-Hernando. miRNA regulation of white and brown adipose tissue differentiation and function. Biochim Biophys Acta 2016; 1861(12): 2104–2110
https://doi.org/10.1016/j.bbalip.2016.02.010
63 L Zhu, L Chen, CM Shi, GF Xu, LL Xu, LL Zhu, XR Guo, YH Ni, Y Cui, CB Ji. miR-335, an adipogenesis-related microRNA, is involved in adipose tissue inflammation. Cell Biochem Biophys 2014; 68(2): 283–290
https://doi.org/10.1007/s12013-013-9708-3
64 Y Zhu, X Zhang, X Ding, H Wang, X Chen, H Zhao, Y Jia, S Liu, Y Liu. miR-27 inhibits adipocyte differentiation via suppressing CREB expression. Acta Biochim Biophys Sin (Shanghai) 2014; 46(7): 590–596
https://doi.org/10.1093/abbs/gmu036
65 G Xu, C Ji, C Shi, H Fu, L Zhu, L Zhu, L Xu, L Chen, Y Feng, Y Zhao, X Guo. Modulation of hsa-miR-26b levels following adipokine stimulation. Mol Biol Rep 2013; 40(5): 3577–3582
https://doi.org/10.1007/s11033-012-2431-0
66 G Song, G Xu, C Ji, C Shi, Y Shen, L Chen, L Zhu, L Yang, Y Zhao, X Guo. The role of microRNA-26b in human adipocyte differentiation and proliferation. Gene 2014; 533(2): 481–487
https://doi.org/10.1016/j.gene.2013.10.011
67 LL Xu, CM Shi, GF Xu, L Chen, LL Zhu, L Zhu, XR Guo, MY Xu, CB Ji. TNF-α, IL-6, and leptin increase the expression of miR-378, an adipogenesis-related microRNA in human adipocytes. Cell Biochem Biophys 2014; 70(2): 771–776
https://doi.org/10.1007/s12013-014-9980-x
68 C Garlanda, CA Dinarello, A Mantovani. The interleukin-1 family: back to the future. Immunity 2013; 39(6): 1003–1018
https://doi.org/10.1016/j.immuni.2013.11.010
69 PJ Simons, PS van den Pangaart, CP van Roomen, JM Aerts, L Boon. Cytokine-mediated modulation of leptin and adiponectin secretion during in vitro adipogenesis: evidence that tumor necrosis factor-α- and interleukin-1β-treated human preadipocytes are potent leptin producers. Cytokine 2005; 32(2): 94–103
https://doi.org/10.1016/j.cyto.2005.08.003
70 CJ Tack, R Stienstra, LAB Joosten, MG Netea. Inflammation links excess fat to insulin resistance: the role of the interleukin-1 family. Immunol Rev 2012; 249(1):239–252
71 LA Solt, LA Madge, JS Orange, MJ May. Interleukin-1-induced NF-κB activation is NEMO-dependent but does not require IKKβ. J Biol Chem 2007; 282(12): 8724–8733
https://doi.org/10.1074/jbc.M609613200
72 JF Tanti, J Jager. Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Curr Opin Pharmacol 2009; 9(6): 753–762
https://doi.org/10.1016/j.coph.2009.07.004
73 IS Wood, B Wang, JR Jenkins, P Trayhurn. The pro-inflammatory cytokine IL-18 is expressed in human adipose tissue and strongly upregulated by TNFα in human adipocytes. Biochem Biophys Res Commun 2005; 337(2): 422–429
https://doi.org/10.1016/j.bbrc.2005.09.068
74 GH Schernthaner, HP Kopp, S Kriwanek, K Krzyzanowska, M Satler, R Koppensteiner, G Schernthaner. Effect of massive weight loss induced by bariatric surgery on serum levels of interleukin-18 and monocyte-chemoattractant-protein-1 in morbid obesity. Obes Surg 2006; 16(6): 709–715
https://doi.org/10.1381/096089206777346763
75 AR Moschen, C Molnar, B Enrich, S Geiger, CF Ebenbichler, H Tilg. Adipose and liver expression of interleukin (IL)-1 family members in morbid obesity and effects of weight loss. Mol Med 2011; 17(7-8): 840–845
https://doi.org/10.2119/molmed.2010.00108
76 MG Netea, LA Joosten, E Lewis, DR Jensen, PJ Voshol, BJ Kullberg, CJ Tack, H van Krieken, SH Kim, AF Stalenhoef, FA van de Loo, I Verschueren, L Pulawa, S Akira, RH Eckel, CA Dinarello, W van den Berg, JW van der Meer. Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. Nat Med 2006; 12(6): 650–656
https://doi.org/10.1038/nm1415
77 EP Zorrilla, M Sanchez-Alavez, S Sugama, M Brennan, R Fernandez, T Bartfai, B Conti. Interleukin-18 controls energy homeostasis by suppressing appetite and feed efficiency. Proc Natl Acad Sci USA 2007; 104(26): 11097–11102
https://doi.org/10.1073/pnas.0611523104
78 YS Yang, XY Li, J Hong, WQ Gu, YF Zhang, J Yang, HD Song, JL Chen, G Ning. Interleukin-18 enhances glucose uptake in 3T3-L1 adipocytes. Endocrine 2007; 32(3): 297–302
https://doi.org/10.1007/s12020-008-9048-z
79 DB Ballak, R Stienstra, CJ Tack, CA Dinarello, JA van Diepen. IL-1 family members in the pathogenesis and treatment of metabolic disease: focus on adipose tissue inflammation and insulin resistance. Cytokine 2015; 75(2): 280–290
https://doi.org/10.1016/j.cyto.2015.05.005
80 AJ Murphy, MJ Kraakman, HL Kammoun, D Dragoljevic, MK Lee, KE Lawlor, JM Wentworth, A Vasanthakumar, M Gerlic, LW Whitehead, L DiRago, L Cengia, RM Lane, D Metcalf, JE Vince, LC Harrison, A Kallies, BT Kile, BA Croker, MA Febbraio, SL Masters. IL-18 production from the NLRP1 inflammasome prevents obesity and metabolic syndrome. Cell Metab 2016; 23(1): 155–164
https://doi.org/10.1016/j.cmet.2015.09.024
81 B Lindegaard, VB Matthews, C Brandt, P Hojman, TL Allen, E Estevez, MJ Watt, CR Bruce, OH Mortensen, S Syberg, C Rudnicka, J Abildgaard, H Pilegaard, J Hidalgo, S Ditlevsen, TJ Alsted, AN Madsen, BK Pedersen, MA Febbraio. Interleukin-18 activates skeletal muscle AMPK and reduces weight gain and insulin resistance in mice. Diabetes 2013; 62(9): 3064–3074
https://doi.org/10.2337/db12-1095
82 JM Han, D Wu, HC Denroche, Y Yao, CB Verchere, MK Levings. IL-33 reverses an obesity-induced deficit in visceral adipose tissue ST2+ T regulatory cells and ameliorates adipose tissue inflammation and insulin resistance. J Immunol 2015; 194(10): 4777–4783
https://doi.org/10.4049/jimmunol.1500020
83 IS Wood, B Wang, P Trayhurn. IL-33, a recently identified interleukin-1 gene family member, is expressed in human adipocytes. Biochem Biophys Res Commun 2009; 384(1): 105–109
https://doi.org/10.1016/j.bbrc.2009.04.081
84 AB Molofsky, JC Nussbaum, HE Liang, SJ Van Dyken, LE Cheng, A Mohapatra, A Chawla, RM Locksley. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J Exp Med 2013; 210(3): 535–549
https://doi.org/10.1084/jem.20121964
85 M Zeyda, B Wernly, S Demyanets, C Kaun, M Hammerle, B Hantusch, M Schranz, A Neuhofer, BK Itariu, M Keck, G Prager, J Wojta, TM Stulnig. Severe obesity increases adipose tissue expression of interleukin-33 and its receptor ST2, both predominantly detectable in endothelial cells of human adipose tissue. Int J Obes 2013; 37(5): 658–665
https://doi.org/10.1038/ijo.2012.118
86 AB Molofsky, AK Savage, RM Locksley. Interleukin-33 in tissue homeostasis, injury, and inflammation. Immunity 2015; 42(6): 1005–1019
https://doi.org/10.1016/j.immuni.2015.06.006
87 JR Brestoff, BS Kim, SA Saenz, RR Stine, LA Monticelli, GF Sonnenberg, JJ Thome, DL Farber, K Lutfy, P Seale, D Artis. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 2015; 519(7542): 242–246
https://doi.org/10.1038/nature14115
88 UA White, JM Stephens. The gp130 receptor cytokine family: regulators of adipocyte development and function. Curr Pharm Des 2011; 17(4): 340–346
https://doi.org/10.2174/138161211795164202
89 M Pal, MA Febbraio, M Whitham. From cytokine to myokine: the emerging role of interleukin-6 in metabolic regulation. Immunol Cell Biol 2014; 92(4): 331–339
https://doi.org/10.1038/icb.2014.16
90 MJ Kraakman, TL Allen, M Whitham, P Iliades, HL Kammoun, E Estevez, GI Lancaster, MA Febbraio. Targeting gp130 to prevent inflammation and promote insulin action. Diabetes Obes Metab 2013; 15(Suppl 3):170–175
91 V Rotter, I Nagaev, U Smith. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-α, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem 2003; 278(46): 45777–45784
https://doi.org/10.1074/jbc.M301977200
92 K Ishimoto, T Iwata, H Taniguchi, N Mizusawa, E Tanaka, K Yoshimoto. D-dopachrome tautomerase promotes IL-6 expression and inhibits adipogenesis in preadipocytes. Cytokine 2012; 60(3): 772–777
https://doi.org/10.1016/j.cyto.2012.07.037
93 AL Carey, GR Steinberg, SL Macaulay, WG Thomas, AG Holmes, G Ramm, O Prelovsek, C Hohnen-Behrens, MJ Watt, DE James, BE Kemp, BK Pedersen, MA Febbraio. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 2006; 55(10): 2688–2697
https://doi.org/10.2337/db05-1404
94 V Wallenius, K Wallenius, B Ahren, M Rudling, H Carlsten, SL Dickson, C Ohlsson, JO Jansson. Interleukin-6-deficient mice develop mature-onset obesity. Nat Med 2002; 8(1): 75–79
https://doi.org/10.1038/nm0102-75
95 L Fritsche, M Hoene, R Lehmann, H Ellingsgaard, AM Hennige, AK Pohl, HU Haring, ED Schleicher, C Weigert. IL-6 deficiency in mice neither impairs induction of metabolic genes in the liver nor affects blood glucose levels during fasting and moderately intense exercise. Diabetologia 2010; 53(8): 1732–1742
https://doi.org/10.1007/s00125-010-1754-4
96 S Crowe, SM Turpin, F Ke, BE Kemp, MJ Watt. Metabolic remodeling in adipocytes promotes ciliary neurotrophic factor-mediated fat loss in obesity. Endocrinology 2008; 149(5): 2546–2556
https://doi.org/10.1210/en.2007-1447
97 D Derouet, F Rousseau, F Alfonsi, J Froger, J Hermann, F Barbier, D Perret, C Diveu, C Guillet, L Preisser, A Dumont, M Barbado, A Morel, O deLapeyriere, H Gascan, S Chevalier. Neuropoietin, a new IL-6-related cytokine signaling through the ciliary neurotrophic factor receptor. Proc Natl Acad Sci USA 2004; 101(14): 4827–4832
https://doi.org/10.1073/pnas.0306178101
98 M Patidar, N Yadav, SK Dalai. Interleukin 15: a key cytokine for immunotherapy. Cytokine Growth Factor Rev 2016; 31:49–59
99 G Lacraz, V Rakotoarivelo, SM Labbe, M Vernier, C Noll, M Mayhue, J Stankova, A Schwertani, G Grenier, A Carpentier, D Richard, G Ferbeyre, J Fradette, M Rola-Pleszczynski, A Menendez, MF Langlois, S Ilangumaran, S Ramanathan. Deficiency of interleukin-15 confers resistance to obesity by diminishing inflammation and enhancing the thermogenic function of adipose tissues. PLoS One 2016; 11(9): e0162995
https://doi.org/10.1371/journal.pone.0162995
100 N Carbó, J Lopez-Soriano, P Costelli, B Alvarez, S Busquets, FM Baccino, LS Quinn, FJ Lopez-Soriano, JM Argiles. Interleukin-15 mediates reciprocal regulation of adipose and muscle mass: a potential role in body weight control. Biochim Biophys Acta 2001; 1526(1): 17–24
https://doi.org/10.1016/S0304-4165(00)00188-4
101 NG Barra, S Reid, R MacKenzie, G Werstuck, BL Trigatti, C Richards, AC Holloway, AA Ashkar. Interleukin-15 contributes to the regulation of murine adipose tissue and human adipocytes. Obesity (Silver Spring) 2010; 18(8): 1601–1607
https://doi.org/10.1038/oby.2009.445
102 NG Barra, MV Chew, S Reid, AA Ashkar. Interleukin-15 treatment induces weight loss independent of lymphocytes. PLoS One 2012; 7(6): e39553
https://doi.org/10.1371/journal.pone.0039553
103 JW Neal, NA Clipstone. Calcineurin mediates the calcium-dependent inhibition of adipocyte differentiation in 3T3-L1 cells. J Biol Chem 2002; 277(51): 49776–49781
https://doi.org/10.1074/jbc.M207913200
104 JR Pierce, JM Maples, RC Hickner. IL-15 concentrations in skeletal muscle and subcutaneous adipose tissue in lean and obese humans: local effects of IL-15 on adipose tissue lipolysis. Am J Physiol Endocrinol Metab 2015; 308(12): E1131–E1139
https://doi.org/10.1152/ajpendo.00575.2014
105 K Nelms, AD Keegan, J Zamorano, JJ Ryan, WE Paul. The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol 1999; 17:701–738
106 GM Walsh. Biologics targeting IL-5, IL-4 or IL-13 for the treatment of asthma —an update. Expert Rev Clin Immunol 2017; 13(2): 143–149
https://doi.org/10.1080/1744666X.2016.1216316
107 E Guenova, Y Skabytska, W Hoetzenecker, G Weindl, K Sauer, M Tham, KW Kim, JH Park, JH Seo, D Ignatova, A Cozzio, MP Levesque, T Volz, M Koberle, S Kaesler, P Thomas, R Mailhammer, K Ghoreschi, K Schakel, B Amarov, M Eichner, M Schaller, RA Clark, M Rocken, T Biedermann. IL-4 abrogates T(H)17 cell-mediated inflammation by selective silencing of IL-23 in antigen-presenting cells. Proc Natl Acad Sci USA 2015; 112(7): 2163–2168
https://doi.org/10.1073/pnas.1416922112
108 XL Huang, YJ Wang, JW Yan, YN Wan, B Chen, BZ Li, GJ Yang, J Wang. Role of anti-inflammatory cytokines IL-4 and IL-13 in systemic sclerosis. Inflamm Res 2015; 64(3-4): 151–159
https://doi.org/10.1007/s00011-015-0806-0
109 DL Johannsen, Y Tchoukalova, CS Tam, JD Covington, W Xie, JM Schwarz, S Bajpeyi, E Ravussin. Effect of 8 weeks of overfeeding on ectopic fat deposition and insulin sensitivity: testing the “adipose tissue expandability” hypothesis. Diabetes Care 2014; 37(10): 2789–2797
https://doi.org/10.2337/dc14-0761
110 T Korn, E Bettelli, M Oukka, VK Kuchroo. IL-17 and Th17 Cells. Annu Rev Immunol 2009; 27:485–517
111 J Goswami, N Hernandez-Santos, LA Zuniga, SL Gaffen. A bone-protective role for IL-17 receptor signaling in ovariectomy-induced bone loss. Eur J Immunol 2009; 39(10): 2831–2839
https://doi.org/10.1002/eji.200939670
112 JH Shin, DW Shin, M Noh. Interleukin-17A inhibits adipocyte differentiation in human mesenchymal stem cells and regulates pro-inflammatory responses in adipocytes. Biochem Pharmacol 2009; 77(12): 1835–1844
https://doi.org/10.1016/j.bcp.2009.03.008
113 CM Capitini, AA Chisti, CL Mackall. Modulating T-cell homeostasis with IL-7: preclinical and clinical studies. J Intern Med 2009; 266(2): 141–153
https://doi.org/10.1111/j.1365-2796.2009.02085.x
114 E Maury, K Ehala-Aleksejev, Y Guiot, R Detry, A Vandenhooft, SM Brichard. Adipokines oversecreted by omental adipose tissue in human obesity. Am J Physiol Endocrinol Metab 2007; 293(3): E656–E665
https://doi.org/10.1152/ajpendo.00127.2007
115 H Lin, E Lee, K Hestir, C Leo, M Huang, E Bosch, R Halenbeck, G Wu, A Zhou, D Behrens, D Hollenbaugh, T Linnemann, M Qin, J Wong, K Chu, SK Doberstein, LT Williams. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 2008; 320(5877): 807–811
https://doi.org/10.1126/science.1154370
116 JA Hamilton. Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 2008; 8(7): 533–544
https://doi.org/10.1038/nri2356
117 Y Nakamichi, N Udagawa, N Takahashi. IL-34 and CSF-1: similarities and differences. J Bone Miner Metab 2013; 31(5): 486–495
https://doi.org/10.1007/s00774-013-0476-3
118 BS Parker, J Rautela, PJ Hertzog. Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer 2016; 16(3): 131–144
https://doi.org/10.1038/nrc.2016.14
119 HH Hoffmann, WM Schneider, CM Rice. Interferons and viruses: an evolutionary arms race of molecular interactions. Trends Immunol 2015; 36(3): 124–138
https://doi.org/10.1016/j.it.2015.01.004
120 B He. Viruses, endoplasmic reticulum stress, and interferon responses. Cell Death Differ 2006; 13(3): 393–403
https://doi.org/10.1038/sj.cdd.4401833
121 VA Koivisto, R Pelkonen, K Cantell. Effect of interferon on glucose tolerance and insulin sensitivity. Diabetes 1989; 38(5): 641–647
https://doi.org/10.2337/diab.38.5.641
122 RW O’Rourke, AE White, MD Metcalf, BR Winters, BS Diggs, X Zhu, DL Marks. Systemic inflammation and insulin sensitivity in obese IFN-γ knockout mice. Metabolism 2012; 61(8): 1152–1161
https://doi.org/10.1016/j.metabol.2012.01.018
123 S Keay, SE Grossberg. Interferon inhibits the conversion of 3T3-L1 mouse fibroblasts into adipocytes. Proc Natl Acad Sci USA 1980; 77(7): 4099–4103
https://doi.org/10.1073/pnas.77.7.4099
124 FC McGillicuddy, EH Chiquoine, CC Hinkle, RJ Kim, R Shah, HM Roche, EM Smyth, MP Reilly. Interferon γ attenuates insulin signaling, lipid storage, and differentiation in human adipocytes via activation of the JAK/STAT pathway. J Biol Chem 2009; 284(46): 31936–31944 doi:10.1074/jbc.M109.061655
125 RZ Birk, M Rubinstein. IFN-α induces apoptosis of adipose tissue cells. Biochem Biophys Res Commun 2006; 345(2): 669–674
https://doi.org/10.1016/j.bbrc.2006.04.139
126 J Panee. Monocyte chemoattractant protein 1 (MCP-1) in obesity and diabetes. Cytokine 2012; 60(1): 1–12
https://doi.org/10.1016/j.cyto.2012.06.018
127 I Harman-Boehm, M Bluher, H Redel, N Sion-Vardy, S Ovadia, E Avinoach, I Shai, N Kloting, M Stumvoll, N Bashan, A Rudich. Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Endocrinol Metab 2007; 92(6): 2240–2247
https://doi.org/10.1210/jc.2006-1811
128 S Famulla, A Horrighs, A Cramer, H Sell, J Eckel. Hypoxia reduces the response of human adipocytes towards TNFα resulting in reduced NF-κB signaling and MCP-1 secretion. Int J Obes 2012; 36(7): 986–992
https://doi.org/10.1038/ijo.2011.200
129 T Aomatsu, H Imaeda, K Takahashi, T Fujimoto, E Kasumi, A Yoden, H Tamai, Y Fujiyama, A Andoh. Tacrolimus (FK506) suppresses TNF-α-induced CCL2 (MCP-1) and CXCL10 (IP-10) expression via the inhibition of p38 MAP kinase activation in human colonic myofibroblasts. Int J Mol Med 2012; 30(5): 1152–1158
https://doi.org/10.3892/ijmm.2012.1094
130 S Tateya, Y Tamori, T Kawaguchi, H Kanda, M Kasuga. An increase in the circulating concentration of monocyte chemoattractant protein-1 elicits systemic insulin resistance irrespective of adipose tissue inflammation in mice. Endocrinology 2010; 151(3): 971–979
https://doi.org/10.1210/en.2009-0926
131 SP Weisberg, D Hunter, R Huber, J Lemieux, S Slaymaker, K Vaddi, I Charo, RL Leibel, AW Ferrante Jr. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 2006; 116(1): 115–124
https://doi.org/10.1172/JCI24335
132 C Younce, P Kolattukudy. MCP-1 induced protein promotes adipogenesis via oxidative stress, endoplasmic reticulum stress and autophagy. Cell Physiol Biochem 2012; 30(2): 307–320
https://doi.org/10.1159/000339066
133 SF Schmidt, M Jorgensen, Y Chen, R Nielsen, A Sandelin, S Mandrup. Cross species comparison of C/EBPα and PPARγ profiles in mouse and human adipocytes reveals interdependent retention of binding sites. BMC Genomics 2011; 12:152
134 TS Mikkelsen, Z Xu, X Zhang, L Wang, JM Gimble, ES Lander, ED Rosen. Comparative epigenomic analysis of murine and human adipogenesis. Cell 2010; 143(1): 156–169
https://doi.org/10.1016/j.cell.2010.09.006
135 J Lindroos, J Husa, G Mitterer, A Haschemi, S Rauscher, R Haas, M Groger, R Loewe, N Kohrgruber, KF Schrogendorfer, G Prager, H Beck, JA Pospisilik, M Zeyda, TM Stulnig, W Patsch, O Wagner, H Esterbauer, M Bilban. Human but not mouse adipogenesis is critically dependent on LMO3. Cell Metab 2013; 18(1): 62–74
https://doi.org/10.1016/j.cmet.2013.05.020
136 V Abella, M Scotece, J Conde, J Pino, MA Gonzalez-Gay, JJ Gomez-Reino, A Mera, F Lago, R Gomez, O Gualillo. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat Rev Rheumatol 2017; 13(2): 100–109
https://doi.org/10.1038/nrrheum.2016.209
137 JM Friedman, JL Halaas. Leptin and the regulation of body weight in mammals. Nature 1998; 395(6704): 763–770
https://doi.org/10.1038/27376
138 EA Oral, V Simha, E Ruiz, A Andewelt, A Premkumar, P Snell, AJ Wagner, AM DePaoli, ML Reitman, SI Taylor, P Gorden, A Garg. Leptin-replacement therapy for lipodystrophy. N Engl J Med 2002; 346(8): 570–578
https://doi.org/10.1056/NEJMoa012437
139 M Behnes, M Brueckmann, S Lang, C Putensen, J Saur, M Borggrefe, U Hoffmann. Alterations of leptin in the course of inflammation and severe sepsis. BMC Infect Dis 2012; 12:217
140 RL Fawcett, AS Waechter, LB Williams, P Zhang, R Louie, R Jones, M Inman, J Huse, RV Considine. Tumor necrosis factor-α inhibits leptin production in subcutaneous and omental adipocytes from morbidly obese humans. J Clin Endocrinol Metab 2000; 85(2): 530–535
141 EV Granowitz. Transforming growth factor-β enhances and pro-inflammatory cytokines inhibit ob gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun 1997; 240(2): 382–385
https://doi.org/10.1006/bbrc.1997.7663
142 P Laharrague, N Truel, AM Fontanilles, JX Corberand, L Penicaud, L Casteilla. Regulation by cytokines of leptin expression in human bone marrow adipocytes. Horm Metab Res 2000; 32(10): 381–385
https://doi.org/10.1055/s-2007-978658
143 H Gottschling-Zeller, M Birgel, D Scriba, WF Blum, H Hauner. Depot-specific release of leptin from subcutaneous and omental adipocytes in suspension culture: effect of tumor necrosis factor-α and transforming growth factor-β1. Eur J Endocrinol 1999; 141(4): 436–442 doi:10.1530/eje.0.1410436
144 C Grunfeld, C Zhao, J Fuller, A Pollack, A Moser, J Friedman, KR Feingold. Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters. J Clin Invest 1996; 97(9): 2152–2157
https://doi.org/10.1172/JCI118653
145 P Sarraf, RC Frederich, EM Turner, G Ma, NT Jaskowiak, DJ 3rd Rivet, JS Flier, BB Lowell, DL Fraker, HR Alexander. Multiple cytokines and acute inflammation raise mouse leptin levels: potential role in inflammatory anorexia. J Exp Med 1997; 185(1): 171–175
https://doi.org/10.1084/jem.185.1.171
146 S Padidar, AJ Farquharson, LM Williams, E Kelaiditi, N Hoggard, JR Arthur, JE Drew. Leptin up-regulates pro-inflammatory cytokines in discrete cells within mouse colon. J Cell Physiol 2011; 226(8): 2123–2130
https://doi.org/10.1002/jcp.22546
147 P Jitprasertwong, KM Jaedicke, CJ Nile, PM Preshaw, JJ Taylor. Leptin enhances the secretion of interleukin (IL)-18, but not IL-1β, from human monocytes via activation of caspase-1. Cytokine 2014; 65(2): 222–230
https://doi.org/10.1016/j.cyto.2013.10.008
148 C Tao, A Sifuentes, WL Holland. Regulation of glucose and lipid homeostasis by adiponectin: effects on hepatocytes, pancreatic beta cells and adipocytes. Best Pract Res Clin Endocrinol Metab 2014; 28(1): 43–58
https://doi.org/10.1016/j.beem.2013.11.003
149 H Tilg, AM Wolf. Adiponectin: a key fat-derived molecule regulating inflammation. Expert Opin Ther Targets 2005; 9(2): 245–251
https://doi.org/10.1517/14728222.9.2.245
150 K Robinson, J Prins, B Venkatesh. Clinical review: adiponectin biology and its role in inflammation and critical illness. Crit Care 2011; 15(2): 221
https://doi.org/10.1186/cc10021
151 N Maeda, I Shimomura, K Kishida, H Nishizawa, M Matsuda, H Nagaretani, N Furuyama, H Kondo, M Takahashi, Y Arita, R Komuro, N Ouchi, S Kihara, Y Tochino, K Okutomi, M Horie, S Takeda, T Aoyama, T Funahashi, Y Matsuzawa. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 2002; 8(7): 731–737
https://doi.org/10.1038/nm724
152 CY Jiang, W Wang, JX Tang, ZR Yuan. The adipocytokine resistin stimulates the production of proinflammatory cytokines TNF-α and IL-6 in pancreatic acinar cells via NF-κB activation. J Endocrinol Invest 2013; 36(11): 986–992
153 KL Spalding, E Arner, PO Westermark, S Bernard, BA Buchholz, O Bergmann, L Blomqvist, J Hoffstedt, E Naslund, T Britton, H Concha, M Hassan, M Ryden, J Frisen, P Arner. Dynamics of fat cell turnover in humans. Nature 2008; 453(7196): 783–787
https://doi.org/10.1038/nature06902
154 D Samocha-Bonet, DJ Chisholm, K Tonks, LV Campbell, JR Greenfield. Insulin-sensitive obesity in humans — a ‘favorable fat’ phenotype? Trends Endocrinol Metab 2012; 23(3): 116–124
https://doi.org/10.1016/j.tem.2011.12.005
155 T Tchkonia, T Thomou, Y Zhu, I Karagiannides, C Pothoulakis, MD Jensen, JL Kirkland. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab 2013; 17(5): 644–656
https://doi.org/10.1016/j.cmet.2013.03.008
156 AW Joe, L Yi, Y Even, AW Vogl, FM Rossi. Depot-specific differences in adipogenic progenitor abundance and proliferative response to high-fat diet. Stem Cells 2009; 27(10): 2563–2570
https://doi.org/10.1002/stem.190
157 L van Beek, JB van Klinken, AC Pronk, AD van Dam, E Dirven, PC Rensen, F Koning, K Willems van Dijk, V van Harmelen. The limited storage capacity of gonadal adipose tissue directs the development of metabolic disorders in male C57Bl/6J mice. Diabetologia 2015; 58(7): 1601–1609
https://doi.org/10.1007/s00125-015-3594-8
158 B Gustafson, S Hedjazifar, S Gogg, A Hammarstedt, U Smith. Insulin resistance and impaired adipogenesis. Trends Endocrinol Metab 2015; 26(4): 193–200
https://doi.org/10.1016/j.tem.2015.01.006
159 KJ Strissel, Z Stancheva, H Miyoshi, JW Perfield 2nd, J DeFuria, Z Jick, AS Greenberg, MS Obin. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 2007; 56(12): 2910–2918
https://doi.org/10.2337/db07-0767
160 N Halberg, T Khan, ME Trujillo, I Wernstedt-Asterholm, AD Attie, S Sherwani, ZV Wang, S Landskroner-Eiger, S Dineen, UJ Magalang, RA Brekken, PE Scherer. Hypoxia-inducible factor 1α induces fibrosis and insulin resistance in white adipose tissue. Mol Cell Biol 2009; 29(16): 4467–4483
https://doi.org/10.1128/MCB.00192-09
161 S Kim, Y Joe, SO Jeong, M Zheng, SH Back, SW Park, SW Ryter, HT Chung. Endoplasmic reticulum stress is sufficient for the induction of IL-1β production via activation of the NF-κB and inflammasome pathways. Innate Immun 2014; 20(8): 799–815
https://doi.org/10.1177/1753425913508593
162 B Vandanmagsar, YH Youm, A Ravussin, JE Galgani, K Stadler, RL Mynatt, E Ravussin, JM Stephens, VD Dixit. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 2011; 17(2): 179–188
https://doi.org/10.1038/nm.2279
163 H Wen, D Gris, Y Lei, S Jha, L Zhang, MT Huang, WJ Brickey, JP Ting. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 2011; 12(5): 408–415
https://doi.org/10.1038/ni.2022
164 I Wernstedt Asterholm, C Tao, TS Morley, QA Wang, F Delgado-Lopez, ZV Wang, PE Scherer. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab 2014; 20(1): 103–118
https://doi.org/10.1016/j.cmet.2014.05.005
165 N Dali-Youcef, M Mecili, R Ricci, E Andres. Metabolic inflammation: connecting obesity and insulin resistance. Ann Med 2013; 45(3): 242–253
https://doi.org/10.3109/07853890.2012.705015
166 Y Tchoukalova, C Koutsari, M Jensen. Committed subcutaneous preadipocytes are reduced in human obesity. Diabetologia 2007; 50(1): 151–157
https://doi.org/10.1007/s00125-006-0496-9
167 M Adiels, J Westerbacka, A Soro-Paavonen, AM Hakkinen, S Vehkavaara, MJ Caslake, C Packard, SO Olofsson, H Yki-Jarvinen, MR Taskinen, J Boren. Acute suppression of VLDL1 secretion rate by insulin is associated with hepatic fat content and insulin resistance. Diabetologia 2007; 50(11): 2356–2365
https://doi.org/10.1007/s00125-007-0790-1
168 JP Després, I Lemieux. Abdominal obesity and metabolic syndrome. Nature 2006; 444(7121): 881–887
https://doi.org/10.1038/nature05488
169 IJ Neeland, AT Turer, CR Ayers, TM Powell-Wiley, GL Vega, R Farzaneh-Far, SM Grundy, A Khera, DK McGuire, JA de Lemos. Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA 2012; 308(11): 1150–1159
https://doi.org/10.1001/2012.jama.11132
170 A Shuster, M Patlas, JH Pinthus, M Mourtzakis. The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis. Br J Radiol 2012; 85(1009): 1–10
https://doi.org/10.1259/bjr/38447238
171 U Smith. Abdominal obesity: a marker of ectopic fat accumulation. J Clin Invest 2015; 125(5): 1790–1792
https://doi.org/10.1172/JCI81507
172 V Pellegrinelli, S Carobbio, A Vidal-Puig. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia 2016; 59(6): 1075–1088
https://doi.org/10.1007/s00125-016-3933-4
173 Y Wang, H Wang, V Hegde, O Dubuisson, Z Gao, NV Dhurandhar, J Ye. Interplay of pro- and anti-inflammatory cytokines to determine lipid accretion in adipocytes. Int J Obes 2013; 37(11): 1490–1498
https://doi.org/10.1038/ijo.2013.9
174 DN Kiortsis, AK Mavridis, S Vasakos, SN Nikas, AA Drosos. Effects of infliximab treatment on insulin resistance in patients with rheumatoid arthritis and ankylosing spondylitis. Ann Rheum Dis 2005; 64(5): 765–766
https://doi.org/10.1136/ard.2004.026534
175 FC Huvers, C Popa, MG Netea, FH van den Hoogen, CJ Tack. Improved insulin sensitivity by anti-TNFα antibody treatment in patients with rheumatic diseases. Ann Rheum Dis 2007; 66(4): 558–559
https://doi.org/10.1136/ard.2006.062323
176 M Marra, A Campanati, R Testa, C Sirolla, AR Bonfigli, C Franceschi, F Marchegiani, A Offidani. Effect of etanercept on insulin sensitivity in nine patients with psoriasis. Int J Immunopathol Pharmacol 2007; 20(4): 731–736
https://doi.org/10.1177/039463200702000408
177 DH Solomon, E Massarotti, R Garg, J Liu, C Canning, S Schneeweiss. Association between disease-modifying antirheumatic drugs and diabetes risk in patients with rheumatoid arthritis and psoriasis. JAMA 2011; 305(24): 2525–2531
https://doi.org/10.1001/jama.2011.878
178 E Parmentier-Decrucq, A Duhamel, O Ernst, C Fermont, A Louvet, G Vernier-Massouille, A Cortot, JF Colombel, P Desreumaux, L Peyrin-Biroulet. Effects of infliximab therapy on abdominal fat and metabolic profile in patients with Crohn’s disease. Inflamm Bowel Dis 2009; 15(10): 1476–1484
https://doi.org/10.1002/ibd.20931
179 LA O'Neill. The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress. Immunol Rev 2008; 226:10–18
180 R Stienstra, LA Joosten, T Koenen, B van Tits, JA van Diepen, SA van den Berg, PC Rensen, PJ Voshol, G Fantuzzi, A Hijmans, S Kersten, M Muller, WB van den Berg, N van Rooijen, M Wabitsch, BJ Kullberg, JW van der Meer, T Kanneganti, CJ Tack, MG Netea. The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab 2010; 12(6): 593–605
https://doi.org/10.1016/j.cmet.2010.11.011
181 MY Donath. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov 2014; 13(6): 465–476
https://doi.org/10.1038/nrd4275
182 C Gabay, IB McInnes, A Kavanaugh, K Tuckwell, M Klearman, J Pulley, N Sattar. Comparison of lipid and lipid-associated cardiovascular risk marker changes after treatment with tocilizumab or adalimumab in patients with rheumatoid arthritis. Ann Rheum Dis 2016; 75(10): 1806–1812
https://doi.org/10.1136/annrheumdis-2015-207872
183 M Laakso, J Kuusisto. Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat Rev Endocrinol 2014; 10(5): 293–302
https://doi.org/10.1038/nrendo.2014.29
184 M Wang, M Gao, J Liao, Y Qi, X Du, Y Wang, L Li, G Liu, H Yang. Adipose tissue deficiency results in severe hyperlipidemia and atherosclerosis in the low-density lipoprotein receptor knockout mice. Biochim Biophys Acta 2016; 1861(5): 410–418
https://doi.org/10.1016/j.bbalip.2016.02.018
185 CS Fox, S Coady, PD Sorlie, RB D’Agostino Sr, MJ Pencina, RS Vasan, JB Meigs, D Levy, PJ Savage. Increasing cardiovascular disease burden due to diabetes mellitus: the Framingham Heart Study. Circulation 2007; 115(12): 1544–1550
https://doi.org/10.1161/CIRCULATIONAHA.106.658948
186 R Loomba, M Abraham, A Unalp, L Wilson, J Lavine, E Doo, NM Bass. Association between diabetes, family history of diabetes, and risk of nonalcoholic steatohepatitis and fibrosis. Hepatology 2012; 56(3): 943–951
https://doi.org/10.1002/hep.25772
187 CD Williams, J Stengel, MI Asike, DM Torres, J Shaw, M Contreras, CL Landt, SA Harrison. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 2011; 140(1): 124–131
https://doi.org/10.1053/j.gastro.2010.09.038
188 DJ Betteridge, R Carmena. The diabetogenic action of statins — mechanisms and clinical implications. Nat Rev Endocrinol 2016; 12(2): 99–110
https://doi.org/10.1038/nrendo.2015.194
189 NJ Stone, JG Robinson, AH Lichtenstein, CN Bairey Merz, CB Blum, RH Eckel, AC Goldberg, D Gordon, D Levy, DM Lloyd-Jones, P McBride, JS Schwartz, ST Shero, SC Jr Smith, K Watson, PW Wilson, KM Eddleman, NM Jarrett, K LaBresh, L Nevo, J Wnek, JL Anderson, JL Halperin, NM Albert, B Bozkurt, RG Brindis, LH Curtis, D DeMets, JS Hochman, RJ Kovacs, EM Ohman, SJ Pressler, FW Sellke, WK Shen, SC Jr Smith, GF Tomaselli. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014; 129(25 Suppl 2): S1–S45
https://doi.org/10.1161/01.cir.0000437738.63853.7a
[1] Huiwen Ren, Can Wu, Ying Shao, Shuang Liu, Yang Zhou, Qiuyue Wang. Correlation between serum miR-154-5p and urinary albumin excretion rates in patients with type 2 diabetes mellitus: a cross-sectional cohort study[J]. Front. Med., 2020, 14(5): 642-650.
[2] Jian Liu, Pingyan Shen, Xiaobo Ma, Xialian Yu, Liyan Ni, Xu Hao, Weiming Wang, Nan Chen. White blood cell count and the incidence of hyperuricemia: insights from a community-based study[J]. Front. Med., 2019, 13(6): 741-746.
[3] Nikolay V. Tsygan, Alexandr P. Trashkov, Igor V. Litvinenko, Viktoriya A. Yakovleva, Alexandr V. Ryabtsev, Andrey G. Vasiliev, Leonid P. Churilov. Autoimmunity in acute ischemic stroke and the role of blood--brain barrier: the dark side or the light one?[J]. Front. Med., 2019, 13(4): 420-426.
[4] Xiaoqing Li, Xinxin Li, Genbei Wang, Yan Xu, Yuanyuan Wang, Ruijia Hao, Xiaohui Ma. Xiao Ke Qing improves glycometabolism and ameliorates insulin resistance by regulating the PI3K/Akt pathway in KKAy mice[J]. Front. Med., 2018, 12(6): 688-696.
[5] Zhen Zhang, Na Jiang, Zhaohui Ni. Strategies for preventing peritoneal fibrosis in peritoneal dialysis patients: new insights based on peritoneal inflammation and angiogenesis[J]. Front. Med., 2017, 11(3): 349-358.
[6] Palka Kaur Khanuja,Satish Chander Narula,Rajesh Rajput,Rajinder Kumar Sharma,Shikha Tewari. Association of periodontal disease with glycemic control in patients with type 2 diabetes in Indian population[J]. Front. Med., 2017, 11(1): 110-119.
[7] Marijke A. de Vries,Arash Alipour,Erwin Birnie,Andrew Westzaan,Selvetta van Santen,Ellen van der Zwan,Anho H. Liem,Noëlle van der Meulen,Manuel Castro Cabezas. Coronary leukocyte activation in relation to progression of coronary artery disease[J]. Front. Med., 2016, 10(1): 85-90.
[8] Jianping Ye. Beneficial metabolic activities of inflammatory cytokine interleukin 15 in obesity and type 2 diabetes[J]. Front. Med., 2015, 9(2): 139-145.
[9] Zhicheng Zhang,Jun Yang,Mingchao Li,Wei Cai,Qingquan Liu,Tao Wang,Xiaolin Guo,Shaogang Wang,Jihong Liu,Zhangqun Ye. Paratesticular fibrous pseudotumor: a report of five cases and literature review[J]. Front. Med., 2014, 8(4): 484-488.
[10] Xiaoyan Chen,Wenxia Xiao,Xinchun Li,Jianxun He,Xiaochun Huang,Yuyu Tan. In vivo evaluation of renal function using diffusion weighted imaging and diffusion tensor imaging in type 2 diabetics with normoalbuminuria versus microalbuminuria[J]. Front. Med., 2014, 8(4): 471-476.
[11] Xinguang Liu, Yu Hou, Jun Peng. Advances in immunopathogenesis of adult immune thrombocytopenia[J]. Front Med, 2013, 7(4): 418-424.
[12] Rong Zhang, Di Wang, Zhuying Xia, Chao Chen, Peng Cheng, Hui Xie, Xianghang Luo. The role of microRNAs in adipocyte differentiation[J]. Front Med, 2013, 7(2): 223-230.
[13] Khurram Siddique, Shirin Mirza, Gandra Harinath. Appendiceal inflammation affects the length of stay following appendicectomy amongst children: a myth or reality?[J]. Front Med, 2013, 7(2): 264-269.
[14] Jianping Ye. Mechanisms of insulin resistance in obesity[J]. Front Med, 2013, 7(1): 14-24.
[15] Tao Li, Nanfu Luo, Lei Du, Jin Liu, Lina Gong, Jing Zhou. Early and marked up-regulation of TNF-α in acute respiratory distress syndrome after cardiopulmonary bypass[J]. Front Med, 2012, 6(3): 296-301.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed