Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2019, Vol. 13 Issue (2) : 213-228    https://doi.org/10.1007/s11684-018-0631-2
REVIEW |
Cholera: an overview with reference to the Yemen epidemic
Ali A. Rabaan()
Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
 Download: PDF(304 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cholera is a secretory diarrhoeal disease caused by infection with Vibrio cholerae, primarily the V. cholerae O1 El Tor biotype. There are approximately 2.9 million cases in 69 endemic countries annually, resulting in 95 000 deaths. Cholera is associated with poor infrastructure and lack of access to sanitation and clean drinking water. The current cholera epidemic in Yemen, linked to spread of V. cholerae O1 (Ogawa serotype), is associated with the ongoing war. This has devastated infrastructure and health services. The World Health Organization had estimated that 172 286 suspected cases arose between 27th April and 19th June 2017, including 1170 deaths. While there are three oral cholera vaccines prequalified by the World Health Organization, there are issues surrounding vaccination campaigns in conflict situations, exacerbated by external factors such as a global vaccine shortage. Major movements of people complicates surveillance and administration of double doses of vaccines. Cholera therapy mainly depends on rehydration, with use of antibiotics in more severe infections. Concerns have arisen about the rise of antibiotic resistance in cholera, due to mobile genetic elements. In this review, we give an overview of cholera epidemiology, virulence, antibiotic resistance, therapy and vaccines, in the light of the ongoing epidemic in Yemen.

Keywords cholera      epidemic      multi-drug resistant      catechin      luteolin      ToxT      CTXФ     
Corresponding Authors: Ali A. Rabaan   
Just Accepted Date: 16 April 2018   Online First Date: 21 June 2018    Issue Date: 28 March 2019
 Cite this article:   
Ali A. Rabaan. Cholera: an overview with reference to the Yemen epidemic[J]. Front. Med., 2019, 13(2): 213-228.
 URL:  
http://academic.hep.com.cn/fmd/EN/10.1007/s11684-018-0631-2
http://academic.hep.com.cn/fmd/EN/Y2019/V13/I2/213
Fig.1  Overview of V. cholerae classification by serogroup and biotype.
Year Location References
2008 Mozambique (9087 cases); Zimbabwe (2008−2009; 98 522 cases) [30, 44]
2009 DRC; Mozambique (19 679 cases); Zimbabwe (continued from 2008); Tanzania (7700 cases); Kenya (11 769 cases) [30, 39, 44]
2010 HAITI (epidemic begins October; approximately 700 000 cases to date); Zimbabwe (Kadoma City, 127 cases); Cameroon (2010−2011; 23 152 cases); Nigeria (41 787 cases); Bangladesh (MDR resistance rising— 93% of isolates from coastal areas 2010−2014— approximately 450 000 cases/year); India (El Tor variant; 2152 cases) [4, 29−31, 43, 44, 50, 51, 63]
2011 Philippines (O1 hybrid El Tor; Palawan, 1226 cases); DRC (8038 cases); Uganda (fishing villages— recurrent yearly outbreaks 2011−2015, 5059 cases); Cameroon (continued from 2010) [36−39, 48]
2012 Guinea (2009−2012,>15 500 cases) ; DRC (Betou, 355 cases); Tanzania; India (El Tor ctxB7 allele) [37, 39, 47]
2013 India (MDR O1 Ogawa, Bagalkot, 49 cases); Tanzania (Dar Es Salaam, approximately 3400 cases) [37, 52]
2014 Ghana (Accra region, continued into 2015, more than 20 500 cases) [37]
2015 Tanzania (approximately 9900 cases); Southern Sudan (began 2014; insufficient vaccines; 2260 cases) [37, 40]
2016 YEMEN (epidemic begins October; ongoing); Tanzania [9, 37]
2017 Surge in cases in Yemen since April; 862 858 suspected cases (26/10/17 WHO update) [9]
Tab.1  Timeline of large cholera outbreaks in last decade
Target Therapeutic agent Therapeutic target/mechanism References
Virulence/toxin mediators Seaweed polysaccharide (in vivo-mice) CT; GM1 receptor [100]
Anethole (in vitro, in vivo-rabbits) Reduced CT and TCP expression via inhibition of ToxT [101]
Catechin and luteolin (in silico) Inhibition of ToxT [102]
Conjugated linoleic acid (CLA) (in vitro, in vivo-rabbits) Reduced CT and TCP expression via inhibition of ToxT [111]
Virstatin (in vitro, in vivo- mice) Reduced CT expression via inhibition of ToxT [113]
Model bicyclic compounds (in vitro) Reduced in vitro tcp expression via inhibition of ToxT [110]
Ribavirin (in vitro) Inhibition of AphB [106]
Dietary minerals (Zn, Mg, Se) (in vitro, ex vivo) Reduction of transcription virulence genes ctxAB, fliA, ?toxR [114]
Lytic bacteriophages ØVC8 (wastewater, Mexico) Lytic activity against V. cholerae O1 strain [108]
VPUSM 8 (sewage water, Malaysia) Lytic activity against V. cholerae O1 El Tor Inaba ?serotype [109]
ICP 1, 2 and 3 (in vitro, in vivo-mice) Lytic activity against V. cholerae O1 [107]
Host-directed CFTR inhibitor ®-BPO-27 (in vitro, in vivo-mice) Inhibition of CFTR conductance [104]
Bithionol (caspase inhibition) (in vitro) Reduction of CT effects via inhibition of human ?caspases-1, -3, -6, -7, -9 [112]
Entinostat (in vitro, in vivo-rabbits) Restoration of antimicrobial peptide CAP-18 levels [105]
Quorum sensing Manipulation of the gut microbiota [103]
Tab.2  Overview of potential cholera therapies
1 MAli, AR Nelson, ALLopez, DASack. Updated global burden of cholera in endemic countries. PLoS Negl Trop Dis 2015; 9(6): e0003832
https://doi.org/10.1371/journal.pntd.0003832
2 WHO. Cholera 2015. Weekly Epidemiological Report 2016; 91: 433–440
3 WHO. 2016. Cholera Fact sheet. (Accessed June 14 2017)
4 FJLuquero, M Rondy, JBoncy, AMunger, HMekaoui, ERymshaw, ALPage, BToure, MADegail, SNicolas, FGrandesso, MGinsbourger, JPolonsky, KPAlberti, MTerzian, DOlson, KPorten, ICiglenecki. Mortality rates during cholera epidemic, Haiti, 2010–2011. Emerg Infect Dis 2016; 22(3): 410–416
https://doi.org/10.3201/eid2203.141970
5 SOhene, W Klenyuie, MSarpeh. Assessment of the response to cholera outbreaks in two districts in Ghana. Infect Dis Poverty 2016; 5(1): 99
https://doi.org/10.1186/s40249-016-0192-z
6 EBSteinberg, KD Greene, CABopp, DNCameron, JGWells, EDMintz. Cholera in the United States, 1995–2000: trends at the end of the twentieth century. J Infect Dis 2001; 184(6): 799–802
https://doi.org/10.1086/322989
7 ALoharikar, AE Newton, SStroika, MFreeman, KDGreene, MBParsons, CBopp, D Talkington, EDMintz, BEMahon. Cholera in the United States, 2001–2011: a reflection of patterns of global epidemiology and travel. Epidemiol Infect 2015; 143(4): 695–703
https://doi.org/10.1017/S0950268814001186
8 XQLi, M Wang, ZADeng, JCShen, XQZhang, YFLiu, YS Cai, XWWu, BDi. Survivability and molecular variation in Vibrio cholerae from epidemic sites in China. Epidemiol Infect 2015; 143(2): 288–297
https://doi.org/10.1017/S0950268814000570
9 WHO. 2017. Yemen: cholera outbreak. Daily Epidemiology Update. June 20 2017
10 BBC World News. 2017. Yemen crisis: Who is fighting whom? (accessed June 14 2017)
11 WHO. 2016. Survey reveals extent of damage to Yemen’s health system. (Accessed June 14 2017)
12 RSakazaki, T Shimada. Serovars of Vibrio cholerae identified during 1970–1975. Jpn J Med Sci Biol 1977; 30(5): 279–282
https://doi.org/10.7883/yoken1952.30.279
13 RSakazaki, T Shimada. Additional serovars and inter-O antigenic relationships of Vibrio cholerae. Jpn J Med Sci Biol 1977; 30(5): 275–277
https://doi.org/10.7883/yoken1952.30.275
14 TShimada, E Arakawa, KItoh, TOkitsu, AMatsushima, YAsai, S Yamai, TNakazato, GBNair, MJAlbert, YTakeda. Extended serotyping scheme for Vibrio cholerae. Curr Microbiol 1994; 28(3): 175–178
https://doi.org/10.1007/BF01571061
15 RBanerjee, B Das, GBalakrish Nair, SBasak. Dynamics in genome evolution of Vibrio cholerae. Infect Genet Evol 2014; 23: 32–41
https://doi.org/10.1016/j.meegid.2014.01.006
16 JBKaper, JG Morris, MMLevine. Cholera. Clin Microbiol Rev 1995; 8(1): 48–86
17 KKWong, E Burdette, BEMahon, EDMintz, ETRyan, ALReingold. Recommendations of the Advisory Committee on Immunization Practices for Use of Cholera Vaccine. Atlanta: U.S. Center for Disease Control, 2017
18 AKuna, M Gajewski. Cholera — the new strike of an old foe. Int Marit Health 2017; 68(3): 163–167
https://doi.org/10.5603/IMH.2017.0029
19 HNishiura, S Tsuzuki, BYuan, TYamaguchi, YAsai. Transmission dynamics of cholera in Yemen, 2017: a real time forecasting. Theor Biol Med Model 2017; 14(1): 14
https://doi.org/10.1186/s12976-017-0061-x
20 MNaseer, T Jamali. Epidemiology, determinants and dynamics of cholera in Pakistan: gaps and prospects for future research. J Coll Physicians Surg Pak 2014 11; 24(11): 855–860
21 ASiriphap, P Leekitcharoenphon, RSKaas, CTheethakaew, FMAarestrup, OSutheinkul, RSHendriksen. Characterization and genetic variation of Vibrio cholerae isolated from clinical and environmental sources in Thailand. PLoS One 2017; 12(1): e0169324
https://doi.org/10.1371/journal.pone.0169324
22 FChowdhury, AE Mather, YABegum, MAsaduzzaman, NBaby, S Sharmin, RBiswas, MIUddin, RCLaRocque, JBHarris, SBCalderwood. Vibrio cholerae serogroup O139: isolation from cholera patients and asymptomatic household family members in Bangladesh between 2013 and 2014. PLoS Negl Trop Dis 2015; 9(11): e0004183
https://doi.org/10.1371/journal.pntd.0004183
23 BSLi, Y Xiao, DCWang, HLTan, BX Ke, DMHe, CWKe, YH Zhang. Genetic relatedness of selected clinical Vibrio cholerae O139 isolates from the southern coastal area of China over a 20-year period. Epidemiol Infect 2016; 144(12): 2679–2687
https://doi.org/10.1017/S0950268816001059
24 EAldová, K Lázničková, E Štěpánková, JLietava. Isolation of nonagglutinable vibrios from an enteritis outbreak in Czechoslovakia. J Infect Dis 1968; 118(1): 25–31
https://doi.org/10.1093/infdis/118.1.25
25 AMKamal. Outbreak of gastro-enteritis by non-agglutinable (NAG) vibrios in the republic of the Sudan. J Egypt Public Health Assoc 1971; 46: 125–159
26 MHRahaman, T Islam, RRColwell, MAlam. Molecular tools in understanding the evolution of Vibrio cholerae. Front Microbiol 2015; 6: 1040
https://doi.org/10.3389/fmicb.2015.01040
27 PABlake. Vibrio cholerae and Cholera: Molecular to Global Perspectives. In: Wachsmuth IK, Blake PA, Olsvik Ø, eds. Washington, DC: Am So. Microbiol, 1994: 293–295
28 MDziejman, E Balon, DBoyd, CMFraser, JFHeidelberg, JJMekalanos. Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc Natl Acad Sci USA 2002; 99(3): 1556–1561
https://doi.org/10.1073/pnas.042667999
29 MEppinger, T Pearson, SSKoenig, OPearson, NHicks, SAgrawal, FSanjar, KGalens, SDaugherty, JCrabtree, RSHendriksen, LBPrice, BPUpadhyay, GShakya, CMFraser, JRavel, PSKeim. Genomic epidemiology of the Haitian cholera outbreak: a single introduction followed by rapid, extensive, and continued spread characterized the onset of the epidemic. MBio 2014; 5(6): e01721–e14
https://doi.org/10.1128/mBio.01721-14
30 JPLanga, C Sema, NDe Deus, MMColombo, ETaviani. Epidemic waves of cholera in the last two decades in Mozambique. J Infect Dev Ctries 2015; 9(6): 635–641
https://doi.org/10.3855/jidc.6943
31 DSNsagha, J Atashili, PNFon, EATanue, CWAyima, ODKibu. Assessing the risk factors of cholera epidemic in the Buea Health District of Cameroon. BMC Public Health 2015; 15(1): 1128
https://doi.org/10.1186/s12889-015-2485-8
32 GBNair, SM Faruque, NABhuiyan, MKamruzzaman, AKSiddique, DASack. New variants of Vibrio cholerae O1 biotype El Tor with attributes of the classical biotype from hospitalized patients with acute diarrhea in Bangladesh. J Clin Microbiol 2002; 40(9): 3296–3299
https://doi.org/10.1128/JCM.40.9.3296-3299.2002
33 BDas, K Halder, PPal, RKBhadra. Small chromosomal integration site of classical CTX prophage in Mozambique Vibrio cholerae O1 biotype El Tor strain. Arch Microbiol 2007; 188(6): 677–683
https://doi.org/10.1007/s00203-007-0275-0
34 SMFaruque, VC Tam, NChowdhury, PDiraphat, MDziejman, JFHeidelberg, JDClemens, JJMekalanos, GBNair. Genomic analysis of the Mozambique strain of Vibrio cholerae O1 reveals the origin of El Tor strains carrying classical CTX prophage. Proc Natl Acad Sci USA 2007; 104(12): 5151–5156
https://doi.org/10.1073/pnas.0700365104
35 DBarua. History of cholera. In: Barua D, Greenough WB (eds). Cholera. New York: Springer US, 1992: 1–36
36 GBwire, A Munier, IOuedraogo, LHeyerdahl, HKomakech, AKagirita, RWood, R Mhlanga, BNjanpop-Lafourcade, MMalimbo, IMakumbi, JWandawa, BDGessner, CGOrach, MAMengel. Epidemiology of cholera outbreaks and socio-economic characteristics of the communities in the fishing villages of Uganda: 2011–2015. PLoS Negl Trop Dis 2017; 11(3): e0005407
https://doi.org/10.1371/journal.pntd.0005407
37 YKachwamba, AA Mohammed, HLukupulo, LUrio, M Majigo, FMosha, MMatonya, RKishimba, JMghamba, JLusekelo, SNyanga, MAlmeida, SLi, D Domman, SYMassele, OCStine. Genetic characterization of Vibrio cholerae O1 isolates from outbreaks between 2011 and 2015 in Tanzania. BMC Infect Dis 2017; 17(1): 157
https://doi.org/10.1186/s12879-017-2252-9
38 LDalusi, TJ Lyimo, CLugomela, KMMHosea, SSjöling. Toxigenic Vibrio cholerae identified in estuaries of Tanzania using PCR techniques. FEMS Microbiol Lett 2015; 362(5): fnv009
https://doi.org/10.1093/femsle/fnv009
39 SMoore, B Miwanda, AYSadji, HThefenne, FJeddi, SRebaudet, HDe Boeck, BBidjada, JJDepina, DBompangue, AAAbedi, LKoivogui, SKeita, EGarnotel, PDPlisnier, RRuimy, NThomson, JJMuyembe, RPiarroux. Relationship between distinct African cholera epidemics revealed via MLVA haplotyping of 337 Vibrio cholerae isolates. PLoS Negl Trop Dis 2015; 9(6): e0003817
https://doi.org/10.1371/journal.pntd.0003817
40 LAParker, J Rumunu, CJamet, YKenyi, RLLino, JFWamala, AMMpairwe, ICiglenecki, FJLuquero, ASAzman, JCCabrol. Adapting to the global shortage of cholera vaccines: targeted single dose cholera vaccine in response to an outbreak in South Sudan. Lancet Infect Dis 2017; 17(4): e123–e127
https://doi.org/10.1016/S1473-3099(16)30472-8
41 GBwire, M Mwesawina, YBaluku, SSKanyanda, CGOrach. Cross-border cholera outbreaks in Sub-Saharan Africa, the mystery behind the silent illness: what needs to be done? PLoS One 2016; 11(6): e0156674
https://doi.org/10.1371/journal.pone.0156674
42 HMasoumi-Asl, MM Gouya, MRahbar, RSabourian. The epidemiology and antimicrobial resistance of cholera cases in Iran during 2013. Iran J Microbiol 2016; 8(4): 232–237
43 MCNgwa, S Liang, ITKracalik, LMorris, JKBlackburn, LMMbam, SFPouth, ATeboh, YYang, M Arabi, JDSugimoto. Cholera in Cameroon, 2000–2012: spatial and temporal analysis at the operational (health district) and sub climate levels. PLoS Negl Trop Dis 2016; 10(11): e0005105
https://doi.org/10.1371/journal.pntd.0005105
44 AJutla, H Aldaach, HBillian, AAkanda, AHuq, R Colwell. Satellite based assessment of hydroclimatic conditions related to cholera in Zimbabwe. PLoS One 2015; 10(9): e0137828
https://doi.org/10.1371/journal.pone.0137828
45 CBNelson, V Mogasale, TIBari, JDClemens. Considerations around the introduction of a cholera vaccine in Bangladesh. Vaccine 2014; 32(52): 7033–7036
https://doi.org/10.1016/j.vaccine.2014.05.028
46 LRighetto, RU Zaman, ZHMahmud, EBertuzzo, LMari, R Casagrandi, MGatto, SIslam, ARinaldo. Detection of Vibrio cholerae O1 and O139 in environmental waters of rural Bangladesh: a flow-cytometry-based field trial. Epidemiol Infect 2015; 143(11): 2330–2342
https://doi.org/10.1017/S0950268814003252
47 PKumar, DK Mishra, DGDeshmukh, MJain, AM Zade, KVIngole, AKGoel, PKYadava. Vibrio cholerae O1 Ogawa El Tor strains with the ctxB7 allele driving cholera outbreaks in south-western India in 2012. Infect Genet Evol 2014; 25: 93–96
https://doi.org/10.1016/j.meegid.2014.03.020
48 DCKlinzing, SY Choi, NAHasan, RRMatias, ETayag, JGeronimo, ESkowronski, SMRashed, KKawashima, CNRosenzweig, HSGibbons. Molecular tools in understanding the evolution of Vibrio cholerae. Front Microbiol 2015; 6: 1040
49 SKDas, D Begum, SAhmed, FFerdous, FDFarzana, MJChisti, JRLatham, KATalukder, MMRahman, YABegum, ASGFaruque, MAMalek, FQadri, TAhmed, NAlam. Geographical diversity in seasonality of major diarrhoeal pathogens in Bangladesh observed between 2010 and 2012. Epidemiol Infect 2014; 142(12): 2530–2541
https://doi.org/10.1017/S095026881400017X
50 SMRashed, NA Hasan, MAlam, ASadique, MSultana, MMHoq, RB Sack, RRColwell, AHuq. Vibrio cholerae O1 with reduced susceptibility to ciprofloxacin and azithromycin isolated from a rural coastal area of Bangladesh. Front Microbiol 2017; 8: 252
https://doi.org/10.3389/fmicb.2017.00252
51 SKKar, BB Pal, HKKhuntia, KGAchary, CPKhuntia. Emergence and spread of tetracycline resistant Vibrio cholerae O1 El Tor variant during 2010 cholera epidemic in the tribal areas of Odisha, India. Int J Infect Dis 2015; 33: 45–49
https://doi.org/10.1016/j.ijid.2014.12.025
52 DBhattacharya, S Dey, SRoy, MVParande, MTelsang, MHSeema, AVParande, BGMantur. Multidrug-resistant Vibrio cholerae O1 was responsible for a cholera outbreak in 2013 in Bagalkot, North Karnataka. Jpn J Infect Dis 2015; 68(4): 347–350
https://doi.org/10.7883/yoken.JJID.2014.257
53 VTorane, S Kuyare, GNataraj, PMehta, SDutta, BSarkar. Phenotypic and antibiogram pattern of V. cholerae isolates from a tertiary care hospital in Mumbai during 2004–2013: a retrospective cross-sectional study. BMJ Open 2016; 6(11): e012638
https://doi.org/10.1136/bmjopen-2016-012638
54 ARReimer, G Van Domselaar, SStroika, MWalker, HKent, C Tarr, DTalkington, LRowe, M Olsen-Rasmussen, MFrace, SSammons. Comparative genomics of Vibrio cholerae from Haiti, Asia, and Africa. Emerg Infect Dis 2011; 17(11): 2113
https://doi.org/10.3201/eid1711.110794
55 RSHendriksen, LB Price, JMSchupp, JDGillece, RSKaas, DMEngelthaler, VBortolaia, TPearson, AEWaters, BPUpadhyay, SDShrestha. Population genetics of Vibrio cholerae from Nepal in 2010: evidence on the origin of the Haitian outbreak. MBio 2011; 2(4): e00157–e11
https://doi.org/10.1128/mBio.00157-11
56 FDOrata, PS Keim, YBoucher. The 2010 cholera outbreak in Haiti: how science solved a controversy. PLoS Pathog 2014; 10(4): e1003967
https://doi.org/10.1371/journal.ppat.1003967
57 RPiarroux, R Barrais, BFaucher, RHaus, M Piarroux, JGaudart, RMagloire, DRaoult. Understanding the cholera epidemic, Haiti. Emerg Infect Dis 2011; 17(7): 1161–1168
https://doi.org/10.3201/eid1707.110059
58 LCIvers, DA Walton. The “first” case of cholera in Haiti: lessons for global health. Am J Trop Med Hyg 2012; 86(1): 36–38
https://doi.org/10.4269/ajtmh.2012.11-0435
59 AMKahler, BJ Haley, AChen, BJMull, CLTarr, MTurnsek, LSKatz, MSHumphrys, GDerado, NFreeman, JBoncy, RRColwell, AHuq, VR Hill. Environmental surveillance for toxigenic Vibrio cholerae in surface waters of Haiti. Am J Trop Med Hyg 2015; 92(1):118–125
60 MTAlam, TA Weppelmann, ILongini, VMBDe Rochars, JGMorris, AAli. Increased isolation frequency of toxigenic Vibrio cholerae O1 from environmental monitoring sites in Haiti. PLoS One 2015; 10(4): e0124098
https://doi.org/10.1371/journal.pone.0124098
61 DLantagne, GB Nair, CFLanata, ACravioto. The cholera outbreak in Haiti: where and how did it begin? In: Nair GB, Takeda Y. Cholera Outbreaks. Berlin Heidelberg: Springer, 2013: 145–164
62 JALewnard, M Antillón, GGonsalves, AMMiller, AIKo, VE Pitzer. Strategies to prevent cholera introduction during international personnel deployments: a computational modeling analysis based on the 2010 Haiti outbreak. PLoS Med 2016; 13(1): e1001947
https://doi.org/10.1371/journal.pmed.1001947
63 KJFSatchell, CJ Jones, JWong, JQueen, SAgarwal, FHYildiz. Phenotypic analysis reveals that the 2010 Haiti cholera epidemic is linked to a hypervirulent strain. Infect Immun 2016; 84(9): 2473–2481
https://doi.org/10.1128/IAI.00189-16
64 FGrandesso, M Allan, PSJean-Simon, JBoncy, ABlake, RPierre, KPAlberti, AMunger, GElder, DOlson, KPorten, FJLuquero. Risk factors for cholera transmission in Haiti during inter-peak periods: insights to improve current control strategies from two case-control studies. Epidemiol Infect 2014; 142(8): 1625–1635
https://doi.org/10.1017/S0950268813002562
65 APage, I Ciglenecki, ERJasmin, LDesvignes, FGrandesso, JPolonsky, SNicholas, KPAlberti, KPorten, FJLuquero. Geographic distribution and mortality risk factors during the cholera outbreak in a rural region of Haiti, 2010–2011. PLoS Negl Trop Dis 2015; 9(3): e0003605
https://doi.org/10.1371/journal.pntd.0003605
66 MAureli, L Mauri, MGCiampa, APrinetti, GToffano, CSecchieri, SSonnino. GM1 ganglioside: past studies and future potential. Mol Neurobiol 2016; 53(3): 1824–1842
https://doi.org/10.1007/s12035-015-9136-z
67 DVBroeck, C Horvath, MJDe Wolf. Vibrio cholerae: cholera toxin. Int J Biochem Cell Biol 2007; 39(10): 1771–1775
https://doi.org/10.1016/j.biocel.2007.07.005
68 JEHeggelund, D Burschowsky, VABjørnestad, VHodnik, GAnderluh, UKrengel. High-resolution crystal structures elucidate the molecular basis of cholera blood group dependence. PLoS Pathog 2016; 12(4): e1005567
https://doi.org/10.1371/journal.ppat.1005567
69 VPhongsisay, EI Iizasa, HHara, HYoshida. Evidence for TLR4 and FcRg–CARD9 activation by cholera toxin B subunit and its direct bindings to TREM2 and LMIR5 receptors. Mol Immunol 2015; 66(2): 463–471
https://doi.org/10.1016/j.molimm.2015.05.008
70 MKWaldor, JJ Mekalanos. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 1996; 272(5270): 1910–1914
https://doi.org/10.1126/science.272.5270.1910
71 AJHeilpern, MK Waldor. CTXФ infection of Vibrio cholerae requires the tolQRA gene products. J Bacteriol 2000; 182(6): 1739–1747
https://doi.org/10.1128/JB.182.6.1739-1747.2000
72 KEMoyer, HH Kimsey, MKWaldor. Evidence for a rolling-circle mechanism of phage DNA synthesis from both replicative and integrated forms of CTXФ. Mol Microbiol 2001; 41(2): 311–323
https://doi.org/10.1046/j.1365-2958.2001.02517.x
73 BDas, J Bischerour, MEVal, FXBarre. Molecular keys of the tropism of integration of the cholera toxin phage. Proc Natl Acad Sci USA 2010; 107(9): 4377–4382
https://doi.org/10.1073/pnas.0910212107
74 MQuinones, HH Kimsey, MKWaldor. LexA cleavage is required for CTX prophage induction. Mol Cell 2005; 17(2): 291–300
https://doi.org/10.1016/j.molcel.2004.11.046
75 MKWaldor, EJ Rubin, GDPearson, HKimsey, JJMekalanos. Regulation, replication, and integration functions of the Vibrio cholerae CTXF are encoded by region RS2. Mol Microbiol 1997; 24(5): 917–926
https://doi.org/10.1046/j.1365-2958.1997.3911758.x
76 EMartínez, E Paly, FBarre. CTXФ replication depends on the histone-like HU protein and the UvrD helicase. PLoS Genet 2015; 11(5): e1005256
https://doi.org/10.1371/journal.pgen.1005256
77 VJDiRita, C Parsot, GJander, JJMekalanos. Regulatory cascade controls virulence in Vibrio cholerae. Proc Natl Acad Sci USA 1991; 88(12): 5403–5407
https://doi.org/10.1073/pnas.88.12.5403
78 MJLowden, K Skorupski, MPellegrini, MGChiorazzo, RKTaylor, FJKull. Structure of Vibrio cholerae ToxT reveals a mechanism for fatty acid regulation of virulence genes. Proc Natl Acad Sci USA 2010; 107(7): 2860–2865
https://doi.org/10.1073/pnas.0915021107
79 JSMatson, JH Withey, VJDiRita. Regulatory networks controlling Vibrio cholerae virulence gene expression. Infect Immun 2007; 75(12): 5542–5549
https://doi.org/10.1128/IAI.01094-07
80 Global Task Force on Cholera Control (GTFCC). Cholera outbreak: assessing the outbreak response and improving preparedness. Geneva: World Health Organization, 2010. Available from: (Accessed June 27 2017)
81 YLeibovici-Weissman, ANeuberger, RBitterman, DSinclair, MASalam, MPaul. Antimicrobial drugs for treating cholera. Cochrane Database Syst Rev 2014; (6): 1
82 SBaron, J Lesne, EJouy, ELarvor, IKempf, JBoncy, SRebaudet, RPiarroux. Antimicrobial susceptibility of autochthonous aquatic Vibrio cholerae in Haiti. Front Microbiol 2016; 7: 1671
https://doi.org/10.3389/fmicb.2016.01671
83 NCarraro, N Rivard, DCeccarelli, RRColwell, VBurrus. IncA/C conjugative plasmids mobilize a new family of multidrug resistance islands in clinical Vibrio cholerae Non-O1/Non-O139 isolates from Haiti. MBio 2016; 7(4): e00509–e00516
https://doi.org/10.1128/mBio.00509-16
84 DCeccarelli, M Alam, AHuq, RRColwell. Reduced susceptibility to extended-spectrum β-lactams in Vibrio cholerae isolated in Bangladesh. Front Public Health 2016; 4: 231
https://doi.org/10.3389/fpubh.2016.00231
85 RWang, J Li, BKan. Sequences of a co-existing SXT element, a chromosomal integron (CI) and an IncA/C plasmid and their roles in multidrug resistance in a Vibrio cholerae O1 El Tor strain. Int J Antimicrob Agents 2016; 48(3): 305–309
https://doi.org/10.1016/j.ijantimicag.2016.05.020
86 KMehla, J Ramana. DBDiaSNP: an open-source knowledgebase of genetic polymorphisms and resistance genes related to diarrheal pathogens. OMICS 2015; 19(6): 354–360
https://doi.org/10.1089/omi.2015.0030
87 MKBhattacharya, S Kanungo, TRamamurthy, KRajendran, ASinha, ABhattacharya, BSSarkar. Comparison between single dose azithromycin and six doses, 3 day norfloxacin for treatment of cholera in adult. Int J Biomed Sci 2014; 10(4): 248–251
88 NADaniels, A Shafaie. A review of pathogenic Vibrio infections for clinicians. Infect Med 2000; 17(10): 665–685
89 AGhosh, T Ramamurthy. Antimicrobials and cholera: are we stranded? Indian J Med Res 2011; 133(2): 225
90 NPugliese, F Maimone, MScrascia, SFMateru, CPazzani. SXT-related integrating conjugative element and IncC plasmids in Vibrio cholerae O1 strains in Eastern Africa. J Antimicrob Chemother 2009; 63(3): 438–442
https://doi.org/10.1093/jac/dkn542
91 MSpagnoletti, D Ceccarelli, ARieux, MFondi, ETaviani, RFani, MM Colombo, RRColwell, FBalloux. Acquisition and evolution of SXT-R391 integrative conjugative elements in the seventh-pandemic Vibrio cholerae lineage. MBio 2014; 5(4): e01356–e14
https://doi.org/10.1128/mBio.01356-14
92 RWang, D Yu, LZhu, JLi, J Yue, BKan. IncA/C plasmids harboured in serious multidrug-resistant Vibrio cholerae serogroup O139 strains in China. Int J Antimicrob Agents 2015; 45(3): 249–254
https://doi.org/10.1016/j.ijantimicag.2014.10.021
93 RWang, D Yu, JYue, BKan. Variations in SXT elements in epidemic Vibrio cholerae O1 El Tor strains in China. Sci Rep 2016; 6(1): 22733
https://doi.org/10.1038/srep22733
94 AKGoel, SC Jiang. Genetic determinants of virulence, antibiogram and altered biotype among the Vibrio cholerae O1 isolates from different cholera outbreaks in India. Infect Genet Evol 2010; 10(6): 814–818
https://doi.org/10.1016/j.meegid.2009.06.022
95 AMutreja, DW Kim, NRThomson, TRConnor, JHLee, S Kariuki, NJCroucher, SYChoi, SRHarris, MLebens, SKNiyogi, EJKim, T Ramamurthy, JChun, JLNWood, JDClemens, CCzerkinsky, GBNair, JHolmgren, JParkhill, GDougan. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 2011; 477(7365): 462–465
https://doi.org/10.1038/nature10392
96 RAWozniak, DE Fouts, MSpagnoletti, MMColombo, DCeccarelli, GGarriss, CDéry, VBurrus, MKWaldor. Comparative ICE genomics: insights into the evolution of the SXT/R391 family of ICEs. PLoS Genet 2009; 5(12): e1000786
https://doi.org/10.1371/journal.pgen.1000786
97 MKWaldor, HE Tschäpe, JJMekalanos. A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J Bacteriol 1996; 178(14): 4157–4165
https://doi.org/10.1128/jb.178.14.4157-4165.1996
98 DCeccarelli, M Spagnoletti, DBacciu, YDanin-Poleg, DKMendiratta, YKashi, PCappuccinelli, VBurrus, MMColombo. ICEVchInd5 is prevalent in epidemic Vibrio cholerae O1 El Tor strains isolated in India. Int J Med Microbiol 2011; 301(4): 318–324
https://doi.org/10.1016/j.ijmm.2010.11.005
99 LLSá, ÉL Fonseca, M Pellegrini, FFreitas, ECLoureiro, ACVicente. Occurrence and composition of class 1 and class 2 integrons in clinical and environmental O1 and non-O1/non-O139 Vibrio cholerae strains from the Brazilian Amazon. Mem Inst Oswaldo Cruz 2010; 105(2): 229–232
https://doi.org/10.1590/S0074-02762010000200021
100 DSCosta, TSL Araújo, NASousa, LKMSouza, DMPacífico, FBMSousa, LADNicolau, LSChaves, FCNBarros, ALPFreitas, JVRMedeiros. Sulphated polysaccharide isolated from the seaweed Gracilaria caudata exerts an antidiarrhoeal effect in rodents. Basic Clin Pharmacol Toxicol 2016; 118(6): 440–448
https://doi.org/10.1111/bcpt.12531
101 MSZahid, SP Awasthi, MAsakura, SChatterjee, AHinenoya, SMFaruque, SYamasaki. Suppression of virulence of toxigenic Vibrio cholerae by anethole through the cyclic AMP (cAMP)-cAMP receptor protein signaling system. PLoS One 2015; 10(9): e0137529
https://doi.org/10.1371/journal.pone.0137529
102 SPerveen, HS Chaudhary. In silico screening of antibacterial compounds from herbal sources against Vibrio cholerae. Pharmacogn Mag 2015; 11(44): S550–S555
https://doi.org/10.4103/0973-1296.172960
103 JAThompson, RA Oliveira, KBXavier. Can chatter between microbes prevent cholera? Trends Microbiol 2014; 22(12): 660–662
https://doi.org/10.1016/j.tim.2014.10.006
104 OCil, P Phuan, AMGillespie, SLee, L Tradtrantip, JYin, MTse, NC Zachos, RLin, MDonowitz, ASVerkman. Benzopyrimido-pyrrolo-oxazine-dione CFTR inhibitor (R)-BPO-27 for antisecretory therapy of diarrheas caused by bacterial enterotoxins. FASEB J 2017; 31(2): 751–760
https://doi.org/10.1096/fj.201600891R
105 PSarker, A Banik, RStromberg, GHGudmundsson, RRaqib, BAgerberth. Treatment with entinostat heals experimental cholera by affecting physical and chemical barrier functions of intestinal epithelia. Antimicrob Agents Chemother 2017;61(7): e02570-16
https://doi.org/10.1128/AAC.02570-16 pmid: 28438947
106 RSMandal, A Ta, RSinha, NTheeya, AGhosh, MTasneem, ABhunia, HKoley, SDas. Ribavirin suppresses bacterial virulence by targeting LysR-type transcriptional regulators. Sci Rep 2016; 6(1): 39454
https://doi.org/10.1038/srep39454
107 MYen, LS Cairns, ACamilli. A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models. Nat Commun 2017; 8: 14187
https://doi.org/10.1038/ncomms14187
108 ASolís-Sánchez, UHernández-Chiñas, ANavarro-Ocaña, LMDe, JXicohtencatl-Cortes, CEslava-Campos. Genetic characterization of ØVC8 lytic phage for Vibrio cholerae O1. Virol J 2016; 13(1): 47
https://doi.org/10.1186/s12985-016-0490-x
109 AAl-Fendi, RH Shueb, PCFoo, MRavichandran, CYYean. Complete genome sequence of lytic bacteriophage VPUSM 8 against O1 El Tor Inaba Vibrio cholerae. Genome Announc 2017; 5(21): e00073–e17
https://doi.org/10.1128/genomeA.00073-17
110 AKWoodbrey, EO Onyango, MPellegrini, GKovacikova, RKTaylor, GWGribble, FJKull. A new class of inhibitors of the AraC family virulence regulator Vibrio cholerae ToxT. Sci Rep 2017; 7: 45011
https://doi.org/10.1038/srep45011
111 JHWithey, D Nag, SCPlecha, RSinha, HKoley. Conjugated linoleic acid reduces cholera toxin production in vitro and in vivo by inhibiting Vibrio cholerae ToxT Activity. Antimicrob Agents Chemother 2015; 59(12): 7471–7476
https://doi.org/10.1128/AAC.01029-15
112 WLeonardi, L Zilbermintz, LWCheng, JZozaya, SHTran, JHElliott, KPolukhina, RManasherob, ALi, X Chi, DGharaibeh, TKenny, RZamani, VSoloveva, ADHaddow, FNasar, SBavari, MCBassik, SNCohen, ALevitin, MMartchenko. Bithionol blocks pathogenicity of bacterial toxins, ricin, and Zika virus. Sci Rep 2016; 6(1): 34475
https://doi.org/10.1038/srep34475
113 TPTCushnie, B Cushnie, AJLamb. Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents 2014; 44(5): 377–386
https://doi.org/10.1016/j.ijantimicag.2014.06.001
114 VBhattaram, A Upadhyay, HYin, SMooyottu, KVenkitanarayanan. Effect of dietary minerals on virulence attributes of Vibrio cholerae. Front Microbiol 2017; 8: 911
https://doi.org/10.3389/fmicb.2017.00911
115 SMFaruque, IB Naser, MJIslam, ASFaruque, ANGhosh, GBNair, DASack, JJMekalanos. Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proc Natl Acad Sci USA 2005; 102(5): 1702–1707
https://doi.org/10.1073/pnas.0408992102
116 TSBhowmick, H Koley, MDas, DRSaha, BLSarkar. Pathogenic potential of vibriophages against an experimental infection with Vibrio cholerae O1 in the RITARD model. Int J Antimicrob Agents 2009; 33(6): 569–573
https://doi.org/10.1016/j.ijantimicag.2008.10.034
117 AJaiswal, H Koley, AGhosh, APalit, BSarkar. Efficacy of cocktail phage therapy in treating Vibrio cholerae infection in rabbit model. Microbes Infect 2013; 15(2): 152–156
https://doi.org/10.1016/j.micinf.2012.11.002
118 AJaiswal, H Koley, SMitra, DRSaha, BSarkar. Comparative analysis of different oral approaches to treat Vibrio cholerae infection in adult mice. Int J Med Microbiol 2014; 304(3–4): 422–430
https://doi.org/10.1016/j.ijmm.2014.02.007
119 CLChaignat. What about cholera vaccines? Expert Rev Vaccines 2008; 7(4): 403–405
https://doi.org/10.1586/14760584.7.4.403
120 ASaha, A Rosewell, AHayen, CRMacIntyre, FQadri. Improving immunization approaches to cholera. Expert Rev Vaccines 2017; 16(3): 235–248
https://doi.org/10.1080/14760584.2017.1249470
121 MELucas, JL Deen, Lvon Seidlein, XYWang, JAmpuero, MPuri, M Ali, MAnsaruzzaman, JAmos, A Macuamule, PCavailler, PJGuerin, CMahoudeau, PKahozi-Sangwa, CLChaignat, ABarreto, FFSongane, JDClemens. Effectiveness of mass oral cholera vaccination in Beira, Mozambique. N Engl J Med 2005; 352(8): 757–767
https://doi.org/10.1056/NEJMoa043323
122 AMKhatib, M Ali, Lvon Seidlein, DRKim, RHashim, RReyburn, BLey, K Thriemer, GEnwere, RHutubessy, MTAguado, MPKieny, ALLopez, TFWierzba, SMAli, AA Saleh, AKMukhopadhyay, JClemens, MSJiddawi, JDeen. Effectiveness of an oral cholera vaccine in Zanzibar: findings from a mass vaccination campaign and observational cohort study. Lancet Infect Dis 2012; 12(11): 837–844
https://doi.org/10.1016/S1473-3099(12)70196-2
123 ASaha, MI Chowdhury, FKhanam, MSBhuiyan, FChowdhury, AIKhan, IAKhan, JClemens, MAli, A Cravioto, FQadri. Safety and immunogenicity study of a killed bivalent (O1 and O139) whole-cell oral cholera vaccine Shanchol, in Bangladeshi adults and children as young as 1 year of age. Vaccine 2011; 29(46): 8285–8292
https://doi.org/10.1016/j.vaccine.2011.08.108
124 LCIvers, JE Teng, JLascher, MRaymond, JWeigel, NVictor, JGJerome, IJHilaire, CPAlmazor, RTernier, JCadet. Use of oral cholera vaccine in Haiti: a rural demonstration project. Am J Trop Med Hyg 2013; 89(4): 617–624
https://doi.org/10.4269/ajtmh.13-0183
125 LCIvers, IJ Hilaire, JETeng, CPAlmazor, JGJerome, RTernier, JBoncy, JButeau, MBMurray, JBHarris, MFFranke. Effectiveness of reactive oral cholera vaccination in rural Haiti: a case-control study and bias-indicator analysis. Lancet Glob Health 2015; 3(3): e162–e168
https://doi.org/10.1016/S2214-109X(14)70368-7
126 VRouzier, K Severe, MAJuste, MPeck, C Perodin, PSevere, MMDeschamps, RIVerdier, SPrince, JFrancois, JRCadet. Cholera vaccination in urban Haiti. Am J Trop Med Hyg 2013; 89(4): 671–681
https://doi.org/10.4269/ajtmh.13-0171
127 KSévère, VRouzier, SBAnglade, CBertil, PJoseph, ADeroncelay, MMMabou, PFWright, FDGuillaume, JWPape. Effectiveness of oral cholera vaccine in Haiti: 37-month follow-up. Am J Trop Med Hyg 2016; 94(5): 1136–1142
https://doi.org/10.4269/ajtmh.15-0700
128 FQadri, M Ali, FChowdhury, AIKhan, ASaha, IA Khan, YABegum, TRBhuiyan, MIChowdhury, MJUddin, JAKhan, AIChowdhury, ARahman, SASiddique, MAsaduzzaman, AAkter, AKhan, Y Ae You, AUSiddik, NCSaha, AKabir, BKRiaz, SKBiswas, FBegum, LUnicomb, SPLuby, ACravioto, JDClemens. Feasibility and effectiveness of oral cholera vaccine in an urban endemic setting in Bangladesh: a cluster randomised open-label trial. Lancet 2015; 386(10001): 1362–1371
https://doi.org/10.1016/S0140-6736(15)61140-0
129 SKBhattacharya, D Sur, MAli, SKanungo, YAYou, B Manna, BSah, SKNiyogi, JKPark, BSarkar, MKPuri, DRKim, JL Deen, JHolmgren, RCarbis, MSDhingra, ADonner, GBNair, ALLopez, TFWierzba, JDClemens. 5 year efficacy of a bivalent killed whole-cell oral cholera vaccine in Kolkata, India: a cluster-randomised, double-blind, placebo-controlled trial. Lancet Infect Dis 2013; 13(12): 1050–1056
https://doi.org/10.1016/S1473-3099(13)70273-1
130 CRPhares, K Date, PTravers, CDéglise, NWongjindanon, LOrtega, PRBhuket. Mass vaccination with a two-dose oral cholera vaccine in a long-standing refugee camp, Thailand. Vaccine 2016; 34(1): 128–133
https://doi.org/10.1016/j.vaccine.2015.10.112
131 YOBaik, SK Choi, JWKim, JSYang, IYKim, CW Kim, JHHong. Safety and immunogenicity assessment of an oral cholera vaccine through phase I clinical trial in Korea. J Korean Med Sci 2014; 29(4): 494–501
https://doi.org/10.3346/jkms.2014.29.4.494
132 YOBaik, SK Choi, RMOlveda, RAEspos, ADLigsay, MBMontellano, JSYeam, JSYang, JYPark, DRKim, SN Desai, APSingh, IYKim, CW Kim, SPark. A randomized, non-inferiority trial comparing two bivalent killed, whole cell, oral cholera vaccines (Euvichol vs Shanchol) in the Philippines. Vaccine 2015; 33(46): 6360–6365
https://doi.org/10.1016/j.vaccine.2015.08.075
133 ARSarker, Z Islam, IAKhan, ASaha, F Chowdhury, AIKhan, ACravioto, JDClemens, FQadri, JAKhan. Estimating the cost of cholera-vaccine delivery from the societal point of view: a case of introduction of cholera vaccine in Bangladesh. Vaccine 2015; 33(38): 4916–4921
https://doi.org/10.1016/j.vaccine.2015.07.042
134 FQadri, TF Wierzba, MAli, FChowdhury, AIKhan, ASaha, IA Khan, MAsaduzzaman, AAkter, AKhan, YA Begum, TRBhuiyan, FKhanam, MIChowdhury, TIslam, AIChowdhury, ARahman, SASiddique, YAYou, DR Kim, AUSiddik, NCSaha, AKabir, ACravioto, SNDesai, APSingh, JDClemens. Efficacy of a single-dose, inactivated oral cholera vaccine in Bangladesh. N Engl J Med 2016; 374(18): 1723–1732
https://doi.org/10.1056/NEJMoa1510330
135 SKanungo, SN Desai, RKNandy, MKBhattacharya, DRKim, A Sinha, TMahapatra, JSYang, ALLopez, BManna, BBannerjee, MAli, MS Dhingra, AMChandra, JDClemens, DSur, TF Wierzba. Flexibility of oral cholera vaccine dosing—a randomized controlled trial measuring immune responses following alternative vaccination schedules in a cholera hyper-endemic zone. PLoS Negl Trop Dis 2015; 9(3): e0003574
https://doi.org/10.1371/journal.pntd.0003574
136 SMMoore, J Lessler. Optimal allocation of the limited oral cholera vaccine supply between endemic and epidemic settings. J R Soc Interface 2015; 12(111): 20150703
https://doi.org/10.1098/rsif.2015.0703
137 DMahalanabis, T Ramamurthy, GBNair, AGhosh, SShaikh, BSen, M Thungapathra, RKGhosh, GPPazhani, RKNandy, SJana, SK Bhattacharya. Randomized placebo controlled human volunteer trial of a live oral cholera vaccine VA1. 3 for safety and immune response. Vaccine 2009; 27(35): 4850–4856
https://doi.org/10.1016/j.vaccine.2009.05.065
138 SKanungo, B Sen, TRamamurthy, DSur, B Manna, GPPazhani, GChowdhury, PJhunjhunwala, RKNandy, HKoley, MKBhattacharya, SGupta, GGoel, B Dey, TM, GBNair, AGhosh, DMahalanabis. Safety and immunogenicity of a live oral recombinant cholera vaccine VA1. 4: a randomized, placebo controlled trial in healthy adults in a cholera endemic area in Kolkata, India. PLoS One 2014; 9(7): e99381
https://doi.org/10.1371/journal.pone.0099381
139 HMGarcía, R Thompson, RValera, RFando, JFumane, IJani, M Mirabal, MIArmesto, MSongane, SLuis, AM Nzualo. A single dose of live-attenuated 638 Vibrio cholerae oral vaccine is safe and immunogenic in adult volunteers in Mozambique. Vaccimonitor 2011; 20(3): 1–8
140 MMAlam, MK Bufano, PXu, AKalsy, YYu, YW Freeman, TSultana, MRRashu, IDesai, GEckhoff, DTLeung, RCCharles, RCLaRocque, JBHarris, JDClements, SBCalderwood, FQadri, WFVann, PKováč, ETRyan. Evaluation in mice of a conjugate vaccine for cholera made from Vibrio cholerae O1 (Ogawa) O-specific polysaccharide. PLoS Negl Trop Dis 2014; 8(2): e2683
https://doi.org/10.1371/journal.pntd.0002683
141 MASayeed, MK Bufano, PXu, GEckhoff, RCCharles, MMAlam, TSultana, MRRashu, ABerger, GGonzalez-Escobedo, AMandlik, TRBhuiyan, DTLeung, RCLaRocque, JBHarris, SBCalderwood, FQadri, WFVann, PKováč, ETRyan. A cholera conjugate vaccine containing O-specific polysaccharide (OSP) of V. cholerae O1 Inaba and recombinant fragment of tetanus toxin heavy chain (OSP:rTTHc) induces serum, memory and lamina proprial responses against OSP and is protective in mice. PLoS Negl Trop Dis 2015; 9(7): e0003881
https://doi.org/10.1371/journal.pntd.0003881
[1] Qingmeng Zhang, Fengmin Zhang, Baofeng Yang. Pneumonic plague epidemic in Northeast China in 1910–1911: Dr. Wu Lien-Teh’s epidemic preventive system for plague control[J]. Front. Med., 2018, 12(1): 113-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed