Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2018, Vol. 12 Issue (6) : 601-607    https://doi.org/10.1007/s11684-018-0648-6
REVIEW |
Interplay between diet and genetic susceptibility in obesity and related traits
Tiange Wang, Min Xu, Yufang Bi, Guang Ning()
State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of the Ministry of Health, National Clinical Research Center for Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Diseases, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
 Download: PDF(121 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The incidence of obesity has been rapidly increasing, and this condition has become a major public health threat. A substantial shift in environmental factors and lifestyle, such as unhealthy diet, is among the major driving forces of the global obesity pandemic. Longitudinal studies and randomized intervention trials have shown that genetic susceptibility to obesity may interact with dietary factors in relation to the body mass index and risk of obesity. This review summarized data from recent longitudinal studies and intervention studies on variations and diets and discussed the challenges and future prospects related to this area and public health implications.

Keywords diet      genetic susceptibility      obesity      interaction     
Corresponding Authors: Guang Ning   
Just Accepted Date: 06 September 2018   Online First Date: 07 November 2018    Issue Date: 03 December 2018
 Cite this article:   
Tiange Wang,Min Xu,Yufang Bi, et al. Interplay between diet and genetic susceptibility in obesity and related traits[J]. Front. Med., 2018, 12(6): 601-607.
 URL:  
http://academic.hep.com.cn/fmd/EN/10.1007/s11684-018-0648-6
http://academic.hep.com.cn/fmd/EN/Y2018/V12/I6/601
Studies Dietary factors Genetic factors Major findings
Qi et al. 2012 [10] Sugar-sweetened beverages A genetic risk score based on 32 BMI-associated loci High consumption of sugar-sweetened beverages may amplify the genetic association with higher BMI and obesity risk
Brunkwall et al. 2016 [11] Sugar-sweetened beverages A genetic risk score based on 30 BMI-associated loci The relation of sugar-sweetened beverages intake and BMI is strong in people genetically predisposed to obesity
Wang et al. 2017 [12] Coffee A genetic risk score based on 77 BMI-associated loci High habitual coffee consumption may attenuate the genetic association with high BMI and obesity risk
Corella et al. 2009 [13] Saturated fat APOA2-265T>C polymorphism Individuals with the APOA2 CC genotype show increased susceptibility to increased BMI and obesity when they consume a high-saturated fat diet
Qi et al. 2014 [14] Fried food A genetic risk score based on 32 BMI-associated loci Higher frequency of fried food consumption may amplify the genetic association with high BMI and obesity risk
Nettleton et al. 2015 [15] A diet score based on whole grains, fish, fruits, vegetables, nuts/seeds (favorable) and red/processed meats, sweets, sugar-sweetened beverages, and fried potatoes (unfavorable) A genetic risk score based on 18 WHR-associated loci The associations between genetic predisposition and obesity traits were strong with a healthy diet
Wang et al. 2018 [16] Two diet score: Alternate Healthy Eating Index 2010 and Dietary Approach to Stop Hypertension A genetic risk score based on 77 BMI-associated loci The association between a healthy diet and weight loss was strong in participants with a great genetic predisposition to obesity
Tab.1  Dietary factors that may interact with genetic susceptibility to obesity on adiposity in observational studies
Studies Study design Genetic factors Major findings
Qi et al. 2011 [19] N = 738; 2-y diet intervention Diabetes-associated IRS1 rs2943641 IRS1 genetic variants modify effects of dietary carbohydrate on weight loss and insulin resistance
Erez et al. 2011 [20] N = 322; 2-y diet intervention Obesity-related LEP variants LEP genotype is related to weight regain from 7–24 m
Mattei et al. 2012 [21] N = 591; 2-y diet intervention Diabetes-associated TCF7L2 variant rs7903146 Dietary fat intake interacts with TCF7L2 genotype in relation to changes in BMI, total fat mass, and trunk fat mass
Zhang et al. 2012 [22] N = 742; 2-y diet intervention Obesity-related FTO variant rs1558902 High-protein diet interacts with FTO genotype in relation to weight loss and improvement of body composition and fat distribution
Heni et al. 2012 [23] N = 304; 9-m diet intervention Diabetes-associated TCF7L2 variant rs7903146 CC genotype is associated with great weight loss in participants with high fiber intake but not those with low fiber intake
Zhang et al. 2012 [24] N = 734; 2-y diet intervention Lipid metabolism-related APOA5 variant rs964184 Dietary fat interacts with APOA5 genotype in relation to 2-y changes in lipid profile
Zhang et al. 2012 [25] N = 723; 2-y diet intervention Hypertension-associated NPY variant rs16147 NPY genotype modifies effects of dietary fat on 2-y changes of blood pressure
Larsen et al. 2012 [26] N = 742; 6-m diet intervention on weight loss maintenance 768 tag SNPs for nutrient-sensitive genes Multiple interactions with GI or dietary protein on waist and fat mass regain
Qi et al. 2012 [27] N = 737; 2-y diet intervention Diabetes-related GIPR variant rs2287019 Dietary carbohydrate modified GIPR genotype effects on changes in bodyweight, fasting glucose, and insulin resistance
Xu, et al. 2013 [28] N = 734; 2-y diet intervention BCAA-associated PPM1K SNP rs1440581 Dietary fat significantly modifies genetic effects on changes in weight and fasting insulin
Brahe et al. 2013 [29] N = 841 (baseline); 6-m diet intervention on weight loss maintenance 240 tag SNPs for candidate genes LPIN1 SNP rs4315495 genotype interacts with dietary protein on change of TG concentration
McCaffery et al. 2013 [30] N = 3899; 4-y lifestyle intervention in diabetic patients Obesity-related variants Variations in the FTO and BDNF loci are related to weight regain after weight loss
Pan et al. 2013 [31] N = 3819; 2-y intervention; lifestyle modification and metformin Obesity-related MC4R variants rs17066866 is associated with less short-term (baseline to 6 m) and less long-term (baseline to 2 y) weight loss in the lifestyle intervention group but not in placebo group
Kostis et al. 2013 [32] N = 722; 4-m intervention; diet and medication 21 SNPs related to hypertension, diabetes, or obesity Multiple genotypes are related to change in blood pressures in response to diet intervention
Qi et al. 2013 [33] POUNDS Lost: N = 738; 2-y diet intervention Diabetes-associated IRS1 rs2943641 and rs1522813 High-fat weight-loss diets may be more effective in the management of the metabolic syndrome compared with low-fat diets among individuals with the A-allele of the rs1522813 variant near IRS1
Mirzaei et al. 2014 [34] N = 721; 2-y diet intervention Circadian-related genes CRY2 and MTNR1B Variants in CRY2 and MTNR1B may affect long-term changes in energy expenditure, and dietary fat intake may modify the genetic effects
Huang et al. 2015 [35] N = 730; 2-y diet intervention Iron homeostasis-related PCSK7 variant PCSK7 genotypes may interact with dietary carbohydrate intake on changes in insulin sensitivity
Qi et al. 2015 [36] POUNDS Lost: N = 732; 2-y diet intervention; DIRECT: N = 171; 2-y diet intervention Cholesterol-related CETP variant Individuals with the CETP rs3764261 CC genotype may derive great effects on raising HDL cholesterol and lowering triglycerides by choosing a low-carbohydrate/high-fat weight-loss diet instead of a low-fat diet
Zheng et al. 2015 [37] N = 743; 2-y diet intervention Obesity-associated FTO variant Carriers of the risk alleles of rs1558902 benefit differently in improving insulin sensitivity by consuming high-fat weight-loss diets rather than low-fat diets
Lin et al. 2015 [38] N = 723; 2-y diet intervention Obesity-associated NPY variant NPY rs16147 genotypes affect the change in abdominal adiposity in response to dietary interventions
Qi et al. 2015 [39] N = 721; 2-y diet intervention Three vitamin D metabolism-related variants Individuals carrying the T allele of DHCR7 rs12785878 may benefit more in improvement of insulin resistance than non-carriers by consuming high-protein weight-loss diets
Tab.2  Selected gene–diet interactions on obesity and related metabolic traits in randomized trials
1 Makris A, Foster GD. Dietary approaches to the treatment of obesity. Psychiatr Clin North Am 2011; 34(4): 813–827
https://doi.org/10.1016/j.psc.2011.08.004 pmid: 22098806
2 Malik VS, Hu FB. Popular weight-loss diets: from evidence to practice. Nat Clin Pract Cardiovasc Med 2007; 4(1): 34–41
https://doi.org/10.1038/ncpcardio0726 pmid: 17180148
3 Sacks FM, Bray GA, Carey VJ, Smith SR, Ryan DH, Anton SD, McManus K, Champagne CM, Bishop LM, Laranjo N, Leboff MS, Rood JC, de Jonge L, Greenway FL, Loria CM, Obarzanek E, Williamson DA. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med 2009; 360(9): 859–873
https://doi.org/10.1056/NEJMoa0804748 pmid: 19246357
4 Qi L.Gene–diet interactions in complex disease: current findings and relevance for public health. Curr Nutr Rep 2012; 1(4):222–227 PMID: 23139897
https://doi.org/DOI: 10.1007/s13668-012-0029-8
5 Qi L, Cho YA. Gene–environment interaction and obesity. Nutr Rev 2008; 66(12): 684–694
https://doi.org/10.1111/j.1753-4887.2008.00128.x pmid: 19019037
6 Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, Lango Allen H, Lindgren CM, Luan J, Mägi R, Randall JC, Vedantam S, Winkler TW, Qi L, Workalemahu T, Heid IM, Steinthorsdottir V, Stringham HM, Weedon MN, Wheeler E, Wood AR, Ferreira T, Weyant RJ, Segrè AV, Estrada K, Liang L, Nemesh J, Park JH, Gustafsson S, Kilpeläinen TO, Yang J, Bouatia-Naji N, Esko T, Feitosa MF, Kutalik Z, Mangino M, Raychaudhuri S, Scherag A, Smith AV, Welch R, Zhao JH, Aben KK, Absher DM, Amin N, Dixon AL, Fisher E, Glazer NL, Goddard ME, Heard-Costa NL, Hoesel V, Hottenga JJ, Johansson A, Johnson T, Ketkar S, Lamina C, Li S, Moffatt MF, Myers RH, Narisu N, Perry JR, Peters MJ, Preuss M, Ripatti S, Rivadeneira F, Sandholt C, Scott LJ, Timpson NJ, Tyrer JP, van Wingerden S, Watanabe RM, White CC, Wiklund F, Barlassina C, Chasman DI, Cooper MN, Jansson JO, Lawrence RW, Pellikka N, Prokopenko I, Shi J, Thiering E, Alavere H, Alibrandi MT, Almgren P, Arnold AM, Aspelund T, Atwood LD, Balkau B, Balmforth AJ, Bennett AJ, Ben-Shlomo Y, Bergman RN, Bergmann S, Biebermann H, Blakemore AI, Boes T, Bonnycastle LL, Bornstein SR, Brown MJ, Buchanan TA, Busonero F, Campbell H, Cappuccio FP, Cavalcanti-Proença C, Chen YD, Chen CM, Chines PS, Clarke R, Coin L, Connell J, Day IN, den Heijer M, Duan J, Ebrahim S, Elliott P, Elosua R, Eiriksdottir G, Erdos MR, Eriksson JG, Facheris MF, Felix SB, Fischer-Posovszky P, Folsom AR, Friedrich N, Freimer NB, Fu M, Gaget S, Gejman PV, Geus EJ, Gieger C, Gjesing AP, Goel A, Goyette P, Grallert H, Grässler J, Greenawalt DM, Groves CJ, Gudnason V, Guiducci C, Hartikainen AL, Hassanali N, Hall AS, Havulinna AS, Hayward C, Heath AC, Hengstenberg C, Hicks AA, Hinney A, Hofman A, Homuth G, Hui J, Igl W, Iribarren C, Isomaa B, Jacobs KB, Jarick I, Jewell E, John U, Jørgensen T, Jousilahti P, Jula A, Kaakinen M, Kajantie E, Kaplan LM, Kathiresan S, Kettunen J, Kinnunen L, Knowles JW, Kolcic I, König IR, Koskinen S, Kovacs P, Kuusisto J, Kraft P, Kvaløy K, Laitinen J, Lantieri O, Lanzani C, Launer LJ, Lecoeur C, Lehtimäki T, Lettre G, Liu J, Lokki ML, Lorentzon M, Luben RN, Ludwig B, Manunta P, Marek D, Marre M, Martin NG, McArdle WL, McCarthy A, McKnight B, Meitinger T, Melander O, Meyre D, Midthjell K, Montgomery GW, Morken MA, Morris AP, Mulic R, Ngwa JS, Nelis M, Neville MJ, Nyholt DR, O’Donnell CJ, O’Rahilly S, Ong KK, Oostra B, Paré G, Parker AN, Perola M, Pichler I, Pietiläinen KH, Platou CG, Polasek O, Pouta A, Rafelt S, Raitakari O, Rayner NW, Ridderstråle M, Rief W, Ruokonen A, Robertson NR, Rzehak P, Salomaa V, Sanders AR, Sandhu MS, Sanna S, Saramies J, Savolainen MJ, Scherag S, Schipf S, Schreiber S, Schunkert H, Silander K, Sinisalo J, Siscovick DS, Smit JH, Soranzo N, Sovio U, Stephens J, Surakka I, Swift AJ, Tammesoo ML, Tardif JC, Teder-Laving M, Teslovich TM, Thompson JR, Thomson B, Tönjes A, Tuomi T, van Meurs JB, van Ommen GJ, Vatin V, Viikari J, Visvikis-Siest S, Vitart V, Vogel CI, Voight BF, Waite LL, Wallaschofski H, Walters GB, Widen E, Wiegand S, Wild SH, Willemsen G, Witte DR, Witteman JC, Xu J, Zhang Q, Zgaga L, Ziegler A, Zitting P, Beilby JP, Farooqi IS, Hebebrand J, Huikuri HV, James AL, Kähönen M, Levinson DF, Macciardi F, Nieminen MS, Ohlsson C, Palmer LJ, Ridker PM, Stumvoll M, Beckmann JS, Boeing H, Boerwinkle E, Boomsma DI, Caulfield MJ, Chanock SJ, Collins FS, Cupples LA, Smith GD, Erdmann J, Froguel P, Grönberg H, Gyllensten U, Hall P, Hansen T, Harris TB, Hattersley AT, Hayes RB, Heinrich J, Hu FB, Hveem K, Illig T, Jarvelin MR, Kaprio J, Karpe F, Khaw KT, Kiemeney LA, Krude H, Laakso M, Lawlor DA, Metspalu A, Munroe PB, Ouwehand WH, Pedersen O, Penninx BW, Peters A, Pramstaller PP, Quertermous T, Reinehr T, Rissanen A, Rudan I, Samani NJ, Schwarz PE, Shuldiner AR, Spector TD, Tuomilehto J, Uda M, Uitterlinden A, Valle TT, Wabitsch M, Waeber G, Wareham NJ, Watkins H, Wilson JF, Wright AF, Zillikens MC, Chatterjee N, McCarroll SA, Purcell S, Schadt EE, Visscher PM, Assimes TL, Borecki IB, Deloukas P, Fox CS, Groop LC, Haritunians T, Hunter DJ, Kaplan RC, Mohlke KL, O’Connell JR, Peltonen L, Schlessinger D, Strachan DP, van Duijn CM, Wichmann HE, Frayling TM, Thorsteinsdottir U, Abecasis GR, Barroso I, Boehnke M, Stefansson K, North KE, McCarthy MI, Hirschhorn JN, Ingelsson E, Loos RJ. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 2010; 42(11): 937–948
https://doi.org/10.1038/ng.686 pmid: 20935630
7 Hunter DJ. Gene–environment interactions in human diseases. Nat Rev Genet 2005; 6(4): 287–298
https://doi.org/10.1038/nrg1578 pmid: 15803198
8 Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet 1962; 14: 353–362
pmid: 13937884
9 Speakman JR. Thrifty genes for obesity, an attractive but flawed idea, and an alternative perspective: the ‘drifty gene’ hypothesis. Int J Obes 2008; 32(11): 1611–1617
https://doi.org/10.1038/ijo.2008.161 pmid: 18852699
10 Qi Q, Chu AY, Kang JH, Jensen MK, Curhan GC, Pasquale LR, Ridker PM, Hunter DJ, Willett WC, Rimm EB, Chasman DI, Hu FB, Qi L. Sugar-sweetened beverages and genetic risk of obesity. N Engl J Med 2012; 367(15): 1387–1396
https://doi.org/10.1056/NEJMoa1203039 pmid: 22998338
11 Brunkwall L, Chen Y, Hindy G, Rukh G, Ericson U, Barroso I, Johansson I, Franks PW, Orho-Melander M, Renström F. Sugar-sweetened beverage consumption and genetic predisposition to obesity in 2 Swedish cohorts. Am J Clin Nutr 2016; 104(3): 809–815
https://doi.org/10.3945/ajcn.115.126052 pmid: 27465381
12 Wang T, Huang T, Kang JH, Zheng Y, Jensen MK, Wiggs JL, Pasquale LR, Fuchs CS, Campos H, Rimm EB, Willett WC, Hu FB, Qi L. Habitual coffee consumption and genetic predisposition to obesity: gene–diet interaction analyses in three US prospective studies. BMC Med 2017; 15(1): 97
https://doi.org/10.1186/s12916-017-0862-0 pmid: 28486942
13 Corella D, Peloso G, Arnett DK, Demissie S, Cupples LA, Tucker K, Lai CQ, Parnell LD, Coltell O, Lee YC, Ordovas JM. APOA2, dietary fat, and body mass index: replication of a gene–diet interaction in 3 independent populations. Arch Intern Med 2009; 169(20): 1897–1906
https://doi.org/10.1001/archinternmed.2009.343 pmid: 19901143
14 Qi Q, Chu AY, Kang JH, Huang J, Rose LM, Jensen MK, Liang L, Curhan GC, Pasquale LR, Wiggs JL, De Vivo I, Chan AT, Choi HK, Tamimi RM, Ridker PM, Hunter DJ, Willett WC, Rimm EB, Chasman DI, Hu FB, Qi L. Fried food consumption, genetic risk, and body mass index: gene–diet interaction analysis in three US cohort studies. BMJ 2014; 348(mar19 1): g1610
https://doi.org/10.1136/bmj.g1610 pmid: 24646652
15 Nettleton JA, Follis JL, Ngwa JS, Smith CE, Ahmad S, Tanaka T, Wojczynski MK, Voortman T, Lemaitre RN, Kristiansson K, Nuotio ML, Houston DK, Perälä MM, Qi Q, Sonestedt E, Manichaikul A, Kanoni S, Ganna A, Mikkilä V, North KE, Siscovick DS, Harald K, Mckeown NM, Johansson I, Rissanen H, Liu Y, Lahti J, Hu FB, Bandinelli S, Rukh G, Rich S, Booij L, Dmitriou M, Ax E, Raitakari O, Mukamal K, Männistö S, Hallmans G, Jula A, Ericson U, Jacobs DR Jr, Van Rooij FJ, Deloukas P, Sjögren P, Kähönen M, Djousse L, Perola M, Barroso I, Hofman A, Stirrups K, Viikari J, Uitterlinden AG, Kalafati IP, Franco OH, Mozaffarian D, Salomaa V, Borecki IB, Knekt P, Kritchevsky SB, Eriksson JG, Dedoussis GV, Qi L, Ferrucci L, Orho-Melander M, Zillikens MC, Ingelsson E, Lehtimäki T, Renström F, Cupples LA, Loos RJ, Franks PW. Gene × dietary pattern interactions in obesity: analysis of up to 68 317 adults of European ancestry. Hum Mol Genet 2015; 24(16): 4728–4738
https://doi.org/10.1093/hmg/ddv186 pmid: 25994509
16 Wang T, Heianza Y, Sun D, Huang T, Ma W, Rimm EB, Manson JE, Hu FB, Willett WC, Qi L. Improving adherence to healthy dietary patterns, genetic risk, and long term weight gain: gene–diet interaction analysis in two prospective cohort studies. BMJ 2018; 360: j5644
https://doi.org/10.1136/bmj.j5644 pmid: 29321156
17 Stender S, Kozlitina J, Nordestgaard BG, Tybjærg-Hansen A, Hobbs HH, Cohen JC. Adiposity amplifies the genetic risk of fatty liver disease conferred by multiple loci. Nat Genet 2017; 49(6): 842–847
https://doi.org/10.1038/ng.3855 pmid: 28436986
18 Stojkovic IA, Ericson U, Rukh G, Riddestråle M, Romeo S, Orho-Melander M. The PNPLA3 Ile148Met interacts with overweight and dietary intakes on fasting triglyceride levels. Genes Nutr 2014; 9(2): 388
https://doi.org/10.1007/s12263-014-0388-4 pmid: 24563329
19 Qi Q, Bray GA, Smith SR, Hu FB, Sacks FM, Qi L. Insulin receptor substrate 1 gene variation modifies insulin resistance response to weight-loss diets in a 2-year randomized trial: the Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial. Circulation 2011; 124(5): 563–571
https://doi.org/10.1161/CIRCULATIONAHA.111.025767 pmid: 21747052
20 Erez G, Tirosh A, Rudich A, Meiner V, Schwarzfuchs D, Sharon N, Shpitzen S, Blüher M, Stumvoll M, Thiery J, Fiedler GM, Friedlander Y, Leiterstdorf E, Shai I. Phenotypic and genetic variation in leptin as determinants of weight regain. Int J Obes 2011; 35(6): 785–792
https://doi.org/10.1038/ijo.2010.217 pmid: 21042325
21 Mattei J, Qi Q, Hu FB, Sacks FM, Qi L. TCF7L2 genetic variants modulate the effect of dietary fat intake on changes in body composition during a weight-loss intervention. Am J Clin Nutr 2012; 96(5): 1129–1136
https://doi.org/10.3945/ajcn.112.038125 pmid: 23034957
22 Zhang X, Qi Q, Zhang C, Smith SR, Hu FB, Sacks FM, Bray GA, Qi L. FTO genotype and 2-year change in body composition and fat distribution in response to weight-loss diets: the POUNDS LOST Trial. Diabetes 2012; 61(11): 3005–3011
https://doi.org/10.2337/db11-1799 pmid: 22891219
23 Heni M, Herzberg-Schäfer S, Machicao F, Häring HU, Fritsche A. Dietary fiber intake modulates the association between variants in TCF7L2 and weight loss during a lifestyle intervention. Diabetes Care 2012; 35(3): e24
https://doi.org/10.2337/dc11-2012 pmid: 22355027
24 Zhang X, Qi Q, Bray GA, Hu FB, Sacks FM, Qi L. APOA5 genotype modulates 2-y changes in lipid profile in response to weight-loss diet intervention: the Pounds Lost Trial. Am J Clin Nutr 2012; 96(4): 917–922
https://doi.org/10.3945/ajcn.112.040907 pmid: 22914552
25 Zhang X, Qi Q, Liang J, Hu FB, Sacks FM, Qi L. Neuropeptide Y promoter polymorphism modifies effects of a weight-loss diet on 2-year changes of blood pressure: the preventing overweight using novel dietary strategies trial. Hypertension 2012; 60(5): 1169–1175
https://doi.org/10.1161/HYPERTENSIONAHA.112.197855 pmid: 22966009
26 Larsen LH, Angquist L, Vimaleswaran KS, Hager J, Viguerie N, Loos RJ, Handjieva-Darlenska T, Jebb SA, Kunesova M, Larsen TM, Martinez JA, Papadaki A, Pfeiffer AF, van Baak MA, Sørensen TI, Holst C, Langin D, Astrup A, Saris WH. Analyses of single nucleotide polymorphisms in selected nutrient-sensitive genes in weight-regain prevention: the DIOGENES study. Am J Clin Nutr 2012; 95(5): 1254–1260
https://doi.org/10.3945/ajcn.111.016543 pmid: 22492381
27 Qi Q, Bray GA, Hu FB, Sacks FM, Qi L. Weight-loss diets modify glucose-dependent insulinotropic polypeptide receptor rs2287019 genotype effects on changes in body weight, fasting glucose, and insulin resistance: the Preventing Overweight Using Novel Dietary Strategies trial. Am J Clin Nutr 2012; 95(2): 506–513
https://doi.org/10.3945/ajcn.111.025270 pmid: 22237064
28 Xu M, Qi Q, Liang J, Bray GA, Hu FB, Sacks FM, Qi L. Genetic determinant for amino acid metabolites and changes in body weight and insulin resistance in response to weight-loss diets: the Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial. Circulation 2013; 127(12): 1283–1289
https://doi.org/10.1161/CIRCULATIONAHA.112.000586 pmid: 23446828
29 Brahe LK, Ängquist L, Larsen LH, Vimaleswaran KS, Hager J, Viguerie N, Loos RJ, Handjieva-Darlenska T, Jebb SA, Hlavaty P, Larsen TM, Martinez JA, Papadaki A, Pfeiffer AF, van Baak MA, Sørensen TI, Holst C, Langin D, Astrup A, Saris WH. Influence of SNPs in nutrient-sensitive candidate genes and gene–diet interactions on blood lipids: the DiOGenes study. Br J Nutr 2013; 110(5): 790–796
https://doi.org/10.1017/S0007114512006058 pmid: 23360819
30 McCaffery JM, Papandonatos GD, Huggins GS, Peter I, Kahn SE, Knowler WC, Hudnall GE, Lipkin EW, Kitabchi AE, Wagenknecht LE, Wing RR. FTO predicts weight regain in the Look AHEAD clinical trial. Int J Obes 2013; 37(12): 1545–1552
https://doi.org/10.1038/ijo.2013.54 pmid: 23628854
31 Pan Q, Delahanty LM, Jablonski KA, Knowler WC, Kahn SE, Florez JC, Franks PW; Diabetes Prevention Program Research Group. Variation at the melanocortin 4 receptor gene and response to weight-loss interventions in the diabetes prevention program. Obesity (Silver Spring) 2013; 21(9): E520–E526
pmid: 23512951
32 Kostis WJ, Cabrera J, Hooper WC, Whelton PK, Espeland MA, Cosgrove NM, Cheng JQ, Deng Y, De Staerck C, Pyle M, Maruthur N, Reyes I, Anderson CA, Liu J, Kostis JB. Relationships between selected gene polymorphisms and blood pressure sensitivity to weight loss in elderly persons with hypertension. Hypertension 2013; 61(4): 857–863
https://doi.org/10.1161/HYPERTENSIONAHA.111.00712 pmid: 23438931
33 Qi Q, Xu M, Wu H, Liang L, Champagne CM, Bray GA, Sacks FM, Qi L. IRS1 genotype modulates metabolic syndrome reversion in response to 2-year weight-loss diet intervention: the POUNDS LOST trial. Diabetes Care 2013; 36(11): 3442–3447
https://doi.org/10.2337/dc13-0018 pmid: 24009303
34 Mirzaei K, Xu M, Qi Q, de Jonge L, Bray GA, Sacks F, Qi L. Variants in glucose- and circadian rhythm-related genes affect the response of energy expenditure to weight-loss diets: the POUNDS LOST Trial. Am J Clin Nutr 2014; 99(2): 392–399
https://doi.org/10.3945/ajcn.113.072066 pmid: 24335056
35 Huang T, Huang J, Qi Q, Li Y, Bray GA, Rood J, Sacks FM, Qi L. PCSK7 genotype modifies effect of a weight-loss diet on 2-year changes of insulin resistance: the POUNDS LOST trial. Diabetes Care 2015; 38(3): 439–444
https://doi.org/10.2337/dc14-0473 pmid: 25504030
36 Qi Q, Durst R, Schwarzfuchs D, Leitersdorf E, Shpitzen S, Li Y, Wu H, Champagne CM, Hu FB, Stampfer MJ, Bray GA, Sacks FM, Shai I, Qi L. CETP genotype and changes in lipid levels in response to weight-loss diet intervention in the POUNDS LOST and DIRECT randomized trials. J Lipid Res 2015; 56(3): 713–721
https://doi.org/10.1194/jlr.P055715 pmid: 25548261
37 Zheng Y, Huang T, Zhang X, Rood J, Bray GA, Sacks FM, Qi L. Dietary fat modifies the effects of FTO genotype on changes in insulin sensitivity. J Nutr 2015; 145(5): 977–982
https://doi.org/10.3945/jn.115.210005 pmid: 25761503
38 Lin X, Qi Q, Zheng Y, Huang T, Lathrop M, Zelenika D, Bray GA, Sacks FM, Liang L, Qi L. Neuropeptide Y genotype, central obesity, and abdominal fat distribution: the POUNDS LOST trial. Am J Clin Nutr 2015; 102(2): 514–519
https://doi.org/10.3945/ajcn.115.107276 pmid: 26156739
39 Qi Q, Zheng Y, Huang T, Rood J, Bray GA, Sacks FM, Qi L. Vitamin D metabolism-related genetic variants, dietary protein intake and improvement of insulin resistance in a 2 year weight-loss trial: POUNDS Lost. Diabetologia 2015; 58(12): 2791–2799
https://doi.org/10.1007/s00125-015-3750-1 pmid: 26416604
40 Sacks FM, Bray GA, Carey VJ, Smith SR, Ryan DH, Anton SD, McManus K, Champagne CM, Bishop LM, Laranjo N, Leboff MS, Rood JC, de Jonge L, Greenway FL, Loria CM, Obarzanek E, Williamson DA. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med 2009; 360(9): 859–873
https://doi.org/10.1056/NEJMoa0804748 pmid: 19246357
41 Thomas D. Gene−environment-wide association studies: emerging approaches. Nat Rev Genet 2010; 11(4): 259–272
https://doi.org/10.1038/nrg2764 pmid: 20212493
42 Offit K. Personalized medicine: new genomics, old lessons. Hum Genet 2011; 130(1): 3–14
https://doi.org/10.1007/s00439-011-1028-3 pmid: 21706342
[1] Qun Luo, Wanglong Deng, Haiwei Wang, Huiyong Fan, Ji Zhang. BRD4 interacts with PML/RARα in acute promyelocytic leukemia[J]. Front. Med., 2018, 12(6): 726-734.
[2] So Jung Yang, Hun-Sung Kim, Kun-Ho Yoon. Analyzing the distinguishing factors that affect childhood obesity in South Korea[J]. Front. Med., 2018, 12(6): 707-716.
[3] Eun Young Lee, Kun-Ho Yoon. Epidemic obesity in children and adolescents: risk factors and prevention[J]. Front. Med., 2018, 12(6): 658-666.
[4] Ruiting Han, Junli Ma, Houkai Li. Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota[J]. Front. Med., 2018, 12(6): 645-657.
[5] Meng Dong, Jun Lin, Wonchung Lim, Wanzhu Jin, Hyuek Jong Lee. Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia[J]. Front. Med., 2018, 12(2): 130-138.
[6] Tianhua Xu, Zitong Sheng, Li Yao. Obesity-related glomerulopathy: pathogenesis, pathologic, clinical characteristics and treatment[J]. Front. Med., 2017, 11(3): 340-348.
[7] Rahim Ullah, Yan Su, Yi Shen, Chunlu Li, Xiaoqin Xu, Jianwei Zhang, Ke Huang, Naveed Rauf, Yang He, Jingjing Cheng, Huaping Qin, Yu-Dong Zhou, Junfen Fu. Postnatal feeding with high-fat diet induces obesity and precocious puberty in C57BL/6J mouse pups: a novel model of obesity and puberty[J]. Front. Med., 2017, 11(2): 266-276.
[8] Lixia Gan,Wei Xiang,Bin Xie,Liqing Yu. Molecular mechanisms of fatty liver in obesity[J]. Front. Med., 2015, 9(3): 275-287.
[9] Shuwen Qian,Haiyan Huang,Qiqun Tang. Brown and beige fat: the metabolic function, induction, and therapeutic potential[J]. Front. Med., 2015, 9(2): 162-172.
[10] Jianping Ye. Beneficial metabolic activities of inflammatory cytokine interleukin 15 in obesity and type 2 diabetes[J]. Front. Med., 2015, 9(2): 139-145.
[11] Tao Wang,Weiping Jia,Cheng Hu. Advancement in genetic variants conferring obesity susceptibility from genome-wide association studies[J]. Front. Med., 2015, 9(2): 146-161.
[12] Du Yan, Han Xue, Pu Rui, Xie Jiaxin, Zhang Yuwei, Cao Guangwen. Association of miRNA-122-binding site polymorphism at the interleukin-1 α gene and its interaction with hepatitis B virus mutations with hepatocellular carcinoma risk[J]. Front. Med., 2014, 8(2): 217-226.
[13] Jichun Yang, Jihong Kang, Youfei Guan. The mechanisms linking adiposopathy to type 2 diabetes[J]. Front Med, 2013, 7(4): 433-444.
[14] Yingjiang Zhou, Liangyou Rui. Leptin signaling and leptin resistance[J]. Front Med, 2013, 7(2): 207-222.
[15] Xinjian Li, Jiying Xu, Haihong Yao, Yanfei Guo, Minna Chen, Wei Lu. Obesity and overweight prevalence and its association with undiagnosed hypertension in Shanghai population, China: a cross-sectional population-based survey[J]. Front Med, 2012, 6(3): 322-328.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed