Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2018, Vol. 12 Issue (4) : 412-425    https://doi.org/10.1007/s11684-018-0650-z
REVIEW
The MYC transcription factor network: balancing metabolism, proliferation and oncogenesis
Patrick A. Carroll, Brian W. Freie, Haritha Mathsyaraja, Robert N. Eisenman()
Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 90109, USA
 Download: PDF(378 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Transcription factor networks have evolved in order to control, coordinate, and separate, the functions of distinct network modules spatially and temporally. In this review we focus on the MYC network (also known as the MAX-MLX Network), a highly conserved super-family of related basic-helix-loop-helix-zipper (bHLHZ) proteins that functions to integrate extracellular and intracellular signals and modulate global gene expression. Importantly the MYC network has been shown to be deeply involved in a broad spectrum of human and other animal cancers. Here we summarize molecular and biological properties of the network modules with emphasis on functional interactions among network members. We suggest that these network interactions serve to modulate growth and metabolism at the transcriptional level in order to balance nutrient demand with supply, to maintain growth homeostasis, and to influence cell fate. Moreover, oncogenic activation of MYC and/or loss of a MYC antagonist, results in an imbalance in the activity of the network as a whole, leading to tumor initiation, progression and maintenance.

Keywords network      transcription      cancer      MYC      MAX      MLX     
Corresponding Author(s): Robert N. Eisenman   
Just Accepted Date: 02 July 2018   Online First Date: 27 July 2018    Issue Date: 03 September 2018
 Cite this article:   
Patrick A. Carroll,Brian W. Freie,Haritha Mathsyaraja, et al. The MYC transcription factor network: balancing metabolism, proliferation and oncogenesis[J]. Front. Med., 2018, 12(4): 412-425.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-018-0650-z
https://academic.hep.com.cn/fmd/EN/Y2018/V12/I4/412
Fig.1  The MYC network showing the three modules from left to right—MYC; MXD/MNT/MGA; and MLXIP/MLXIPL and the dimerization interactions with MAX and/or MLX (indicated by double-headed arrows). The resulting heterodimers bind to E-Box sequences in DNA.
Fig.2  Crystal structures of the bHLHZ domains of (left) MYC-MAX heterodimer (PDB:INKP) and (right) MXD1-MAX heterodimer (PDB:INLW) bound to E-box DNA (5′-CACGTG-3′) at 19 nm and 2 nm resolution, respectively [1]. Image created with the PyMOL Molecular Graphics System, Version 1.5.0.4, Schrödinger, LLC.
Fig.3  Organization of the MYC, MAX, MNT and MGA proteins. Heterodimers are formed by direct interaction of the basic helix–loop–helix-zipper (bHLH-Z) domain of MAX with the bHLH-Z domains of either MYC, MNT or MGA (blue lines). Number of residues in each protein indicated at C terminus. MYC: MBI-IV — conserved MYC boxes; PEST— region rich in proline, glutamic acid, serine and threonine; NLS— nuclear localization sequence; Calpain cleavage site—proteolytic cleavage to generate MYC-Nick [2]. MNT: SID — binding site for the mSIN3 co-repressor complex. MGA: repression mediated through assembly into a variant polycomb repressor complex (PRC1.6). Question mark indicates that the region of MGA that directly interacts with the complex is unknown. Protein lengths not to scale. See text for details.
Fig.4  Organization of MLXIP (MondoA) and MLX. MLXIP: highly conserved regions proximal to the N terminus are thought to be responsible for binding to glucose metabolites. MLX interacts with MLXIP through their bHLHZ and DCD domains. MLX has 3 isoforms generated by alternative splicing: MLX-g (nuclear localized), MLX-a and MLX-b (both cytoplasmic).
Fig.5  A hypothetical representation of two states of the MYC network and their impact on gene expression programs that influence growth, proliferation, differentiation, apoptosis and metabolism. (A) A balanced network in which gene expression is controlled through normal endogenous regulation of the MYC network. Transcriptional effects of MYC-MAX are balanced by MNT (heterodimerized with either MAX or MLX), MGA-MAX, and, under conditions of stress, by MLXIP-MLX or MLXIPL-MLX. (B) An unbalanced network due to deregulation of MYC expression. In this state MYC-MAX suppresses differentiation, reprograms metabolism, and triggers the apoptotic pathway. The suppressive effects of MGA-MAX and MNT-MAX/MLX on proliferation are overwhelmed by MYC-MAX which contributes to suppression of MYC- induced apoptosis. Increased nuclear accumulation of MLXIP-MLX (in response to deregulated MYC and/or metabolic stress) adjusts metabolic reprogramming by MYC-MAX and further reduces apoptosis. The effects on gene expression are presumed to occur through genomic binding and co-occupancy by network members. Green arrows, transcriptional activation; red arrows, transcriptional repression. Arrow width proportional to estimated transcriptional effect. Diagram adapted from [5].
1 Nair SK, Burley SK. X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell 2003; 112(2): 193–205
https://doi.org/10.1016/S0092-8674(02)01284-9 pmid: 12553908
2 Conacci-Sorrell M, Ngouenet C, Eisenman RN. Myc-Nick: a cytoplasmic cleavage product of Myc that promotes α-tubulin acetylation and cell differentiation. Cell 2010;142(3):480–493 PMID: 20691906
https://doi.org/10.1016/j.cell.2010.06.037
3 Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Rust AG, Pan Z, Schilstra MJ, Clarke PJ, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H. A genomic regulatory network for development. Science 2002; 295(5560): 1669–1678
https://doi.org/10.1126/science.1069883 pmid: 11872831
4 Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci USA 2006; 103(23): 8577–8582
https://doi.org/10.1073/pnas.0601602103 pmid: 16723398
5 Diolaiti D, McFerrin L, Carroll PA, Eisenman RN. Functional interactions among members of the MAX and MLX transcriptional network during oncogenesis. Biochim Biophys Acta 2015; 1849(5): 484–500
https://doi.org/10.1016/j.bbagrm.2014.05.016 pmid: 24857747
6 Patel VR, Eckel-Mahan K, Sassone-Corsi P, Baldi P. CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics. Nat Methods 2012; 9(8): 772–773
https://doi.org/10.1038/nmeth.2111 pmid: 22847108
7 Kim J, Chu J, Shen X, Wang J, Orkin SH. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 2008; 132(6): 1049–1061
https://doi.org/10.1016/j.cell.2008.02.039 pmid: 18358816
8 Chronis C, Fiziev P, Papp B, Butz S, Bonora G, Sabri S, Ernst J, Plath K. Cooperative binding of transcription factors orchestrates reprogramming. Cell 2017; 168(3): 442–459.e20
https://doi.org/10.1016/j.cell.2016.12.016 pmid: 28111071
9 Kueh HY, Rothenberg EV. Regulatory gene network circuits underlying T cell development from multipotent progenitors. Wiley Interdiscip Rev Syst Biol Med 2012; 4(1): 79–102
https://doi.org/10.1002/wsbm.162 pmid: 21976153
10 Conacci-Sorrell M, McFerrin L, Eisenman RN. An overview of MYC and its interactome. Cold Spring Harb Perspect Med 2014;4(1):a014357 PMID: 24384812
https://doi.org/10.1101/cshperspect.a014357
11 O’Shea JM, Ayer DE. Coordination of nutrient availability and utilization by MAX- and MLX-centered transcription networks. Cold Spring Harb Perspect Med 2013; 3(9): a014258
https://doi.org/10.1101/cshperspect.a014258 pmid: 24003245
12 Peterson CW, Ayer DE. An extended Myc network contributes to glucose homeostasis in cancer and diabetes. Front Biosci (Landmark Ed) 2011;16:2206–2223 PMID: 21622171
13 Sloan EJ, Ayer DE. Myc, mondo, and metabolism. Genes Cancer 2010; 1(6): 587–596
https://doi.org/10.1177/1947601910377489 pmid: 21113411
14 Blackwood EM, Eisenman RN. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA binding complex with Myc. Science 1991; 251(4998):1211–1217 PMID: 2006410
15 Billin AN, Eilers AL, Queva C, Ayer DE. Mlx, a novel Max-like BHLHZip protein that interacts with the Max network of transcription factors. J Biol Chem 1999; 274(51): 36344–36350
https://doi.org/10.1074/jbc.274.51.36344 pmid: 10593926
16 Berberich SJ, Cole MD. Casein kinase II inhibits the DNA-binding activity of Max homodimers but not Myc/Max heterodimers. Genes Dev 1992; 6(2): 166–176
https://doi.org/10.1101/gad.6.2.166 pmid: 1737614
17 Meroni G, Cairo S, Merla G, Messali S, Brent R, Ballabio A, Reymond A. Mlx, a new Max-like bHLHZip family member: the center stage of a novel transcription factors regulatory pathway? Oncogene 2000; 19(29): 3266–3277
https://doi.org/10.1038/sj.onc.1203634 pmid: 10918583
18 Hurlin PJ, Quéva C, Eisenman RN. Mnt, a novel Max-interacting protein is coexpressed with Myc in proliferating cells and mediates repression at Myc binding sites. Genes Dev 1997; 11(1): 44–58
https://doi.org/10.1101/gad.11.1.44 pmid: 9000049
19 Ayer DE, Eisenman RN. A switch from Myc:Max to Mad:Max heterocomplexes accompanies monocyte/macrophage differentiation. Genes Dev 1993; 7(11): 2110–2119
https://doi.org/10.1101/gad.7.11.2110 pmid: 8224841
20 Hann SR, Eisenman RN. Proteins encoded by the human c-myc oncogene: differential expression in neoplastic cells. Mol Cell Biol 1984; 4(11): 2486–2497
https://doi.org/10.1128/MCB.4.11.2486 pmid: 6513926
21 Billin AN, Ayer DE. The Mlx network: evidence for a parallel Max-like transcriptional network that regulates energy metabolism. Curr Top Microbiol Immunol 2006; 302: 255–278
https://doi.org/10.1007/3-540-32952-8_10 pmid: 16620032
22 Billin AN, Eilers AL, Coulter KL, Logan JS, Ayer DE. MondoA, a novel basic helix-loop-helix-leucine zipper transcriptional activator that constitutes a positive branch of a max-like network. Mol Cell Biol 2000; 20(23): 8845–8854
https://doi.org/10.1128/MCB.20.23.8845-8854.2000 pmid: 11073985
23 Roussel M, Saule S, Lagrou C, Rommens C, Beug H, Graf T, Stehelin D. Three new types of viral oncogene of cellular origin specific for haematopoietic cell transformation. Nature 1979; 281(5731): 452–455
https://doi.org/10.1038/281452a0 pmid: 226888
24 Sheiness D, Bishop JM. DNA and RNA from uninfected vertebrate cells contain nucleotide sequences related to the putative transforming gene of avian myelocytomatosis virus. J Virol 1979; 31(2): 514–521
pmid: 225569
25 Schaub FX, Dhankani V, Berger AC, Trivedi M, Richardson AB, Shaw R, Zhao W, Zhang X, Ventura A, Liu Y, Ayer DE, Hurlin PJ, Cherniack AD, Eisenman RN, Bernard B, Grandori C; Cancer Genome Atlas Network. Pan-Cancer alterations in MYC oncogene and its proximal network across the cancer genome atlas. Cell Syst 2018; 6: 282–300
https://doi.org/10.1016/j.cels.2018.03.003 pmid: 29596783
26 Meyer N, Penn LZ. Reflecting on 25 years with MYC. Nat Rev Cancer 2008; 8(12):976–990 PMID: 19029958
https://doi.org/10.1038/nrc2231
27 Eilers M, Eisenman RN. Myc’s broad reach. Genes Dev 2008; 22(20): 2755–2766
https://doi.org/10.1101/gad.1712408 pmid: 18923074
28 Armelin HA, Armelin MCS, Kelly K, Stewart T, Leder P, Cochran BH, Stiles CD. Functional role for c-myc in mitogenic response to platelet-derived growth factor. Nature 1984; 310(5979): 655–660
https://doi.org/10.1038/310655a0 pmid: 6088986
29 Kelly K, Cochran BH, Stiles CD, Leder P. Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 1983; 35(3 Pt 2): 603–610
https://doi.org/10.1016/0092-8674(83)90092-2 pmid: 6606489
30 Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger J, Green DR. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 2011;35(6):871–882 PMID: 22195744
https://doi.org/10.1016/j.immuni.2011.09.021
31 Gabay M, Li Y, Felsher DW. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med 2014; 4(6): a014241
https://doi.org/10.1101/cshperspect.a014241 pmid: 24890832
32 Okuyama H, Endo H, Akashika T, Kato K, Inoue M. Downregulation of c-MYC protein levels contributes to cancer cell survival under dual deficiency of oxygen and glucose. Cancer Res 2010; 70(24): 10213–10223
https://doi.org/10.1158/0008-5472.CAN-10-2720 pmid: 20980433
33 Shachaf CM, Gentles AJ, Elchuri S, Sahoo D, Soen Y, Sharpe O, Perez OD, Chang M, Mitchel D, Robinson WH, Dill D, Nolan GP, Plevritis SK, Felsher DW. Genomic and proteomic analysis reveals a threshold level of MYC required for tumor maintenance. Cancer Res 2008; 68(13): 5132–5142
https://doi.org/10.1158/0008-5472.CAN-07-6192 pmid: 18593912
34 Karlsson A, Giuriato S, Tang F, Fung-Weier J, Levan G, Felsher DW. Genomically complex lymphomas undergo sustained tumor regression upon MYC inactivation unless they acquire novel chromosomal translocations. Blood 2003; 101(7): 2797–2803
https://doi.org/10.1182/blood-2002-10-3091 pmid: 12517816
35 Thomas LR, Wang Q, Grieb BC, Phan J, Foshage AM, Sun Q, Olejniczak ET, Clark T, Dey S, Lorey S, Alicie B, Howard GC, Cawthon B, Ess KC, Eischen CM, Zhao Z, Fesik SW, Tansey WP. Interaction with WDR5 promotes target gene recognition and tumorigenesis by MYC. Mol Cell 2015; 58(3): 440–452
https://doi.org/10.1016/j.molcel.2015.02.028 pmid: 25818646
36 Guccione E, Martinato F, Finocchiaro G, Luzi L, Tizzoni L, Dall’ Olio V, Zardo G, Nervi C, Bernard L, Amati B. Myc-binding-site recognition in the human genome is determined by chromatin context. Nat Cell Biol 2006; 8(7): 764–770
https://doi.org/10.1038/ncb1434 pmid: 16767079
37 Wiese KE, Walz S, von Eyss B, Wolf E, Athineos D, Sansom O, Eilers M. The role of MIZ-1 in MYC-dependent tumorigenesis. Cold Spring Harb Perspect Med 2013; 3(12): a014290
https://doi.org/10.1101/cshperspect.a014290 pmid: 24296348
38 Vo BT, Wolf E, Kawauchi D, Gebhardt A, Rehg JE, Finkelstein D, Walz S, Murphy BL, Youn YH, Han YG, Eilers M, Roussel MF. The interaction of Myc with Miz1 defines medulloblastoma subgroup identity. Cancer Cell 2016; 29(1): 5–16
https://doi.org/10.1016/j.ccell.2015.12.003 pmid: 26766587
39 Hann SR. MYC cofactors: molecular switches controlling diverse biological outcomes. Cold Spring Harb Perspect Med 2014; 4(9): a014399
https://doi.org/10.1101/cshperspect.a014399 pmid: 24939054
40 Lin CY, Lovén J, Rahl PB, Paranal RM, Burge CB, Bradner JE, Lee TI, Young RA. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 2012; 151(1): 56–67
https://doi.org/10.1016/j.cell.2012.08.026 pmid: 23021215
41 Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S, Burge CB, Sharp PA, Young RA. c-Myc regulates transcriptional pause release. Cell 2010; 141(3):432–445 PMID: 20434984
https://doi.org/10.1016/j.cell.2010.03.030
42 Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W, Wang R, Green DR, Tessarollo L, Casellas R, Zhao K, Levens D. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 2012; 151(1): 68–79
https://doi.org/10.1016/j.cell.2012.08.033 pmid: 23021216
43 Lorenzin F, Benary U, Baluapuri A, Walz S, Jung LA, von Eyss B, Kisker C, Wolf J, Eilers M, Wolf E. Different promoter affinities account for specificity in MYC-dependent gene regulation. eLife 2016; 5: e15161
https://doi.org/10.7554/eLife.15161 pmid: 27460974
44 Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 2013; 153(2): 307–319
https://doi.org/10.1016/j.cell.2013.03.035 pmid: 23582322
45 Wolf E, Lin CY, Eilers M, Levens DL. Taming of the beast: shaping Myc-dependent amplification. Trends Cell Biol 2015; 25(4): 241–248
https://doi.org/10.1016/j.tcb.2014.10.006 pmid: 25475704
46 Kress TR, Sabò A, Amati B. MYC: connecting selective transcriptional control to global RNA production. Nat Rev Cancer 2015; 15(10): 593–607
https://doi.org/10.1038/nrc3984 pmid: 26383138
47 Zeid R, Lawlor MA, Poon E, Reyes JM, Fulciniti M, Lopez MA, Scott TG, Nabet B, Erb MA, Winter GE, Jacobson Z, Polaski DR, Karlin KL, Hirsch RA, Munshi NP, Westbrook TF, Chesler L, Lin CY, Bradner JE. Enhancer invasion shapes MYCN-dependent transcriptional amplification in neuroblastoma. Nat Genet 2018; 50(4): 515–523
https://doi.org/10.1038/s41588-018-0044-9 pmid: 29379199
48 Meroni G, Reymond A, Alcalay M, Borsani G, Tanigami A, Tonlorenzi R, Lo Nigro C, Messali S, Zollo M, Ledbetter DH, Brent R, Ballabio A, Carrozzo R. Rox, a novel bHLHZip protein expressed in quiescent cells that heterodimerizes with Max, binds a non-canonical E box and acts as a transcriptional repressor. EMBO J 1997; 16(10): 2892–2906
https://doi.org/10.1093/emboj/16.10.2892 pmid: 9184233
49 Hurlin PJ, Quéva C, Koskinen PJ, Steingrímsson E, Ayer DE, Copeland NG, Jenkins NA, Eisenman RN. Mad3 and Mad4: novel Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation. EMBO J 1995; 14(22): 5646–5659
pmid: 8521822
50 Zervos AS, Gyuris J, Brent R. Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell 1993; 72(2): 223–232
https://doi.org/10.1016/0092-8674(93)90662-A pmid: 8425219
51 Ayer DE, Kretzner L, Eisenman RN. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 1993; 72(2): 211–222
https://doi.org/10.1016/0092-8674(93)90661-9 pmid: 8425218
52 Hurlin PJ, Steingrìmsson E, Copeland NG, Jenkins NA, Eisenman RN. Mga, a dual-specificity transcription factor that interacts with Max and contains a T-domain DNA-binding motif. EMBO J 1999; 18(24): 7019–7028
https://doi.org/10.1093/emboj/18.24.7019 pmid: 10601024
53 Papaioannou VE, Silver LM. The T-box gene family. BioEssays 1998; 20(1): 9–19
https://doi.org/10.1002/(SICI)1521-1878(199801)20:1<9::AID-BIES4>3.0.CO;2-Q pmid: 9504043
54 Kispert A, Koschorz B, Herrmann BG. The T protein encoded by Brachyury is a tissue-specific transcription factor. EMBO J 1995; 14(19): 4763–4772
pmid: 7588606
55 Kispert A, Herrmann BG. The Brachyury gene encodes a novel DNA binding protein. EMBO J 1993; 12(8): 3211–3220
pmid: 8344258
56 Ferré-D’Amaré AR, Prendergast GC, Ziff EB, Burley SK. Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 1993; 363(6424): 38–45
https://doi.org/10.1038/363038a0 pmid: 8479534
57 Brubaker K, Cowley SM, Huang K, Loo L, Yochum GS, Ayer DE, Eisenman RN, Radhakrishnan I. Solution structure of the interacting domains of the Mad-Sin3 complex: implications for recruitment of a chromatin-modifying complex. Cell 2000; 103(4): 655–665
https://doi.org/10.1016/S0092-8674(00)00168-9 pmid: 11106735
58 Ayer DE, Lawrence QA, Eisenman RN. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 1995; 80(5): 767–776
https://doi.org/10.1016/0092-8674(95)90355-0 pmid: 7889570
59 Zhang Y, Iratni R, Erdjument-Bromage H, Tempst P, Reinberg D. Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 1997; 89(3): 357–364
https://doi.org/10.1016/S0092-8674(00)80216-0 pmid: 9150135
60 Laherty CD, Yang WM, Sun JM, Davie JR, Seto E, Eisenman RN. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 1997; 89(3): 349–356
https://doi.org/10.1016/S0092-8674(00)80215-9 pmid: 9150134
61 Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 1997; 89(3): 341–347
https://doi.org/10.1016/S0092-8674(00)80214-7 pmid: 9150133
62 Gao Z, Zhang J, Bonasio R, Strino F, Sawai A, Parisi F, Kluger Y, Reinberg D. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell 2012; 45(3): 344–356
https://doi.org/10.1016/j.molcel.2012.01.002 pmid: 22325352
63 Ogawa H, Ishiguro K, Gaubatz S, Livingston DM, Nakatani Y. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 2002; 296(5570): 1132–1136
https://doi.org/10.1126/science.1069861 pmid: 12004135
64 Endoh M, Endo TA, Shinga J, Hayashi K, Farcas A, Ma KW, Ito S, Sharif J, Endoh T, Onaga N, Nakayama M, Ishikura T, Masui O, Kessler BM, Suda T, Ohara O, Okuda A, Klose R, Koseki H. PCGF6–PRC1 suppresses premature differentiation of mouse embryonic stem cells by regulating germ cell-related genes. eLife 2017; 6:e21064
https://doi.org/10.7554/eLife.21064
65 Suzuki A, Hirasaki M, Hishida T, Wu J, Okamura D, Ueda A, Nishimoto M, Nakachi Y, Mizuno Y, Okazaki Y, Matsui Y, Izpisua Belmonte JC, Okuda A. Loss of MAX results in meiotic entry in mouse embryonic and germline stem cells. Nat Commun 2016; 7: 11056
https://doi.org/10.1038/ncomms11056 pmid: 27025988
66 McFerrin LG, Atchley WR. Evolution of the Max and Mlx networks in animals. Genome Biol Evol 2011; 3:915–937 PMID: 21859806
https://doi.org/10.1093/gbe/evr082
67 Washkowitz AJ, Schall C, Zhang K, Wurst W, Floss T, Mager J, Papaioannou VE. Mga is essential for the survival of pluripotent cells during peri-implantation development. Development 2015; 142(1): 31–40
https://doi.org/10.1242/dev.111104 pmid: 25516968
68 Sun Y, Tseng WC, Fan X, Ball R, Dougan ST. Extraembryonic signals under the control of MGA, Max, and Smad4 are required for dorsoventral patterning. Dev Cell 2014; 28(3): 322–334
https://doi.org/10.1016/j.devcel.2014.01.003 pmid: 24525188
69 Hu G, Kim J, Xu Q, Leng Y, Orkin SH, Elledge SJ. A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev 2009; 23(7): 837–848
https://doi.org/10.1101/gad.1769609 pmid: 19339689
70 Sun QY, Ding LW, Tan KT, Chien W, Mayakonda A, Lin DC, Loh XY, Xiao JF, Meggendorfer M, Alpermann T, Garg M, Lim SL, Madan V, Hattori N, Nagata Y, Miyano S, Yeoh AE, Hou HA, Jiang YY, Takao S, Liu LZ, Tan SZ, Lill M, Hayashi M, Kinoshita A, Kantarjian HM, Kornblau SM, Ogawa S, Haferlach T, Yang H, Koeffler HP. Ordering of mutations in acute myeloid leukemia with partial tandem duplication of MLL (MLL-PTD). Leukemia 2017; 31(1): 1–10
https://doi.org/10.1038/leu.2016.160 pmid: 27389053
71 Romero OA, Torres-Diz M, Pros E, Savola S, Gomez A, Moran S, Saez C, Iwakawa R, Villanueva A, Montuenga LM, Kohno T, Yokota J, Sanchez-Cespedes M. MAX inactivation in small cell lung cancer disrupts MYC-SWI/SNF programs and is synthetic lethal with BRG1. Cancer Discov 2014; 4(3): 292–303
https://doi.org/10.1158/2159-8290.CD-13-0799 pmid: 24362264
72 De Paoli L, Cerri M, Monti S, Rasi S, Spina V, Bruscaggin A, Greco M, Ciardullo C, Famà R, Cresta S, Maffei R, Ladetto M, Martini M, Laurenti L, Forconi F, Marasca R, Larocca LM, Bertoni F, Gaidano G, Rossi D. MGA, a suppressor of MYC, is recurrently inactivated in high risk chronic lymphocytic leukemia. Leuk Lymphoma 2013; 54(5): 1087–1090
https://doi.org/10.3109/10428194.2012.723706 pmid: 23039309
73 Chigrinova E, Rinaldi A, Kwee I, Rossi D, Rancoita PM, Strefford JC, Oscier D, Stamatopoulos K, Papadaki T, Berger F, Young KH, Murray F, Rosenquist R, Greiner TC, Chan WC, Orlandi EM, Lucioni M, Marasca R, Inghirami G, Ladetto M, Forconi F, Cogliatti S, Votavova H, Swerdlow SH, Stilgenbauer S, Piris MA, Matolcsy A, Spagnolo D, Nikitin E, Zamò A, Gattei V, Bhagat G, Ott G, Zucca E, Gaidano G, Bertoni F. Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome. Blood 2013; 122(15): 2673–2682
https://doi.org/10.1182/blood-2013-03-489518 pmid: 24004666
74 Edelmann J, Holzmann K, Miller F, Winkler D, Bühler A, Zenz T, Bullinger L, Kühn MW, Gerhardinger A, Bloehdorn J, Radtke I, Su X, Ma J, Pounds S, Hallek M, Lichter P, Korbel J, Busch R, Mertens D, Downing JR, Stilgenbauer S, Döhner H. High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations. Blood 2012; 120(24): 4783–4794
https://doi.org/10.1182/blood-2012-04-423517 pmid: 23047824
75 McFerrin LG, Atchley WR. A novel N-terminal domain may dictate the glucose response of Mondo proteins. PLoS One 2012; 7(4): e34803
https://doi.org/10.1371/journal.pone.0034803 pmid: 22506051
76 Arden C, Tudhope SJ, Petrie JL, Al-Oanzi ZH, Cullen KS, Lange AJ, Towle HC, Agius L. Fructose 2,6-bisphosphate is essential for glucose-regulated gene transcription of glucose-6-phosphatase and other ChREBP target genes in hepatocytes. Biochem J 2012; 443(1): 111–123
https://doi.org/10.1042/BJ20111280 pmid: 22214556
77 Petrie JL, Al-Oanzi ZH, Arden C, Tudhope SJ, Mann J, Kieswich J, Yaqoob MM, Towle HC, Agius L. Glucose induces protein targeting to glycogen in hepatocytes by fructose 2,6-bisphosphate-mediated recruitment of MondoA to the promoter. Mol Cell Biol 2013; 33(4): 725–738
https://doi.org/10.1128/MCB.01576-12 pmid: 23207906
78 Sans CL, Satterwhite DJ, Stoltzman CA, Breen KT, Ayer DE. MondoA-Mlx heterodimers are candidate sensors of cellular energy status: mitochondrial localization and direct regulation of glycolysis. Mol Cell Biol 2006; 26(13): 4863–4871
https://doi.org/10.1128/MCB.00657-05 pmid: 16782875
79 Peterson CW, Stoltzman CA, Sighinolfi MP, Han KS, Ayer DE. Glucose controls nuclear accumulation, promoter binding, and transcriptional activity of the MondoA-Mlx heterodimer. Mol Cell Biol 2010; 30(12):2887–2895 PMID: 20385767
https://doi.org/10.1128/MCB.01613-09
80 Stoltzman CA, Peterson CW, Breen KT, Muoio DM, Billin AN, Ayer DE. Glucose sensing by MondoA:Mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression. Proc Natl Acad Sci U S A 2008;105(19):6912–6917 PMID: 18458340
https://doi.org/10.1073/pnas.0712199105
81 Mattila J, Havula E, Suominen E, Teesalu M, Surakka I, Hynynen R, Kilpinen H, Väänänen J, Hovatta I, Käkelä R, Ripatti S, Sandmann T, Hietakangas V. Mondo-Mlx mediates organismal sugar sensing through the Gli-similar transcription factor sugarbabe. Cell Reports 2015; 13(2): 350–364
https://doi.org/10.1016/j.celrep.2015.08.081 pmid: 26440885
82 Havula E, Teesalu M, Hyötyläinen T, Seppälä H, Hasygar K, Auvinen P, Orešič M, Sandmann T, Hietakangas V. Mondo/ChREBP-Mlx-regulated transcriptional network is essential for dietary sugar tolerance in Drosophila. PLoS Genet 2013; 9(4): e1003438
https://doi.org/10.1371/journal.pgen.1003438 pmid: 23593032
83 Iizuka K. The transcription factor carbohydrate-response element-binding protein (ChREBP): a possible link between metabolic disease and cancer. Biochim Biophys Acta 2017; 1863(2): 474–485
https://doi.org/10.1016/j.bbadis.2016.11.029 pmid: 27919710
84 Dang CV, Eisenman RN. Myc and the Pathway to Cancer. Cold Spring Harbor, N.Y.: Cold Spring Harbor Press, 2014
85 Comino-Mendez I, Gracia-Aznarez FJ, Schiavi F, Landa I, Leandro-Garcia LJ, Leton R, Honrado E, Ramos-Medina R, Caronia D, Pita G, Gomez-Grana A, de Cubas AA, Inglada-Perez L, Maliszewska A, Taschin E, Bobisse S, Pica G, Loli P, Hernandez-Lavado R, Diaz JA, Gomez-Morales M, Gonzalez-Neira A, Roncador G, Rodriguez-Antona C, Benitez J, Mannelli M, Opocher G, Robledo M, Cascon A. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet 2011;43(7):663–667 PMID: 21685915
https://doi.org/10.1038/ng.861
86 Toyo-oka K, Bowen TJ, Hirotsune S, Li Z, Jain S, Ota S, Escoubet-Lozach L, Garcia-Bassets I, Lozach J, Rosenfeld MG, Glass CK, Eisenman R, Ren B, Hurlin P, Wynshaw-Boris A. Mnt-deficient mammary glands exhibit impaired involution and tumors with characteristics of myc overexpression. Cancer Res 2006; 66(11): 5565–5573
https://doi.org/10.1158/0008-5472.CAN-05-2683 pmid: 16740691
87 Dezfouli S, Bakke A, Huang J, Wynshaw-Boris A, Hurlin PJ. Inflammatory disease and lymphomagenesis caused by deletion of the Myc antagonist Mnt in T cells. Mol Cell Biol 2006; 26(6): 2080–2092
https://doi.org/10.1128/MCB.26.6.2080-2092.2006 pmid: 16507988
88 Lahoz EG, Xu L, Schreiber-Agus N, DePinho RA. Suppression of Myc, but not E1a, transformation activity by Max-associated proteins, Mad and Mxi1. Proc Natl Acad Sci USA 1994; 91(12): 5503–5507
https://doi.org/10.1073/pnas.91.12.5503 pmid: 8202517
89 Iritani BM, Delrow J, Grandori C, Gomez I, Klacking M, Carlos LS, Eisenman RN. Modulation of T-lymphocyte development, growth and cell size by the Myc antagonist and transcriptional repressor Mad1. Embo J 2002; 21(18):4820–4830
pmid: 12234922
90 Roussel MF, Ashmun RA, Sherr CJ, Eisenman RN, Ayer DE. Inhibition of cell proliferation by the Mad1 transcriptional repressor. Mol Cell Biol 1996; 16(6): 2796–2801
https://doi.org/10.1128/MCB.16.6.2796 pmid: 8649388
91 Marcotte R, Qian JF, Chen J, Wang E. hMad4, c-Myc endogenous inhibitor, induces a replicative senescence-like state when overexpressed in human fibroblasts. J Cell Biochem 2003; 89(3): 576–588
https://doi.org/10.1002/jcb.10517 pmid: 12761891
92 Walker W, Zhou ZQ, Ota S, Wynshaw-Boris A, Hurlin PJ. Mnt-Max to Myc-Max complex switching regulates cell cycle entry. J Cell Biol 2005; 169(3): 405–413
https://doi.org/10.1083/jcb.200411013 pmid: 15866886
93 Link JM, Ota S, Zhou ZQ, Daniel CJ, Sears RC, Hurlin PJ. A critical role for Mnt in Myc-driven T-cell proliferation and oncogenesis. Proc Natl Acad Sci USA 2012; 109(48): 19685–19690
https://doi.org/10.1073/pnas.1206406109 pmid: 23150551
94 Yang G, Hurlin PJ. MNT and emerging concepts of MNT-MYC antagonism. Genes (Basel) 2017; 8(2): E83
https://doi.org/10.3390/genes8020083 pmid: 28230739
95 Yun JS, Rust JM, Ishimaru T, Diaz E. A novel role of the Mad family member Mad3 in cerebellar granule neuron precursor proliferation. Mol Cell Biol 2007; 27(23):8178–8189
https://doi.org/10.1128/MCB.00656-06 pmid: 17893326
96 Quéva C, McArthur GA, Iritani BM, Eisenman RN. Targeted deletion of the S-phase-specific Myc antagonist Mad3 sensitizes neuronal and lymphoid cells to radiation-induced apoptosis. Mol Cell Biol 2001; 21(3): 703–712
https://doi.org/10.1128/MCB.21.3.703-712.2001 pmid: 11154258
97 Hooker CW, Hurlin PJ. Of Myc and Mnt. J Cell Sci 2006; 119(Pt 2): 208–216
https://doi.org/10.1242/jcs.02815 pmid: 16410546
98 Bouchard C, Dittrich O, Kiermaier A, Dohmann K, Menkel A, Eilers M, Lüscher B. Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. Genes Dev 2001; 15(16): 2042–2047
https://doi.org/10.1101/gad.907901 pmid: 11511535
99 Pierce SB, Yost C, Anderson SA, Flynn EM, Delrow J, Eisenman RN. Drosophila growth and development in the absence of dMyc and dMnt. Dev Biol 2008; 315(2): 303–316
https://doi.org/10.1016/j.ydbio.2007.12.026 pmid: 18241851
100 Beall EL, Bell M, Georlette D, Botchan MR. Dm-myb mutant lethality in Drosophila is dependent upon mip130: positive and negative regulation of DNA replication. Genes Dev 2004; 18(14): 1667–1680
https://doi.org/10.1101/gad.1206604 pmid: 15256498
101 Frolov MV, Huen DS, Stevaux O, Dimova D, Balczarek-Strang K, Elsdon M, Dyson NJ. Functional antagonism between E2F family members. Genes Dev 2001; 15(16): 2146–2160
https://doi.org/10.1101/gad.903901 pmid: 11511545
102 Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN, Clurman BE. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA 2004; 101(24): 9085–9090
https://doi.org/10.1073/pnas.0402770101 pmid: 15150404
103 Farrell A, Sears RC. MYC Degradation. Cold Spring Harb Prespect Med 2014; 4:a014365
https://doi.org/10.1101/cshperspect.a014365
104 Zhu J, Blenis J, Yuan J. Activation of PI3K/Akt and MAPK pathways regulates Myc-mediated transcription by phosphorylating and promoting the degradation of Mad1. Proc Natl Acad Sci USA 2008; 105(18): 6584–6589
https://doi.org/10.1073/pnas.0802785105 pmid: 18451027
105 Steiger D, Furrer M, Schwinkendorf D, Gallant P.Max-independent functions of Myc in Drosophila melanogaster. Nat Genet 2008; 40(9):1084–1091
https://doi.org/10.1038/ng.178 pmid: 19165923
106 Dejure FR, Eilers M. MYC and tumor metabolism: chicken and egg. EMBO J 2017; 36(23): 3409–3420
https://doi.org/10.15252/embj.201796438 pmid: 29127156
107 Carroll PA, Diolaiti D, McFerrin L, Gu H, Djukovic D, Du J, Cheng PF, Anderson S, Ulrich M, Hurley JB, Raftery D, Ayer DE, Eisenman RN. Deregulated Myc requires MondoA/Mlx for metabolic reprogramming and tumorigenesis. Cancer Cell 2015; 27(2): 271–285
https://doi.org/10.1016/j.ccell.2014.11.024 pmid: 25640402
108 Chan LN, Chen Z, Braas D, Lee JW, Xiao G, Geng H, Cosgun KN, Hurtz C, Shojaee S, Cazzaniga V, Schjerven H, Ernst T, Hochhaus A, Kornblau SM, Konopleva M, Pufall MA, Cazzaniga G, Liu GJ, Milne TA, Koeffler HP, Ross TS, Sánchez-García I, Borkhardt A, Yamamoto KR, Dickins RA, Graeber TG, Müschen M. Metabolic gatekeeper function of B-lymphoid transcription factors. Nature 2017; 542(7642): 479–483
https://doi.org/10.1038/nature21076 pmid: 28192788
109 Nakamura S, Karalay Ö, Jäger PS, Horikawa M, Klein C, Nakamura K, Latza C, Templer SE, Dieterich C, Antebi A. Mondo complexes regulate TFEB via TOR inhibition to promote longevity in response to gonadal signals. Nat Commun 2016; 7: 10944
https://doi.org/10.1038/ncomms10944 pmid: 27001890
110 Taniguchi M, Sasaki-Osugi K, Oku M, Sawaguchi S, Tanakura S, Kawai Y, Wakabayashi S, Yoshida H. MLX Is a transcriptional repressor of the mammalian Golgi stress response. Cell Struct Funct 2016; 41(2): 93–104
https://doi.org/10.1247/csf.16005 pmid: 27251850
111 Hunt LC, Xu B, Finkelstein D, Fan Y, Carroll PA, Cheng PF, Eisenman RN, Demontis F. The glucose-sensing transcription factor MLX promotes myogenesis via myokine signaling. Genes Dev 2015; 29(23): 2475–2489
https://doi.org/10.1101/gad.267419.115 pmid: 26584623
112 Kanatsu-Shinohara M, Tanaka T, Ogonuki N, Ogura A, Morimoto H, Cheng PF, Eisenman RN, Trumpp A, Shinohara T. Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal. Genes Dev 2016; 30(23): 2637–2648
https://doi.org/10.1101/gad.287045.116 pmid: 28007786
113 Shen L, O’Shea JM, Kaadige MR, Cunha S, Wilde BR, Cohen AL, Welm AL, Ayer DE. Metabolic reprogramming in triple-negative breast cancer through Myc suppression of TXNIP. Proc Natl Acad Sci USA 2015; 112(17): 5425–5430
https://doi.org/10.1073/pnas.1501555112 pmid: 25870263
114 Parmenter TJ, Kleinschmidt M, Kinross KM, Bond ST, Li J, Kaadige MR, Rao A, Sheppard KE, Hugo W, Pupo GM, Pearson RB, McGee SL, Long GV, Scolyer RA, Rizos H, Lo RS, Cullinane C, Ayer DE, Ribas A, Johnstone RW, Hicks RJ, McArthur GA. Response of BRAF-mutant melanoma to BRAF inhibition is mediated by a network of transcriptional regulators of glycolysis. Cancer Discov 2014; 4(4): 423–433
https://doi.org/10.1158/2159-8290.CD-13-0440 pmid: 24469106
115 Wilde BR, Ayer DE. Interactions between Myc and MondoA transcription factors in metabolism and tumourigenesis. Br J Cancer 2015; 113(11): 1529–1533
https://doi.org/10.1038/bjc.2015.360 pmid: 26469830
116 Jolma A, Yin Y, Nitta KR, Dave K, Popov A, Taipale M, Enge M, Kivioja T, Morgunova E, Taipale J. DNA-dependent formation of transcription factor pairs alters their binding specificity. Nature 2015; 527(7578): 384–388
https://doi.org/10.1038/nature15518 pmid: 26550823
117 Morgunova E, Taipale J. Structural perspective of cooperative transcription factor binding. Curr Opin Struct Biol 2017; 47: 1–8
https://doi.org/10.1016/j.sbi.2017.03.006 pmid: 28349863
118 Yan J, Enge M, Whitington T, Dave K, Liu J, Sur I, Schmierer B, Jolma A, Kivioja T, Taipale M, Taipale J. Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites. Cell 2013; 154(4): 801–813
https://doi.org/10.1016/j.cell.2013.07.034 pmid: 23953112
119 Ma L, Sham YY, Walters KJ, Towle HC. A critical role for the loop region of the basic helix-loop-helix/leucine zipper protein Mlx in DNA binding and glucose-regulated transcription. Nucleic Acids Res 2007; 35(1): 35–44
https://doi.org/10.1093/nar/gkl987 pmid: 17148476
120 Skinner MK, Rawls A, Wilson-Rawls J, Roalson EH. Basic helix-loop-helix transcription factor gene family phylogenetics and nomenclature. Differentiation 2010; 80(1): 1–8
https://doi.org/10.1016/j.diff.2010.02.003 pmid: 20219281
121 Altman BJ, Hsieh AL, Sengupta A, Krishnanaiah SY, Stine ZE, Walton ZE, Gouw AM, Venkataraman A, Li B, Goraksha-Hicks P, Diskin SJ, Bellovin DI, Simon MC, Rathmell JC, Lazar MA, Maris JM, Felsher DW, Hogenesch JB, Weljie AM, Dang CV. MYC disrupts the circadian clock and metabolism in cancer cells. Cell Metab 2015; 22(6): 1009–1019
https://doi.org/10.1016/j.cmet.2015.09.003 pmid: 26387865
122 Qing G, Skuli N, Mayes PA, Pawel B, Martinez D, Maris JM, Simon MC. Combinatorial regulation of neuroblastoma tumor progression by N-Myc and hypoxia inducible factor HIF-1α. Cancer Res 2010; 70(24):10351–10361
https://doi.org/10.1158/0008-5472.CAN-10-0740 pmid: 20961996
[1] Yong Fan, Yan Geng, Lin Shen, Zhuoli Zhang. Advances on immune-related adverse events associated with immune checkpoint inhibitors[J]. Front. Med., 2021, 15(1): 33-42.
[2] Solmaz Ohadian Moghadam, Seyed Ali Momeni. Human microbiome and prostate cancer development: current insights into the prevention and treatment[J]. Front. Med., 2021, 15(1): 11-32.
[3] Hongnan Mo, Binghe Xu. Progress in systemic therapy for triple-negative breast cancer[J]. Front. Med., 2021, 15(1): 1-10.
[4] Jiechao Ma, Yang Song, Xi Tian, Yiting Hua, Rongguo Zhang, Jianlin Wu. Survey on deep learning for pulmonary medical imaging[J]. Front. Med., 2020, 14(4): 450-469.
[5] Mengxue Huang, Jingjing Wang, Runshun Zhang, Zhuying Ni, Xiaoying Liu, Wenwen Liu, Weilian Kong, Yao Chen, Tiantian Huang, Guihua Li, Dan Wei, Jianzhong Liu, Xuezhong Zhou. Symptom network topological features predict the effectiveness of herbal treatment for pediatric cough[J]. Front. Med., 2020, 14(3): 357-367.
[6] Xiaoxu Han, Bin Zhao, Minghui An, Ping Zhong, Hong Shang. Molecular network-based intervention brings us closer to ending the HIV pandemic[J]. Front. Med., 2020, 14(2): 136-148.
[7] Jiahui Xu, Qianqian Wang, Elaine Lai Han Leung, Ying Li, Xingxing Fan, Qibiao Wu, Xiaojun Yao, Liang Liu. Compound C620-0696, a new potent inhibitor targeting BPTF, the chromatin-remodeling factor in non-small-cell lung cancer[J]. Front. Med., 2020, 14(1): 60-67.
[8] Jiajia Hu, Wenbin Shen, Qian Qu, Xiaochun Fei, Ying Miao, Xinyun Huang, Jiajun Liu, Yingli Wu, Biao Li. NES1/KLK10 and hNIS gene therapy enhanced iodine-131 internal radiation in PC3 proliferation inhibition[J]. Front. Med., 2019, 13(6): 646-657.
[9] Rui Zhou, Yuanshu Liu, Wenjun Huang, Xitong Dang. Potential functions of esophageal cancer-related gene-4 in the cardiovascular system[J]. Front. Med., 2019, 13(6): 639-645.
[10] Hong Zhang, Ying Chang, Qingqing Zheng, Rong Zhang, Cheng Hu, Weiping Jia. Altered intestinal microbiota associated with colorectal cancer[J]. Front. Med., 2019, 13(4): 461-470.
[11] Yumeng Wang, Guiling Li. PD-1/PD-L1 blockade in cervical cancer: current studies and perspectives[J]. Front. Med., 2019, 13(4): 438-450.
[12] Tao Wang, Florent Chuffart, Ekaterina Bourova-Flin, Jin Wang, Jianqing Mi, Sophie Rousseaux, Saadi Khochbin. Histone variants: critical determinants in tumour heterogeneity[J]. Front. Med., 2019, 13(3): 289-297.
[13] Qiongna Dong, Bizhi Shi, Min Zhou, Huiping Gao, Xiaoying Luo, Zonghai Li, Hua Jiang. Growth suppression of colorectal cancer expressing S492R EGFR by monoclonal antibody CH12[J]. Front. Med., 2019, 13(1): 83-93.
[14] Synat Kang, Yanyan Li, Yifeng Bao, Yi Li. High-affinity T cell receptors redirect cytokine-activated T cells (CAT) to kill cancer cells[J]. Front. Med., 2019, 13(1): 69-82.
[15] Zhao Zhang, Jun Jiang, Xiaodong Wu, Mengyao Zhang, Dan Luo, Renyu Zhang, Shiyou Li, Youwen He, Huijie Bian, Zhinan Chen. Chimeric antigen receptor T cell targeting EGFRvIII for metastatic lung cancer therapy[J]. Front. Med., 2019, 13(1): 57-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed