Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2018, Vol. 12 Issue (4) : 374-386    https://doi.org/10.1007/s11684-018-0652-x
REVIEW |
Paradoxical role of Id proteins in regulating tumorigenic potential of lymphoid cells
Sumedha Roy(), Yuan Zhuang
Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
 Download: PDF(260 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A family of transcription factors known as Id proteins, or inhibitor of DNA binding and differentiation, is capable of regulating cell proliferation, survival and differentiation, and is often upregulated in multiple types of tumors. Due to their ability to promote self-renewal, Id proteins have been considered as oncogenes, and potential therapeutic targets in cancer models. On the contrary, certain Id proteins are reported to act as tumor suppressors in the development of Burkitt’s lymphoma in humans, and hepatosplenic and innate-like T cell lymphomas in mice. The contexts and mechanisms by which Id proteins can serve in such contradictory roles to determine tumor outcomes are still not well understood. In this review, we explore the roles of Id proteins in lymphocyte development and tumorigenesis, particularly with respect to inhibition of their canonical DNA binding partners known as E proteins. Transcriptional regulation by E proteins, and their antagonism by Id proteins, act as gatekeepers to ensure appropriate lymphocyte development at key checkpoints. We re-examine the derailment of these regulatory mechanisms in lymphocytes that facilitate tumor development. These mechanistic insights can allow better appreciation of the context-dependent roles of Id proteins in cancers and improve considerations for therapy.

Keywords Id proteins      lymphoma      leukemia      T cells      B cells      tumor suppressor      oncogene     
Corresponding Authors: Sumedha Roy   
Just Accepted Date: 09 July 2018   Online First Date: 25 July 2018    Issue Date: 03 September 2018
 Cite this article:   
Sumedha Roy,Yuan Zhuang. Paradoxical role of Id proteins in regulating tumorigenic potential of lymphoid cells[J]. Front. Med., 2018, 12(4): 374-386.
 URL:  
http://academic.hep.com.cn/fmd/EN/10.1007/s11684-018-0652-x
http://academic.hep.com.cn/fmd/EN/Y2018/V12/I4/374
Fig.1  Factors that influence context-dependent roles of E and Id proteins in development and cancer.
1 Norton JD, Deed RW, Craggs G, Sablitzky F. Id helix-loop-helix proteins in cell growth and differentiation. Trends Cell Biol 1998; 8(2): 58–65
pmid: 9695810
2 Lasorella A, Uo T, Iavarone A. Id proteins at the cross-road of development and cancer. Oncogene 2001; 20(58): 8326–8333
https://doi.org/10.1038/sj.onc.1205093 pmid: 11840325
3 Sikder HA, Devlin MK, Dunlap S, Ryu B, Alani RM. Id proteins in cell growth and tumorigenesis. Cancer Cell 2003; 3(6): 525–530
https://doi.org/10.1016/S1535-6108(03)00141-7 pmid: 12842081
4 Perk J, Iavarone A, Benezra R. Id family of helix-loop-helix proteins in cancer. Nat Rev Cancer 2005; 5(8): 603–614
https://doi.org/10.1038/nrc1673 pmid: 16034366
5 Lasorella A, Benezra R, Iavarone A. The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nat Rev Cancer 2014; 14(2): 77–91
https://doi.org/10.1038/nrc3638 pmid: 24442143
6 Hasskarl J, Münger K. Id proteins—tumor markers or oncogenes? Cancer Biol Ther 2002; 1(2): 91–96
https://doi.org/10.4161/cbt.50 pmid: 12170780
7 Roschger C, Cabrele C. The Id-protein family in developmental and cancer-associated pathways. Cell Commun Signal 2017; 15(1): 7
https://doi.org/10.1186/s12964-016-0161-y pmid: 28122577
8 Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 1990; 61(1): 49–59
https://doi.org/10.1016/0092-8674(90)90214-Y pmid: 2156629
9 Langlands K, Yin X, Anand G, Prochownik EV. Differential interactions of Id proteins with basic-helix-loop-helix transcription factors. J Biol Chem 1997; 272(32): 19785–19793
https://doi.org/10.1074/jbc.272.32.19785 pmid: 9242638
10 Israel MA, Hernandez MC, Florio M, Andres-Barquin PJ, Mantani A, Carter JH, Julin CM. Id gene expression as a key mediator of tumor cell biology. Cancer Res 1999; 59(7 Suppl): 1726s–1730s
pmid: 10197587
11 Norton JD, Atherton GT. Coupling of cell growth control and apoptosis functions of Id proteins. Mol Cell Biol 1998; 18(4): 2371–2381
https://doi.org/10.1128/MCB.18.4.2371 pmid: 9528806
12 Wong YC, Wang X, Ling MT. Id-1 expression and cell survival. Apoptosis 2004; 9(3): 279–289
https://doi.org/10.1023/B:APPT.0000025804.25396.79 pmid: 15258459
13 Engel I, Murre C. E2A proteins enforce a proliferation checkpoint in developing thymocytes. EMBO J 2004; 23(1): 202–211
https://doi.org/10.1038/sj.emboj.7600017 pmid: 14685278
14 Slattery C, Ryan MP, McMorrow T. E2A proteins: regulators of cell phenotype in normal physiology and disease. Int J Biochem Cell Biol 2008; 40(8): 1431–1436
https://doi.org/10.1016/j.biocel.2007.05.014 pmid: 17604208
15 Tang J, Gordon GM, Nickoloff BJ, Foreman KE. The helix-loop-helix protein Id-1 delays onset of replicative senescence in human endothelial cells. Lab Invest 2002; 82(8): 1073–1079
https://doi.org/10.1097/01.LAB.0000022223.65962.3A pmid: 12177246
16 Neuhold LA, Wold B. HLH forced dimers: tethering MyoD to E47 generates a dominant positive myogenic factor insulated from negative regulation by Id. Cell 1993; 74(6): 1033–1042
https://doi.org/10.1016/0092-8674(93)90725-6 pmid: 7691411
17 Deed RW, Armitage S, Norton JD. Nuclear localization and regulation of Id protein through an E protein-mediated chaperone mechanism. J Biol Chem 1996; 271(39): 23603–23606
https://doi.org/10.1074/jbc.271.39.23603 pmid: 8798572
18 Zhuang Y, Soriano P, Weintraub H. The helix-loop-helix gene E2A is required for B cell formation. Cell 1994; 79(5): 875–884
https://doi.org/10.1016/0092-8674(94)90076-0 pmid: 8001124
19 Bain G, Maandag EC, Izon DJ, Amsen D, Kruisbeek AM, Weintraub BC, Krop I, Schlissel MS, Feeney AJ, van Roon M, van der Valk M, te Riele HPJ, Berns A, Murre C. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 1994; 79(5): 885–892
https://doi.org/10.1016/0092-8674(94)90077-9 pmid: 8001125
20 Engel I, Johns C, Bain G, Rivera RR, Murre C. Early thymocyte development is regulated by modulation of E2A protein activity. J Exp Med 2001; 194(6): 733–745
https://doi.org/10.1084/jem.194.6.733 pmid: 11560990
21 Greenbaum S, Zhuang Y. Regulation of early lymphocyte development by E2A family proteins. Semin Immunol 2002; 14(6): 405–414
https://doi.org/10.1016/S1044532302000751 pmid: 12457613
22 Zhuang Y, Jackson A, Pan L, Shen K, Dai M. Regulation of E2A gene expression in B-lymphocyte development. Mol Immunol 2004; 40(16): 1165–1177
https://doi.org/10.1016/j.molimm.2003.11.031 pmid: 15104122
23 Greenbaum S, Zhuang Y. Identification of E2A target genes in B lymphocyte development by using a gene tagging-based chromatin immunoprecipitation system. Proc Natl Acad Sci USA 2002; 99(23): 15030–15035
https://doi.org/10.1073/pnas.232299999 pmid: 12415115
24 Lin YC, Jhunjhunwala S, Benner C, Heinz S, Welinder E, Mansson R, Sigvardsson M, Hagman J, Espinoza CA, Dutkowski J, Ideker T, Glass CK, Murre C. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nat Immunol 2010; 11(7): 635–643
https://doi.org/10.1038/ni.1891 pmid: 20543837
25 Murre C. Helix-loop-helix proteins and lymphocyte development. Nat Immunol 2005; 6(11): 1079–1086
https://doi.org/10.1038/ni1260 pmid: 16239924
26 Miyazaki K, Miyazaki M, Murre C. The establishment of B versus T cell identity. Trends Immunol 2014; 35(5): 205–210
https://doi.org/10.1016/j.it.2014.02.009 pmid: 24679436
27 Kwon K, Hutter C, Sun Q, Bilic I, Cobaleda C, Malin S, Busslinger M. Instructive role of the transcription factor E2A in early B lymphopoiesis and germinal center B cell development. Immunity 2008; 28(6): 751–762
https://doi.org/10.1016/j.immuni.2008.04.014 pmid: 18538592
28 Herblot S, Aplan PD, Hoang T. Gradient of E2A activity in B-cell development. Mol Cell Biol 2002; 22(3): 886–900
https://doi.org/10.1128/MCB.22.3.886-900.2002 pmid: 11784864
29 Kee BL, Rivera RR, Murre C. Id3 inhibits B lymphocyte progenitor growth and survival in response to TGF-β. Nat Immunol 2001; 2(3): 242–247
https://doi.org/10.1038/85303 pmid: 11224524
30 Chen S, Miyazaki M, Chandra V, Fisch KM, Chang AN, Murre C. Id3 orchestrates germinal center b cell development. Mol Cell Biol 2016; 36(20): 2543–2552
https://doi.org/10.1128/MCB.00150-16 pmid: 27457619
31 Boxer LM, Dang CV. Translocations involving c-myc and c-myc function. Oncogene 2001; 20(40): 5595–5610
https://doi.org/10.1038/sj.onc.1204595 pmid: 11607812
32 Miles RR, Raphael M, McCarthy K, Wotherspoon A, Lones MA, Terrier-Lacombe MJ, Patte C, Gerrard M, Auperin A, Sposto R, Davenport V, Cairo MS, Perkins SL; SFOP/LMB96/CCG5961/UKCCSG/NHL 9600 Study Group. Pediatric diffuse large B-cell lymphoma demonstrates a high proliferation index, frequent c-Myc protein expression, and a high incidence of germinal center subtype: report of the French-American-British (FAB) international study group. Pediatr Blood Cancer 2008; 51(3): 369–374
https://doi.org/10.1002/pbc.21619 pmid: 18493992
33 Love C, Sun Z, Jima D, Li G, Zhang J, Miles R, Richards KL, Dunphy CH, Choi WW, Srivastava G, Lugar PL, Rizzieri DA, Lagoo AS, Bernal-Mizrachi L, Mann KP, Flowers CR, Naresh KN, Evens AM, Chadburn A, Gordon LI, Czader MB, Gill JI, Hsi ED, Greenough A, Moffitt AB, McKinney M, Banerjee A, Grubor V, Levy S, Dunson DB, Dave SS. The genetic landscape of mutations in Burkitt lymphoma. Nat Genet 2012; 44(12): 1321–1325
https://doi.org/10.1038/ng.2468 pmid: 23143597
34 Richter J, Schlesner M, Hoffmann S, Kreuz M, Leich E, Burkhardt B, Rosolowski M, Ammerpohl O, Wagener R, Bernhart SH, Lenze D, Szczepanowski M, Paulsen M, Lipinski S, Russell RB, Adam-Klages S, Apic G, Claviez A, Hasenclever D, Hovestadt V, Hornig N, Korbel JO, Kube D, Langenberger D, Lawerenz C, Lisfeld J, Meyer K, Picelli S, Pischimarov J, Radlwimmer B, Rausch T, Rohde M, Schilhabel M, Scholtysik R, Spang R, Trautmann H, Zenz T, Borkhardt A, Drexler HG, Möller P, MacLeod RA, Pott C, Schreiber S, Trümper L, Loeffler M, Stadler PF, Lichter P, Eils R, Küppers R, Hummel M, Klapper W, Rosenstiel P, Rosenwald A, Brors B, Siebert R; ICGC MMML-Seq Project. Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. Nat Genet 2012; 44(12): 1316–1320
https://doi.org/10.1038/ng.2469 pmid: 23143595
35 Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M, Wright G, Shaffer AL, Hodson DJ, Buras E, Liu X, Powell J, Yang Y, Xu W, Zhao H, Kohlhammer H, Rosenwald A, Kluin P, Müller-Hermelink HK, Ott G, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Ogwang MD, Reynolds SJ, Fisher RI, Braziel RM, Tubbs RR, Cook JR, Weisenburger DD, Chan WC, Pittaluga S, Wilson W, Waldmann TA, Rowe M, Mbulaiteye SM, Rickinson AB, Staudt LM. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 2012; 490(7418): 116–120
https://doi.org/10.1038/nature11378 pmid: 22885699
36 Havelange V, Pepermans X, Ameye G, Théate I, Callet-Bauchu E, Barin C, Penther D, Lippert E, Michaux L, Mugneret F, Dastugue N, Raphaël M, Vikkula M, Poirel HA. Genetic differences between paediatric and adult Burkitt lymphomas. Br J Haematol 2016; 173(1): 137–144
https://doi.org/10.1111/bjh.13925 pmid: 26887776
37 Cato MH, Chintalapati SK, Yau IW, Omori SA, Rickert RC. Cyclin D3 is selectively required for proliferative expansion of germinal center B cells. Mol Cell Biol 2011; 31(1): 127–137
https://doi.org/10.1128/MCB.00650-10 pmid: 20956554
38 Peled JU, Yu JJ, Venkatesh J, Bi E, Ding BB, Krupski-Downs M, Shaknovich R, Sicinski P, Diamond B, Scharff MD, Ye BH. Requirement for cyclin D3 in germinal center formation and function. Cell Res 2010; 20(6): 631–646
https://doi.org/10.1038/cr.2010.55 pmid: 20404856
39 Rohde M, Bonn BR, Zimmermann M, Lange J, Möricke A, Klapper W, Oschlies I, Szczepanowski M, Nagel I, Schrappe M; MMML-MYC-SYS Project; ICGC MMML-Seq Project, Loeffler M, Siebert R, Reiter A, Burkhardt B. Relevance of ID3-TCF3-CCND3 pathway mutations in pediatric aggressive B-cell lymphoma treated according to the non-Hodgkin Lymphoma Berlin-Frankfurt-Münster protocols. Haematologica 2017; 102(6): 1091–1098
https://doi.org/10.3324/haematol.2016.156885 pmid: 28209658
40 Kee BLE. E and ID proteins branch out. Nat Rev Immunol 2009; 9(3): 175–184
https://doi.org/10.1038/nri2507 pmid: 19240756
41 Roschke V, Kopantzev E, Dertzbaugh M, Rudikoff S. Chromosomal translocations deregulating c-myc are associated with normal immune responses. Oncogene 1997; 14(25): 3011–3016
https://doi.org/10.1038/sj.onc.1201156 pmid: 9223664
42 Nepal RM, Zaheen A, Basit W, Li L, Berger SA, Martin A. AID and RAG1 do not contribute to lymphomagenesis in Emu c-myc transgenic mice. Oncogene 2008; 27(34): 4752–4756
https://doi.org/10.1038/onc.2008.111 pmid: 18408759
43 Scholtysik R, Kreuz M, Klapper W, Burkhardt B, Feller AC, Hummel M, Loeffler M, Rosolowski M, Schwaenen C, Spang R, Stein H, Thorns C, Trümper L, Vater I, Wessendorf S, Zenz T, Siebert R, Küppers R; Molecular Mechanisms in Malignant Lymphomas Network Project of Deutsche Krebshilfe. Detection of genomic aberrations in molecularly defined Burkitt’s lymphoma by array-based, high resolution, single nucleotide polymorphism analysis. Haematologica 2010; 95(12): 2047–2055
https://doi.org/10.3324/haematol.2010.026831 pmid: 20823134
44 Salaverria I, Martin-Guerrero I, Wagener R, Kreuz M, Kohler CW, Richter J, Pienkowska-Grela B, Adam P, Burkhardt B, Claviez A, Damm-Welk C, Drexler HG, Hummel M, Jaffe ES, Küppers R, Lefebvre C, Lisfeld J, Löffler M, Macleod RA, Nagel I, Oschlies I, Rosolowski M, Russell RB, Rymkiewicz G, Schindler D, Schlesner M, Scholtysik R, Schwaenen C, Spang R, Szczepanowski M, Trümper L, Vater I, Wessendorf S, Klapper W, Siebert R; Molecular Mechanisms in Malignant Lymphoma Network Project; Berlin-Frankfurt-Münster Non-Hodgkin Lymphoma Group. A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma. Blood 2014; 123(8): 1187–1198
https://doi.org/10.1182/blood-2013-06-507996 pmid: 24398325
45 Campo E. New pathogenic mechanisms in Burkitt lymphoma. Nat Genet 2012; 44(12): 1288–1289
https://doi.org/10.1038/ng.2476 pmid: 23192177
46 Forshell LP, Li Y, Forshell TZ, Rudelius M, Nilsson L, Keller U, Nilsson J. The direct Myc target Pim3 cooperates with other Pim kinases in supporting viability of Myc-induced B-cell lymphomas. Oncotarget 2011; 2(6): 448–460
https://doi.org/10.18632/oncotarget.283 pmid: 21646687
47 Murphy DJ, Swigart LB, Israel MA, Evan GI. Id2 is dispensable for Myc-induced epidermal neoplasia. Mol Cell Biol 2004; 24(5): 2083–2090
https://doi.org/10.1128/MCB.24.5.2083-2090.2004 pmid: 14966287
48 Gao XZ, Zhao WG, Wang GN, Cui MY, Zhang YR, Li WC. Inhibitor of DNA binding 4 functions as a tumor suppressor and is targetable by 5-aza-2′-deoxycytosine with potential therapeutic significance in Burkitt’s lymphoma. Mol Med Rep 2016; 13(2): 1269–1274
https://doi.org/10.3892/mmr.2015.4640 pmid: 26648013
49 Spender LC, Inman GJ. TGF-β induces growth arrest in Burkitt lymphoma cells via transcriptional repression of E2F-1. J Biol Chem 2009; 284(3): 1435–1442
https://doi.org/10.1074/jbc.M808080200 pmid: 19022773
50 Bakkebø M, Huse K, Hilden VI, Smeland EB, Oksvold MP. TGF-β-induced growth inhibition in B-cell lymphoma correlates with Smad1/5 signalling and constitutively active p38 MAPK. BMC Immunol 2010; 11(1): 57
https://doi.org/10.1186/1471-2172-11-57 pmid: 21092277
51 Reddy A, Zhang J, Davis NS, Moffitt AB, Love CL, Waldrop A, Leppa S, Pasanen A, Meriranta L, Karjalainen-Lindsberg ML, Norgaard P, Pedersen M, Gang AO, Hogdall E, Heavican TB, Lone W, Iqbal J, Qin Q, Li G, Kim SY, Healy J, Richards KL, Fedoriw Y, Bernal-Mizrachi L, Koff JL, Staton AD, Flowers CR, Paltiel O, Goldschmidt N, Calaminici M, Clear A, Gribben J, Nguyen E, Czader MB, Ondrejka SL, Collie A, Hsi ED, Tse E, Au-Yeung RKH, Kwong YL, Srivastava G, Choi WWL, Evens AM, Pilichowska M, Sengar M, Reddy N, Li S, Chadburn A, Gordon LI, Jaffe ES, Levy S, Rempel R, Tzeng T, Happ LE, Dave T, Rajagopalan D, Datta J, Dunson DB, and Dave SS. Genetic and functional drivers of diffuse large B cell lymphoma. Cell 2017; 171(2): p. 481–494e15
52 Dubois S, Viailly PJ, Mareschal S, Bohers E, Bertrand P, Ruminy P, Maingonnat C, Jais JP, Peyrouze P, Figeac M, Molina TJ, Desmots F, Fest T, Haioun C, Lamy T, Copie-Bergman C, Brière J, Petrella T, Canioni D, Fabiani B, Coiffier B, Delarue R, Peyrade F, Bosly A, André M, Ketterer N, Salles G, Tilly H, Leroy K, Jardin F. Next-generation sequencing in diffuse large B-cell lymphoma highlights molecular divergence and therapeutic opportunities: a LYSA study. Clin Cancer Res 2016; 22(12): 2919–2928
https://doi.org/10.1158/1078-0432.CCR-15-2305 pmid: 26819451
53 Momose S, Weißbach S, Pischimarov J, Nedeva T, Bach E, Rudelius M, Geissinger E, Staiger AM, Ott G, Rosenwald A. The diagnostic gray zone between Burkitt lymphoma and diffuse large B-cell lymphoma is also a gray zone of the mutational spectrum. Leukemia 2015; 29(8): 1789–1791
https://doi.org/10.1038/leu.2015.34 pmid: 25673238
54 Gebauer N, Bernard V, Feller AC, Merz H. ID3 mutations are recurrent events in double-hit B-cell lymphomas. Anticancer Res 2013; 33(11): 4771–4778
pmid: 24222112
55 Dave SS, Fu K, Wright GW, Lam LT, Kluin P, Boerma EJ, Greiner TC, Weisenburger DD, Rosenwald A, Ott G, Müller-Hermelink HK, Gascoyne RD, Delabie J, Rimsza LM, Braziel RM, Grogan TM, Campo E, Jaffe ES, Dave BJ, Sanger W, Bast M, Vose JM, Armitage JO, Connors JM, Smeland EB, Kvaloy S, Holte H, Fisher RI, Miller TP, Montserrat E, Wilson WH, Bahl M, Zhao H, Yang L, Powell J, Simon R, Chan WC, Staudt LM; Lymphoma/Leukemia Molecular Profiling Project. Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med 2006; 354(23): 2431–2442
https://doi.org/10.1056/NEJMoa055759 pmid: 16760443
56 Recaldin T, Fear DJ. Transcription factors regulating B cell fate in the germinal centre. Clin Exp Immunol 2016; 183(1): 65–75
https://doi.org/10.1111/cei.12702 pmid: 26352785
57 Ramezani-Rad P, Rickert RC. Murine models of germinal center derived-lymphomas. Curr Opin Immunol 2017; 45: 31–36
https://doi.org/10.1016/j.coi.2016.12.002 pmid: 28160624
58 Basso K, Dalla-Favera R. Germinal centres and B cell lymphomagenesis. Nat Rev Immunol 2015; 15(3): 172–184
https://doi.org/10.1038/nri3814 pmid: 25712152
59 Dorsett Y, Robbiani DF, Jankovic M, Reina-San-Martin B, Eisenreich TR, Nussenzweig MC. A role for AID in chromosome translocations between c-myc and the IgH variable region. J Exp Med 2007; 204(9): 2225–2232
https://doi.org/10.1084/jem.20070884 pmid: 17724134
60 Pasqualucci LBhagat G, Jankovic M, Compagno M, Smith P, Muramatsu M, Honjo T, Morse HC, Nussenzweig MC 3rd, Dalla-Favera R. AID is required for germinal center-derived lymphomagenesis. Nat Genet 2008; 40(1): 108–112
https://doi.org/10.1038/ng.2007.35 pmid: 18066064
61 Victora GD, Dominguez-Sola D, Holmes AB, Deroubaix S, Dalla-Favera R, Nussenzweig MC. Identification of human germinal center light and dark zone cells and their relationship to human B-cell lymphomas. Blood 2012; 120(11): 2240–2248
https://doi.org/10.1182/blood-2012-03-415380 pmid: 22740445
62 Schmitz R, Ceribelli M, Pittaluga S, Wright G, Staudt LM. Oncogenic mechanisms in Burkitt lymphoma. Cold Spring Harb Perspect Med 2014; 4(2): a014282
https://doi.org/10.1101/cshperspect.a014282 pmid: 24492847
63 Gloury R, Zotos D, Zuidscherwoude M, Masson F, Liao Y, Hasbold J, Corcoran LM, Hodgkin PD, Belz GT, Shi W, Nutt SL, Tarlinton DM, Kallies A. Dynamic changes in Id3 and E-protein activity orchestrate germinal center and plasma cell development. J Exp Med 2016; 213(6): 1095–1111
https://doi.org/10.1084/jem.20152003 pmid: 27217539
64 Calado DP, Sasaki Y, Godinho SA, Pellerin A, Köchert K, Sleckman BP, de Alborán IM, Janz M, Rodig S, Rajewsky K. The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers. Nat Immunol 2012; 13(11): 1092–1100
https://doi.org/10.1038/ni.2418 pmid: 23001146
65 Dominguez-Sola D, Victora GD, Ying CY, Phan RT, Saito M, Nussenzweig MC, Dalla-Favera R. The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry. Nat Immunol 2012; 13(11): 1083–1091
https://doi.org/10.1038/ni.2428 pmid: 23001145
66 Bemark M, Neuberger MS. By-products of immunoglobulin somatic hypermutation. Genes Chromosomes Cancer 2003; 38(1): 32–39
https://doi.org/10.1002/gcc.10241 pmid: 12874784
67 Guikema JE, de Boer C, Haralambieva E, Smit LA, van Noesel CJ, Schuuring E, Kluin PM. IGH switch breakpoints in Burkitt lymphoma: exclusive involvement of noncanonical class switch recombination. Genes Chromosomes Cancer 2006; 45(9): 808–819
https://doi.org/10.1002/gcc.20345 pmid: 16736499
68 Xu Z, Pone EJ, Al-Qahtani A, Park SR, Zan H, Casali P. Regulation of aicda expression and AID activity: relevance to somatic hypermutation and class switch DNA recombination. Crit Rev Immunol 2007; 27(4): 367–397
https://doi.org/10.1615/CritRevImmunol.v27.i4.60 pmid: 18197815
69 Basso K, Dalla-Favera R. Roles of BCL6 in normal and transformed germinal center B cells. Immunol Rev 2012; 247(1): 172–183
https://doi.org/10.1111/j.1600-065X.2012.01112.x pmid: 22500840
70 Cruz-Rodriguez N, Combita AL, Enciso LJ, Raney LF, Pinzon PL, Lozano OC, Campos AM, Peñaloza N, Solano J, Herrera MV, Zabaleta J, Quijano S. Prognostic stratification improvement by integrating ID1/ID3/IGJ gene expression signature and immunophenotypic profile in adult patients with B-ALL. J Exp Clin Cancer Res 2017; 36(1): 37
https://doi.org/10.1186/s13046-017-0506-4 pmid: 28245840
71 Bellido M, Aventín A, Lasa A, Estivill C, Carnicer MJ, Pons C, Matías-Guiu X, Bordes R, Baiget M, Sierra J, Nomdedéu JF. Id4 is deregulated by a t(6;14)(p22;q32) chromosomal translocation in a B-cell lineage acute lymphoblastic leukemia. Haematologica 2003; 88(9): 994–1001
pmid: 12969807
72 Mandelbaum J, Bhagat G, Tang H, Mo T, Brahmachary M, Shen Q, Chadburn A, Rajewsky K, Tarakhovsky A, Pasqualucci L, Dalla-Favera R. BLIMP1 is a tumor suppressor gene frequently disrupted in activated B cell-like diffuse large B cell lymphoma. Cancer Cell 2010; 18(6): 568–579
https://doi.org/10.1016/j.ccr.2010.10.030 pmid: 21156281
73 Husson H, Carideo EG, Neuberg D, Schultze J, Munoz O, Marks PW, Donovan JW, Chillemi AC, O’Connell P, Freedman AS. Gene expression profiling of follicular lymphoma and normal germinal center B cells using cDNA arrays. Blood 2002; 99(1): 282–289
https://doi.org/10.1182/blood.V99.1.282 pmid: 11756183
74 Renné C, Martin-Subero JI, Eickernjäger M, Hansmann ML, Küppers R, Siebert R, Bräuninger A. Aberrant expression of ID2, a suppressor of B-cell-specific gene expression, in Hodgkin’s lymphoma. Am J Pathol 2006; 169(2): 655–664
https://doi.org/10.2353/ajpath.2006.060020 pmid: 16877363
75 Mathas S, Janz M, Hummel F, Hummel M, Wollert-Wulf B, Lusatis S, Anagnostopoulos I, Lietz A, Sigvardsson M, Jundt F, Jöhrens K, Bommert K, Stein H, Dörken B. Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma. Nat Immunol 2006; 7(2): 207–215
https://doi.org/10.1038/ni1285 pmid: 16369535
76 Küppers R, Bräuninger A. Reprogramming of the tumour B-cell phenotype in Hodgkin lymphoma. Trends Immunol 2006; 27(5): 203–205
https://doi.org/10.1016/j.it.2006.03.001 pmid: 16563865
77 Zhao P, Lu Y, Liu L, Zhong M. Aberrant expression of ID2 protein and its correlation with EBV-LMP1 and P16(INK4A) in classical Hodgkin lymphoma in China. BMC Cancer 2008; 8(1): 379
https://doi.org/10.1186/1471-2407-8-379 pmid: 19099554
78 Ikeda JI, Wada N, Nojima S, Tahara S, Tsuruta Y, Oya K, Morii E. ID1 upregulation and FoxO3a downregulation by Epstein-Barr virus-encoded LMP1 in Hodgkin’s lymphoma. Mol Clin Oncol 2016; 5(5): 562–566
https://doi.org/10.3892/mco.2016.1012 pmid: 27900085
79 Lietz A, Janz M, Sigvardsson M, Jundt F, Dörken B, Mathas S. Loss of bHLH transcription factor E2A activity in primary effusion lymphoma confers resistance to apoptosis. Br J Haematol 2007; 137(4): 342–348
https://doi.org/10.1111/j.1365-2141.2007.06583.x pmid: 17456056
80 Liu TY, Chen SU, Kuo SH, Cheng AL, Lin CW. E2A-positive gastric MALT lymphoma has weaker plasmacytoid infiltrates and stronger expression of the memory B-cell-associated miR-223: possible correlation with stage and treatment response. Mod Pathol 2010; 23(11): 1507–1517
https://doi.org/10.1038/modpathol.2010.139 pmid: 20802470
81 Seidel MG, Look AT. E2A-HLF usurps control of evolutionarily conserved survival pathways. Oncogene 2001; 20(40): 5718–5725
https://doi.org/10.1038/sj.onc.1204591 pmid: 11607821
82 Yoshihara T, Inaba T, Shapiro LH, Kato JY, Look AT. E2A-HLF-mediated cell transformation requires both the trans-activation domains of E2A and the leucine zipper dimerization domain of HLF. Mol Cell Biol 1995; 15(6): 3247–3255
https://doi.org/10.1128/MCB.15.6.3247 pmid: 7760820
83 Kamps MP, Baltimore D. E2A-Pbx1, the t(1;19) translocation protein of human pre-B-cell acute lymphocytic leukemia, causes acute myeloid leukemia in mice. Mol Cell Biol 1993; 13(1): 351–357
https://doi.org/10.1128/MCB.13.1.351 pmid: 8093327
84 Dedera DA, Waller EK, LeBrun DP, Sen-Majumdar A, Stevens ME, Barsh GS, Cleary ML. Chimeric homeobox gene E2A-PBX1 induces proliferation, apoptosis, and malignant lymphomas in transgenic mice. Cell 1993; 74(5): 833–843
https://doi.org/10.1016/0092-8674(93)90463-Z pmid: 8104101
85 Nourse J, Mellentin JD, Galili N, Wilkinson J, Stanbridge E, Smith SD, Cleary ML. Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell 1990; 60(4): 535–545
https://doi.org/10.1016/0092-8674(90)90657-Z pmid: 1967982
86 Engel I, Murre C. The function of E- and Id proteins in lymphocyte development. Nat Rev Immunol 2001; 1(3): 193–199
https://doi.org/10.1038/35105060 pmid: 11905828
87 Murre C. Role of helix-loop-helix proteins in lymphocyte development. Cold Spring Harb Symp Quant Biol 1999; 64(0): 39–44
https://doi.org/10.1101/sqb.1999.64.39 pmid: 11232313
88 Miyazaki M, Rivera RR, Miyazaki K, Lin YC, Agata Y, Murre C. The opposing roles of the transcription factor E2A and its antagonist Id3 that orchestrate and enforce the naive fate of T cells. Nat Immunol 2011; 12(10): 992–1001
https://doi.org/10.1038/ni.2086 pmid: 21857655
89 Bain G, Engel I, Robanus Maandag EC, te Riele HP, Voland JR, Sharp LL, Chun J, Huey B, Pinkel D, Murre C. E2A deficiency leads to abnormalities in αβ T-cell development and to rapid development of T-cell lymphomas. Mol Cell Biol 1997; 17(8): 4782–4791
https://doi.org/10.1128/MCB.17.8.4782 pmid: 9234734
90 Yan W, Young AZ, Soares VC, Kelley R, Benezra R, Zhuang Y. High incidence of T-cell tumors in E2A-null mice and E2A/Id1 double-knockout mice. Mol Cell Biol 1997; 17(12): 7317–7327
https://doi.org/10.1128/MCB.17.12.7317 pmid: 9372963
91 Engel I, Murre C. Ectopic expression of E47 or E12 promotes the death of E2A-deficient lymphomas. Proc Natl Acad Sci USA 1999; 96(3): 996–1001
https://doi.org/10.1073/pnas.96.3.996 pmid: 9927682
92 Sicinska E, Aifantis I, Le Cam L, Swat W, Borowski C, Yu Q, Ferrando AA, Levin SD, Geng Y, von Boehmer H, Sicinski P. Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 2003; 4(6): 451–461
https://doi.org/10.1016/S1535-6108(03)00301-5 pmid: 14706337
93 Schwartz R, Engel I, Fallahi-Sichani M, Petrie HT, Murre C. Gene expression patterns define novel roles for E47 in cell cycle progression, cytokine-mediated signaling, and T lineage development. Proc Natl Acad Sci USA 2006; 103(26): 9976–9981
https://doi.org/10.1073/pnas.0603728103 pmid: 16782810
94 Steininger A, Möbs M, Ullmann R, Köchert K, Kreher S, Lamprecht B, Anagnostopoulos I, Hummel M, Richter J, Beyer M, Janz M, Klemke CD, Stein H, Dörken B, Sterry W, Schrock E, Mathas S, Assaf C. Genomic loss of the putative tumor suppressor gene E2A in human lymphoma. J Exp Med 2011; 208(8): 1585–1593
https://doi.org/10.1084/jem.20101785 pmid: 21788410
95 Mathas S, Kreher S, Meaburn KJ, Jöhrens K, Lamprecht B, Assaf C, Sterry W, Kadin ME, Daibata M, Joos S, Hummel M, Stein H, Janz M, Anagnostopoulos I, Schrock E, Misteli T, Dörken B. Gene deregulation and spatial genome reorganization near breakpoints prior to formation of translocations in anaplastic large cell lymphoma. Proc Natl Acad Sci USA 2009; 106(14): 5831–5836
https://doi.org/10.1073/pnas.0900912106 pmid: 19321746
96 O’Neil J, Shank J, Cusson N, Murre C, Kelliher M. TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB. Cancer Cell 2004; 5(6): 587–596
https://doi.org/10.1016/j.ccr.2004.05.023 pmid: 15193261
97 Park ST, Nolan GP, Sun XH. Growth inhibition and apoptosis due to restoration of E2A activity in T cell acute lymphoblastic leukemia cells. J Exp Med 1999; 189(3): 501–508
https://doi.org/10.1084/jem.189.3.501 pmid: 9927512
98 Sanda T, Lawton LN, Barrasa MI, Fan ZP, Kohlhammer H, Gutierrez A, Ma W, Tatarek J, Ahn Y, Kelliher MA, Jamieson CH, Staudt LM, Young RA, Look AT. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell 2012; 22(2): 209–221
https://doi.org/10.1016/j.ccr.2012.06.007 pmid: 22897851
99 Tan SH, Yam AW, Lawton LN, Wong RW, Young RA, Look AT, Sanda T. TRIB2 reinforces the oncogenic transcriptional program controlled by the TAL1 complex in T-cell acute lymphoblastic leukemia. Leukemia 2016; 30(4): 959–962
https://doi.org/10.1038/leu.2015.195 pmid: 26202930
100 Spaulding C, Reschly EJ, Zagort DE, Yashiro-Ohtani Y, Beverly LJ, Capobianco A, Pear WS, Kee BL. Notch1 co-opts lymphoid enhancer factor 1 for survival of murine T-cell lymphomas. Blood 2007; 110(7): 2650–2658
https://doi.org/10.1182/blood-2007-04-084202 pmid: 17585052
101 Wang HC, Peng V, Zhao Y, Sun XH. Enhanced Notch activation is advantageous but not essential for T cell lymphomagenesis in Id1 transgenic mice. PLoS One 2012; 7(2): e32944
https://doi.org/10.1371/journal.pone.0032944 pmid: 22393458
102 Grabher C, von Boehmer H, Look AT. Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer 2006; 6(5): 347–359
https://doi.org/10.1038/nrc1880 pmid: 16612405
103 Reschly EJ, Spaulding C, Vilimas T, Graham WV, Brumbaugh RL, Aifantis I, Pear WS, Kee BL. Notch1 promotes survival of E2A-deficient T cell lymphomas through pre-T cell receptor-dependent and-independent mechanisms. Blood 2006; 107(10): 4115–4121
https://doi.org/10.1182/blood-2005-09-3551 pmid: 16449526
104 Talora C, Campese AF, Bellavia D, Pascucci M, Checquolo S, Groppioni M, Frati L, von Boehmer H, Gulino A, Screpanti I. Pre-TCR-triggered ERK signalling-dependent downregulation of E2A activity in Notch3-induced T-cell lymphoma. EMBO Rep 2003; 4(11): 1067–1072
https://doi.org/10.1038/sj.embor.7400013 pmid: 14566327
105 Cotta CV, Leventaki V, Atsaves V, Vidaki A, Schlette E, Jones D, Medeiros LJ, Rassidakis GZ. The helix-loop-helix protein Id2 is expressed differentially and induced by myc in T-cell lymphomas. Cancer 2008; 112(3): 552–561
https://doi.org/10.1002/cncr.23196 pmid: 18085637
106 Morrow MA, Mayer EW, Perez CA, Adlam M, Siu G. Overexpression of the helix-loop-helix protein Id2 blocks T cell development at multiple stages. Mol Immunol 1999; 36(8): 491–503
https://doi.org/10.1016/S0161-5890(99)00071-1 pmid: 10475604
107 Kim D, Peng XC, Sun XH. Massive apoptosis of thymocytes in T-cell-deficient Id1 transgenic mice. Mol Cell Biol 1999; 19(12): 8240–8253
https://doi.org/10.1128/MCB.19.12.8240 pmid: 10567549
108 Li J, Maruyama T, Zhang P, Konkel JE, Hoffman V, Zamarron B, Chen W. Mutation of inhibitory helix-loop-helix protein Id3 causes gd T-cell lymphoma in mice. Blood 2010; 116(25): 5615–5621
https://doi.org/10.1182/blood-2010-03-274506 pmid: 20852128
109 Li J, Roy S, Kim YM, Li S, Zhang B, Love C, Reddy A, Rajagopalan D, Dave S, Diehl AM, Zhuang Y. Id2 collaborates with Id3 to suppress invariant NKT and innate-like tumors. J Immunol 2017; 198(8): 3136–3148
https://doi.org/10.4049/jimmunol.1601935 pmid: 28258199
110 Miyazaki M, Miyazaki K, Chen S, Chandra V, Wagatsuma K, Agata Y, Rodewald HR, Saito R, Chang AN, Varki N, Kawamoto H, Murre C. The E-Id protein axis modulates the activities of the PI3K-AKT-mTORC1-Hif1a and c-myc/p19Arf pathways to suppress innate variant TFH cell development, thymocyte expansion, and lymphomagenesis. Genes Dev 2015; 29(4): 409–425
https://doi.org/10.1101/gad.255331.114 pmid: 25691468
111 Yu L, Liu C, Vandeusen J, Becknell B, Dai Z, Wu YZ, Raval A, Liu TH, Ding W, Mao C, Liu S, Smith LT, Lee S, Rassenti L, Marcucci G, Byrd J, Caligiuri MA, Plass C. Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia. Nat Genet 2005; 37(3): 265–274
https://doi.org/10.1038/ng1521 pmid: 15723065
112 Chen SS, Claus R, Lucas DM, Yu L, Qian J, Ruppert AS, West DA, Williams KE, Johnson AJ, Sablitzky F, Plass C, Byrd JC. Silencing of the inhibitor of DNA binding protein 4 (ID4) contributes to the pathogenesis of mouse and human CLL. Blood 2011; 117(3): 862–871
https://doi.org/10.1182/blood-2010-05-284638 pmid: 21098398
113 Cen J, Shen J, Wang X, Kang H, Wang L, Sun L, Li Y, Yu L. Association between lymphoma prognosis and aberrant methylation of ID4 and ZO-1 in bone marrow and paraffin-embedded lymphoma tissues of treatment-naive patients. Oncol Rep 2013; 30(1): 455–461
https://doi.org/10.3892/or.2013.2450 pmid: 23670122
114 Hagiwara K, Nagai H, Li Y, Ohashi H, Hotta T, Saito H. Frequent DNA methylation but not mutation of the ID4 gene in malignant lymphoma. J Clin Exp Hematop 2007; 47(1): 15–18
https://doi.org/10.3960/jslrt.47.15 pmid: 17510533
115 Alani RM, Hasskarl J, Grace M, Hernandez MC, Israel MA, Münger K. Immortalization of primary human keratinocytes by the helix-loop-helix protein, Id-1. Proc Natl Acad Sci USA 1999; 96(17): 9637–9641
https://doi.org/10.1073/pnas.96.17.9637 pmid: 10449746
116 Nickoloff BJ, Chaturvedi V, Bacon P, Qin JZ, Denning MF, Diaz MO. Id-1 delays senescence but does not immortalize keratinocytes. J Biol Chem 2000; 275(36): 27501–27504
pmid: 10908559
117 Wöhner M, Tagoh H, Bilic I, Jaritz M, Poliakova DK, Fischer M, Busslinger M. Molecular functions of the transcription factors E2A and E2-2 in controlling germinal center B cell and plasma cell development. J Exp Med 2016; 213(7): 1201–1221
https://doi.org/10.1084/jem.20152002 pmid: 27261530
[1] Bingshan Liu, Roshni Narurkar, Madhura Hanmantgad, Wahib Zafar, Yongping Song, Delong Liu. Venetoclax and low-dose cytarabine induced complete remission in a patient with high-risk acute myeloid leukemia: a case report[J]. Front. Med., 2018, 12(5): 593-599.
[2] Xuefu Wang, Zhigang Tian. γδ T cells in liver diseases[J]. Front. Med., 2018, 12(3): 262-268.
[3] Shasha Zhu, Huimin Zhang, Li Bai. NKT cells in liver diseases[J]. Front. Med., 2018, 12(3): 249-261.
[4] Xiaofeng Shi, Rong Ba, Haiyan You, Qian Jiang, Jiansong Huang, Jianhua Mao, Lanxiu Han, Shuo Zhang, Qin Zhuang, Xianqiu Yu, Lixia Wang, Yun Wang, Dongya Li, Wei Zhu, Yong Zhang, Yan Zhu, Xiaodong Xi. A rare case of B-lymphoproliferative disorder with villous lymphocytes harboring t(8;14)(q24;q32) translocation[J]. Front. Med., 2018, 12(3): 324-329.
[5] Simone Nüssing, Sneha Sant, Marios Koutsakos, Kanta Subbarao, Thi H.O. Nguyen, Katherine Kedzierska. Innate and adaptive T cells in influenza disease[J]. Front. Med., 2018, 12(1): 34-47.
[6] Dan Huang, Yan Yang, Jian Sun, Xiaorong Dong, Jiao Wang, Hongchen Liu, Chengquan Lu, Xueyu Chen, Jing Shao, Jinsong Yan. Annexin A2-S100A10 heterotetramer is upregulated by PML/RARα fusion protein and promotes plasminogen-dependent fibrinolysis and matrix invasion in acute promyelocytic leukemia[J]. Front. Med., 2017, 11(3): 410-422.
[7] Zhan Su, Fengyu Wu, Weiyu Hu, Xiaodan Liu, Shaoling Wu, Xianqi Feng, Zhongguang Cui, Jie Yang, Zhenguang Wang, Hongzai Guan, Hongguo Zhao, Wei Wang, Chunting Zhao, Jun Peng. Philadelphia chromosome-positive acute myeloid leukemia with masses and osteolytic lesions: finding of 18F-FDG PET/CT[J]. Front. Med., 2017, 11(3): 440-444.
[8] Yinjun Lou, Yafang Ma, Chenyin Li, Sansan Suo, Hongyan Tong, Wenbin Qian, Wenyuan Mai, Haitao Meng, Wenjuan Yu, Liping Mao, Juyin Wei, Weilei Xu, Jie Jin. Efficacy and prognostic factors of imatinib plus CALLG2008 protocol in adult patients with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia[J]. Front. Med., 2017, 11(2): 229-238.
[9] Xiaoling Wang,Yun Tan,Yizhen Li,Jingming Li,Wen Jin,Kankan Wang. Repression of CDKN2C caused by PML/RARα binding promotes the proliferation and differentiation block in acute promyelocytic leukemia[J]. Front. Med., 2016, 10(4): 420-429.
[10] Yuting Tan,Han Liu,Saijuan Chen. Mutant DNA methylation regulators endow hematopoietic stem cells with the preleukemic stem cell property, a requisite of leukemia initiation and relapse[J]. Front. Med., 2015, 9(4): 412-420.
[11] Joseph Cannova,Peter Breslin S.J.,Jiwang Zhang. Toll-like receptor signaling in hematopoietic homeostasis and the pathogenesis of hematologic diseases[J]. Front. Med., 2015, 9(3): 288-303.
[12] Lanping Xu,Huanling Zhu,Jianda Hu,Depei Wu,Hao Jiang,Qian Jiang,Xiaojun Huang. Superiority of allogeneic hematopoietic stem cell transplantation to nilotinib and dasatinib for adult patients with chronic myelogenous leukemia in the accelerated phase[J]. Front. Med., 2015, 9(3): 304-311.
[13] Ching-Hon Pui. Genomic and pharmacogenetic studies of childhood acute lymphoblastic leukemia[J]. Front. Med., 2015, 9(1): 1-9.
[14] Muhammad Furqan,Yamei Chen,Akintunde Akinleye,Judy Sarungbam,Alan Gass,Karen Seiter,Delong Liu. Management of mantle cell leukemia with cardiac involvement leading to cardiogenic shock[J]. Front. Med., 2014, 8(2): 254-258.
[15] Jessica Fredericks, Ruibao Ren. The role of RAS effectors in BCR/ABL induced chronic myelogenous leukemia[J]. Front Med, 2013, 7(4): 452-461.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed