Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2019, Vol. 13 Issue (6) : 713-722    https://doi.org/10.1007/s11684-018-0661-9
RESEARCH ARTICLE
Long-term effects of various types of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on changes in glomerular filtration rate in Korea
Seo Yeon Baik1, Hyunah Kim2, So Jung Yang1, Tong Min Kim1, Seung-Hwan Lee3, Jae Hyoung Cho3, Hyunyong Lee4, Hyeon Woo Yim5, Kun-Ho Yoon1,3, Hun-Sung Kim1,3()
1. Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
2. College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Republic of Korea
3. Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
4. Clinical Research Coordinating Center, Catholic Medical Center, The Catholic University of Korea, Seoul 06591, Republic of Korea
5. Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
 Download: PDF(178 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Few long-term follow-up studies have compared the changes in renal function according to the type of statin used in Korea. We compared the long-term effects of statin intensity and type on the changes in the glomerular filtration rate (GFR). We extracted data of patients who took statin for the first time. We analyzed whether or not different statins affect the changes in GFR at 3 months after baseline and 4 years after. We included 3678 patients and analyzed the changes in GFR. The GFR decreased by 3.2%±0.4% on average 4 years after the first statin prescription, indicating statistically significant deterioration (from 83.5±0.4 mL/min/1.73 m2 to 79.9±0.4 mL/min/1.73 m2, P<0.001). When comparing the GFR among different statins, significant differences were observed between atorvastatin and fluvastatin (−5.3%±0.7% vs. 1.2%±2.2%, P<0.05) and between atorvastatin and simvastatin (−5.3%±0.7% vs. −0.7%±0.8%, P<0.05). In pitavastatin (odds ratio [OR]=0.64, 95% confidence interval [CI]=0.46–0.87, P<0.005) and simvastatin (OR=0.69, 95% CI=0.53–0.91, P<0.008), the GFR rate that decreased by<60 mL/min/1.73 m2 was significantly lower than that of atorvastatin. Regarding long-term statin intake, GFR changed with the type of statin. This work is the first in Korea to compare each statin in terms of changes in the GFR after the statin prescription.

Keywords statin      glomerular filtration rate      HMG-CoA reductase inhibitor      chronic kidney disease     
Corresponding Authors: Hun-Sung Kim   
Just Accepted Date: 09 October 2018   Online First Date: 03 December 2018    Issue Date: 16 December 2019
 Cite this article:   
Seo Yeon Baik,Hyunah Kim,So Jung Yang, et al. Long-term effects of various types of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on changes in glomerular filtration rate in Korea[J]. Front. Med., 2019, 13(6): 713-722.
 URL:  
http://academic.hep.com.cn/fmd/EN/10.1007/s11684-018-0661-9
http://academic.hep.com.cn/fmd/EN/Y2019/V13/I6/713
Fig.1  Study flow diagram. GFR, glomerular filtration rate. MDRD, modification of diet in renal disease.
Atorvastatin Fluvastatin Pitavastatin Pravastatin Rosuvastatin Simvastatin Simvastatin
+ Ezetimibe
10 mg 20 mg 40 mg 40 mg 80 mg 2 mg 10 mg 20 mg 40 mg 10 mg 20 mg 20 mg 40 mg 10 mg 20 mg
n 767 166 33 42 78 500 85 127 129 741 56 680 33 145 96
Sex (male), n (%) 376 (49.0) 85 (51.2) 19 (57.6) 25 (59.5) 32 (41.0) 212 (42.4) 34 (40.0) 44 (34.7) 57 (44.2) 350 (47.2) 26 (46.4) 288 (42.4) 20 (60.6) 65 (44.8) 37 (38.5)
Age, year 66±11 65±12 70±12 59±12 67±8 66±11 68±10 64±10 65±10 65±12 62±12 67±12 68±8 65±10 62±12
Age (>65 years), n (%) 441 (57.5) 88 (53.0) 22 (66.7) 17 (40.5) 48 (61.5) 253 (50.6) 48 (56.5) 56 (44.1) 68 (52.7) 375 (50.6) 22 (39.3) 404 (59.4) 22 (66.7) 72 (49.7) 36 (37.5)
Diabetes mellitus, n (%) 361 (47.1) 65 (39.2) 15 (45.5) 7 (16.7) 34 (43.6) 209 (41.8) 28 (32.9) 42 (33.1) 37 (28.7) 353 (47.6) 24 (42.9) 300 (44.1) 15 (45.5) 68 (46.9) 35 (36.5)
Fasting blood glucose, mg/dL 135±65 137±60 155±90 120±35 118±32 126±44 122±41 121±39 125±42 137±72 150±98 124±39 124±28 135±50 137±81
HbAlc, % 7.2±1.6 7.1±1.6 7.2±1.5 6.6±0.9 6.8±0.9 6.9±1.4 6.78±1.2 7.1±1.7 6.7±1.2 7.4±1.8 7.7±2.4 6.9±1.2 6.7±0.8 7.1±1.4 7.0±2.0
BUN, mg/dL 16±5 17±7 17.1±4.0 16±6 17±4 16±5 16±6 15±5 16±5 16±5 16±7 16±5 15±5 16±6 16±5
Creatinine, mg/dL 0.9±0.3 0.9±0.3 0.9±0.2 1.0±0.3 0.9±0.3 0.9±0.2 0.9±0.3 0.8±0.2 0.9±0.3 0.9±0.2 0.9±0.3 0.9±0.2 0.9±0.2 0.9±0.3 0.8±0.2
MDRD-GFR, mL/min/1.73m2 83.4±22.2 82.2±21.8 81.3±20.6 83.6±19.7 77.0±18.0 85.1±21.4 79.1±18.9 86.0±19.5 85.2±19.8 82.4±20.0 85.3±27.6 83.6±26.4 81.7±14.2 85.5±22.8 88.6±19.6
MDRD-GFR category
≥90 mL/min/1.73 m2, n (%) 263 (34.3) 58 (34.9) 9 (27.3) 12 (28.6) 17 (21.8) 183 (36.6) 22 (25.9) 50 (39.4) 55 (42.6) 237 (32.0) 16 (28.6) 208 (30.6) 6 (18.2) 57 (39.3) 52 (54.2)
60–89 mL/min/1.73m2,
n (%)
409 (53.3) 82 (49.4) 21 (63.6) 26 (61.9) 48 (61.5) 274 (54.8) 50 (58.8) 66 (52.0) 65 (50.4) 410 (55.3) 34 (60.7) 389 (57.2) 24 (72.7) 70 (48.3) 37 (38.5)
<60 mL/min/1.73 m2, n (%) 95 (12.4) 26 (15.7) 3 (9.1) 4 (9.5) 13 (16.7) 43 (8.6) 13 (15.3) 11 (8.7) 9 (7.0) 94 (12.7) 6 (10.7) 83 (12.2) 3 (9.1) 18 (12.4) 7 (7.3)
Total cholesterol, mg/dL 183±43 198±54 208±82 223±45 178±36 203±47 197±37 215±43 215±47 196±56 228±71 180±43 177±57 195±45 234±51
Triglyceride, mg/dL 154±82 172±116 267±454 192±144 136±71 160±87 167±87 160±78 144±72 169±125 184±97 152±100 181±75 163±98 178±122
HDL-C, mg/dL 50±13 48±11 43±12 44±10 52±13 51±13 50±13 50±16 52±12 52±14 49±13 53±14 51±13 52±15 51±12
LDL-C, mg/dL 110±35 126±47 121±45 140±42 103±32 128±39 127±31 143±34 131±45 125±45 157±62 104±37 108±48 117±36 145±46
AST, IU/L 26±17 25±13 24±11 40±30 23±7 27±14 24±9 26±19 27±15 25±13 28±17 25±11 24±10 27±16 28±21
ALT, IU/L 28±24 29±22 25±15 59±57 25±12 31±27 25±13 28±20 30±25 28±19 30±16 28±21 26±13 29±19 33±26
ALP, IU/L 67±47 64±20 59±18 77±50 60±18 65±26 68±23 63±22 71±22 67±45 65±20 66±24 70±22 64±20 63±20
Sodium, mEq/L 141±3 140±3 140±3 141±2 141±2 141±2 141±3 141±2 141±3 141±3 141±3 141±3 141±2 140±2 141±3
Potassium, mEq/L 4.4±0.4 4.3±0.4 4.2±0.4 4.3±0.5 4.4±0.3 4.3±0.4 4.3±0.4 4.3±0.4 4.3±0.4 4.3±0.4 4.4±0.5 4.4±0.4 4.3±0.4 4.4±0.4 4.3±0.4
CPK, IU/L 111±140 98±71 113±65 101±74 107±65 108±124 99±79 127±180 127±160 104±72 143±167 105±127 100±44 116±98 95±65
Tab.1  Baseline characteristics of patients prescribed a statin for the first time
n Baseline 3 months later % (SE) Pvalue 4 years later % (SE) P value
High intensity statin 89 83.8±2.7 86.3±4.3 2.6±2.2 0.204 78.6±3.3 −6.5±2.5* 0.441
Moderate to high intensity statin 940 82.3±0.7 85.1±0.9 3.9±0.4** 79.5±0.7 −2.6±0.7**
Moderate to low intensity statin 2154 83.7±0.5 85.6±0.6 3.1±0.3** 79.9±0.5 −3.2±0.5**
Low intensity statin 254 83.3±1.2 86.6±1.8 2.1±0.8* 80.0±1.4 −3.13±1.3*
Tab.2  Comparison of changes in the MDRD-GFR rate at 3 months and 4 years after a statin was prescribed
n Baseline 3 months later % (SE) P value 4 years later % (SE) P value
Atorvastatin 966 83.2±0.7 84.1±0.7 2.2±0.4** <0.001 77.7±0.8 −5.3±0.7** <0.001
Fluvastatin 120 79.3±1.7 82.3±1.9 4.0±1.2** 79.5±2.0 1.2±2.2
Pitavastatin 500 85.1±1.0 87.4±1.0 3.5±0.6** 82.0±1.0 −2.9±0.8**
Pravastatin 341 84.0±1.1 84.3±1.1 0.9±0.7 79.1±1.2 −4.7±1.2**
Rosuvastatin 797 82.6±0.7 86.0±0.8 4.3±0.5** 79.8±0.8 −2.8±0.8**
Simvastatin 713 83.5±1.0 85.5±0.9 0.2±0.5** 81.2±0.8 −0.7±0.8
Simvastatin+ Ezetimibe 241 86.7±1.4 88.2±1.4 2.6±0.9* 81.6±1.5 −4.6±1.4**
Total 3678 83.5±0.4 85.4±0.4 3.2±0.2 <0.001 79.9±0.4 −3.2±0.4 <0.001
Tab.3  Comparison of changes in the MDRD-GFR rate at four years after a statin was prescribed
Univariable Multivariable*
OR (95% CI) P value OR (95% CI) P value
Age 1.08 (1.07−1.09) <0.001 1.08 (1.07−1.09) <0.001
Sex (male) 1.06 (0.89−1.26) 0.536 1.29 (1.07−1.55) 0.008
Statin 0.018 0.045
Atorvastatin Reference Reference
Fluvastatin 0.85 (0.52−1.40) 0.520 1.01 (0.61−1.70) 0.959
Pitavastatin 0.61 (0.45−0.83) 0.001 0.64 (0.46−0.87) 0.005
Pravastatin 0.70 (0.50−0.99) 0.041 0.79 (0.56−1.13) 0.195
Rosuvastatin 0.81 (0.63−1.03) 0.089 0.89 (0.69−1.14) 0.353
Simvastatin 0.74 (0.57−0.95) 0.021 0.69 (0.53−0.91) 0.008
Simvastatin+Ezetimibe 0.61 (0.41−0.92) 0.018 0.75 (0.49−1.14) 0.173
Tab.4  Association between a specific statin and change in the MDRD-GFR
MDRD-GFR MDRD-GFR reduction P value
N Baseline Visit 2 (4 years) % (SE)
High intensity statin
Atorvastatin (40 mg) 33 81.3±3.6 72.1±3.7 −11.4±3.1** 0.094
Rosuvastatin (20 mg) 56 85.3±3.7 82.4±4.7 −3.5±3.4
Moderate to high intensity statin
Atorvastatin (20 mg) 166 82.2±1.7 77.8±1.8 −3.5±2.0 0.234
Rosuvastatin (10 mg) 741 82.4±0.7 79.7±0.8 −2.7±0.8**
Simvastatin (40 mg) 33 81.7±2.5 83.9±3.2 3.5±3.2
Moderate to low intensity statin
Atorvastatin (10 mg) 767 83.4±0.8 77.9±0.9 −5.5±0.8** <.001
Fluvastatin (80 mg) 78 77.0±2.0 76.2±2.3 0.4±3.1
Pitavastatin (2 mg) 500 85.1±1.0 82.0±1.0 −2.9±0.8**
Pravastatin (40 mg) 129 85.2±1.8 79.4±1.8 −5.2±1.9**
Simvastatin (20 mg) 680 83.6±1.0 81.0±0.8 −0.9±0.8
Low intensity statin
Fluvastatin (40 mg) 42 83.6±3.0 85.6±3.6 2.8±2.7 0.117
Pravastatin (20 mg) 127 86.1±1.7 82.2±2.1 −4.0±1.9*
Pravastatin (10 mg) 85 79.1±2.1 73.9±2.2 −4.8±2.2*
Others
Simvastatin (20mg) + Ezetimibe (20 mg) 96 88.6±2.0 85.1±2.1 −2.2±2.3 0.135
Simvastatin (20mg) +Ezetimibe (10 mg) 145 85.5±1.9 79.3±1.9 −6.3±1.7**
Tab.5  Comparison of changes in the MDRD-GFR rate at 4 years after a statin was prescribed among the subgroups
1 SM Grundy. HMG-CoA reductase inhibitors for treatment of hypercholesterolemia. N Engl J Med 1988; 319(1): 24–33
https://doi.org/10.1056/NEJM198807073190105 pmid: 3288867
2 MH Lee, HC Kim, SV Ahn, NW Hur, DP Choi, CG Park, I Suh. Prevalence of dyslipidemia among Korean adults: Korea national health and nutrition survey 1998–2005. Diabetes Metab J 2012; 36(1): 43–55
https://doi.org/10.4093/dmj.2012.36.1.43 pmid: 22363921
3 European Association for Cardiovascular Prevention & Rehabilitation, Z Reiner, AL Catapano, G De Backer, I Graham, MR Taskinen, O Wiklund, S Agewall, E Alegria, MJ Chapman, P Durrington, S Erdine, J Halcox, R Hobbs, J Kjekshus, PP Filardi, G Riccardi, RF Storey, D Wood; ESC Committee for Practice Guidelines (CPG) 2008–2010 and 2010–2012 Committees. EAS guidelines for the management of dyslipidaemias: the task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J 2011; 32(14): 1769–1818
https://doi.org/10.1093/eurheartj/ehr158 pmid: 21712404
4 JH Ahn, JH Yu, SH Ko, HS Kwon, DJ Kim, JH Kim, CS Kim, KH Song, JC Won, S Lim, SH Choi, K Han, BY Cha, NH Kim; Taskforce Team of Diabetes Fact Sheet of the Korean Diabetes Association. Prevalence and determinants of diabetic nephropathy in Korea: Korea national health and nutrition examination survey. Diabetes Metab J 2014; 38(2): 109–119
https://doi.org/10.4093/dmj.2014.38.2.109 pmid: 24851205
5 YH Kang, DW Jeong, SM Son. Prevalence of reduced kidney function by estimated glomerular filtration rate using an equation based on creatinine and cystatin C in metabolic syndrome and its components in Korean adults. Endocrinol Metab (Seoul) 2016; 31(3): 446–453
https://doi.org/10.3803/EnM.2016.31.3.446 pmid: 27491719
6 Kidney Disease Outcomes Quality Initiative (K/DOQI) Group. K/DOQI clinical practice guidelines for management of dyslipidemias in patients with kidney disease. Am J Kidney Dis 2003; 41: I–IV, S1–91
7 R Agarwal. Effects of statins on renal function. Am J Cardiol 2006; 97(5): 748–755
https://doi.org/10.1016/j.amjcard.2005.09.110 pmid: 16490450
8 BS Moon, J Kim, JH Kim, YY Hyun, SE Park, HG Oh, CY Park, WY Lee, KW Oh, KB Lee, H Kim, SW Park, EJ Rhee. Eligibility for statin treatment in Korean subjects with reduced renal function: an observational study. Endocrinol Metab (Seoul) 2016; 31(3): 402–409
https://doi.org/10.3803/EnM.2016.31.3.402 pmid: 27586450
9 VG Athyros, DP Mikhailidis, AA Papageorgiou, AN Symeonidis, AN Pehlivanidis, VI Bouloukos, M Elisaf. The effect of statins versus untreated dyslipidaemia on renal function in patients with coronary heart disease. A subgroup analysis of the Greek atorvastatin and coronary heart disease evaluation (GREACE) study. J Clin Pathol 2004; 57(7): 728–734
https://doi.org/10.1136/jcp.2003.012989 pmid: 15220366
10 LF Fried, KY Forrest, D Ellis, Y Chang, N Silvers, TJ Orchard. Lipid modulation in insulin-dependent diabetes mellitus: effect on microvascular outcomes. J Diabetes Complications 2001; 15(3): 113–119
https://doi.org/10.1016/S1056-8727(01)00140-4 pmid: 11358679
11 M Tonelli, C Isles, T Craven, A Tonkin, MA Pfeffer, J Shepherd, FM Sacks, C Furberg, SM Cobbe, J Simes, M West, C Packard, GC Curhan. Effect of pravastatin on rate of kidney function loss in people with or at risk for coronary disease. Circulation 2005; 112(2): 171–178
https://doi.org/10.1161/CIRCULATIONAHA.104.517565 pmid: 15998677
12 TM Lee, MS Lin, CH Tsai, NC Chang. Add-on and withdrawal effect of pravastatin on proteinuria in hypertensive patients treated with AT receptor blockers. Kidney Int 2005; 68(2): 779–787
https://doi.org/10.1111/j.1523-1755.2005.00457.x pmid: 16014056
13 X Su, L Zhang, J Lv, J Wang, W Hou, X Xie, H Zhang. Effect of statins on kidney disease outcomes: a systematic review and meta-analysis. Am J Kidney Dis 2016; 67(6): 881–892
https://doi.org/10.1053/j.ajkd.2016.01.016 pmid: 26905361
14 J Kendrick, MG Shlipak, G Targher, T Cook, J Lindenfeld, M Chonchol. Effect of lovastatin on primary prevention of cardiovascular events in mild CKD and kidney function loss: a post hoc analysis of the Air Force/Texas Coronary Atherosclerosis Prevention Study. Am J Kidney Dis 2010; 55(1): 42–49
https://doi.org/10.1053/j.ajkd.2009.09.020 pmid: 19932541
15 T Acharya, J Huang, S Tringali, CR Frei, EM Mortensen, IA Mansi. Statin use and the risk of kidney disease with long-term follow-up (8.4-year study). Am J Cardiol 2016; 117(4): 647–655
https://doi.org/10.1016/j.amjcard.2015.11.031 pmid: 26742473
16 MM Garcia, CG Varela, PF Silva, PR Lima, PM Góes, MG Rodrigues, MdeL Silva, AM Ladeia, AC Guimarães, LC Correia. Endothelial effect of statin therapy at a high dose versus low dose associated with ezetimibe. Arq Bras Cardiol 2016; 106(4): 279–288
pmid: 27142792
17 AT Clarke, PC Johnson, GC Hall, I Ford, PR Mills. High dose atorvastatin associated with increased risk of significant hepatotoxicity in comparison to simvastatin in UK GPRD cohort. PLoS One 2016; 11(3): e0151587
https://doi.org/10.1371/journal.pone.0151587 pmid: 26983033
18 NJ Stone, JG Robinson, AH Lichtenstein, CN Bairey Merz, CB Blum, RH Eckel, AC Goldberg, D Gordon, D Levy, DM Lloyd-Jones, P McBride, JS Schwartz, ST Shero, SC Smith Jr, K Watson, PW; American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Wilson 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014; 63: 2889–2934
https://doi.org/10.1016/j.jacc.2013.11.002 pmid: 24239923
19 HS Kim, H Lee, B Park, S Park, H Kim, SH Lee, JH Cho, KH Yoon, BY Cha, JH Kim, IY Choi. Comparative analysis of the efficacy of low- and moderate-intensity statins in Korea. Int J Clin Pharmacol Ther 2016; 54(11): 864–871
https://doi.org/10.5414/CP202332 pmid: 27487366
20 AS Levey, JP Bosch, JB Lewis, T Greene, N Rogers, D Roth; Modification of Diet in Renal Disease Study Group. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med 1999; 130(6): 461–470
https://doi.org/10.7326/0003-4819-130-6-199903160-00002 pmid: 10075613
21 National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002; 39: S1–S266
pmid: 11904577
22 Centers for Disease Control and Prevention. Public health and aging: trends in aging—United States and worldwide. JAMA 2003; 289(11): 1371–1373
https://doi.org/10.1001/jama.289.11.1371 pmid: 12636453
23 HB Chae, SY Lee, NH Kim, KJ Han, TH Lee, CM Jang, KM Yoo, HJ Park, MK Lee, WS Jeon, SE Park, HS Moon, CY Park, WY Lee, KW Oh, SW Park, EJ Rhee. Age is the strongest effector for the relationship between estimated glomerular filtration rate and coronary artery calcification in apparently healthy Korean adults. Endocrinol Metab (Seoul) 2014; 29(3): 312–319
https://doi.org/10.3803/EnM.2014.29.3.312 pmid: 25309790
24 Q Fang, C Zou, P Zhong, F Lin, W Li, L Wang, Y Zhang, C Zheng, Y Wang, X Li, G Liang. EGFR mediates hyperlipidemia-induced renal injury via regulating inflammation and oxidative stress: the detrimental role and mechanism of EGFR activation. Oncotarget 2016; 7(17): 24361–24373
https://doi.org/10.18632/oncotarget.8222 pmid: 27014908
25 VM Campese, MK Nadim, M Epstein. Are 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors renoprotective? J Am Soc Nephrol 2005; 16(Suppl 1): S11–S17
https://doi.org/10.1681/ASN.2004110958 pmid: 15938026
26 A Verma, KM Ranganna, RS Reddy, M Verma, NF Gordon. Effect of rosuvastatin on C-reactive protein and renal function in patients with chronic kidney disease. Am J Cardiol 2005; 96(9): 1290–1292
https://doi.org/10.1016/j.amjcard.2005.06.074 pmid: 16253600
27 G Yasuda, T Kuji, K Hasegawa, N Ogawa, G Shimura, D Ando, S Umemura. Safety and efficacy of fluvastatin in hyperlipidemic patients with chronic renal disease. Ren Fail 2004; 26(4): 411–418
https://doi.org/10.1081/JDI-120039826 pmid: 15462110
28 F Gueler, S Rong, JK Park, A Fiebeler, J Menne, M Elger, DN Mueller, F Hampich, R Dechend, U Kunter, FC Luft, H Haller. Postischemic acute renal failure is reduced by short-term statin treatment in a rat model. J Am Soc Nephrol 2002; 13(9): 2288–2298
https://doi.org/10.1097/01.ASN.0000026609.45827.3D pmid: 12191973
29 S Sharyo, N Yokota-Ikeda, M Mori, K Kumagai, K Uchida, K Ito, MJ Burne-Taney, H Rabb, M Ikeda. Pravastatin improves renal ischemia-reperfusion injury by inhibiting the mevalonate pathway. Kidney Int 2008; 74(5): 577–584
https://doi.org/10.1038/ki.2008.210 pmid: 18509318
30 C Quintavalle, D Fiore, F De Micco, G Visconti, A Focaccio, B Golia, B Ricciardelli, E Donnarumma, A Bianco, MA Zabatta, G Troncone, A Colombo, C Briguori, G Condorelli. Impact of a high loading dose of atorvastatin on contrast-induced acute kidney injury. Circulation 2012; 126(25): 3008–3016
https://doi.org/10.1161/CIRCULATIONAHA.112.103317 pmid: 23147173
31 J Shepherd, JJ Kastelein, V Bittner, P Deedwania, A Breazna, S Dobson, DJ Wilson, A Zuckerman, NK; Treating to New Targets Investigators Wenger. Effect of intensive lipid lowering with atorvastatin on renal function in patients with coronary heart disease: the Treating to New Targets (TNT) study. Clin J Am Soc Nephrol 2007; 2(6): 1131–1139
https://doi.org/10.2215/CJN.04371206 pmid: 17942759
32 H Nakamura, K Mizuno, Y Ohashi, T Yoshida, K Hirao, Y; MEGA Study Group. Uchida Pravastatin and cardiovascular risk in moderate chronic kidney disease. Atherosclerosis 2009; 206(2): 512–517
https://doi.org/10.1016/j.atherosclerosis.2009.03.031 pmid: 19423108
33 H Kaneko, J Yajima, Y Oikawa, S Tanaka, D Fukamachi, S Suzuki, K Sagara, T Otsuka, S Matsuno, R Funada, H Kano, T Uejima, A Koike, K Nagashima, H Kirigaya, H Sawada, T Aizawa, T Yamashita. Effects of statin treatment in patients with coronary artery disease and chronic kidney disease. Heart Vessels 2014; 29(1): 21–28
https://doi.org/10.1007/s00380-013-0325-2 pmid: 23430269
34 S Shah, J Paparello, FR Danesh. Effects of statin therapy on the progression of chronic kidney disease. Adv Chronic Kidney Dis 2005; 12(2): 187–195
https://doi.org/10.1053/j.ackd.2005.01.007 pmid: 15822054
35 SL Seliger, NS Weiss, DL Gillen, B Kestenbaum, A Ball, DJ Sherrard, CO Stehman-Breen. HMG-CoA reductase inhibitors are associated with reduced mortality in ESRD patients. Kidney Int 2002; 61(1): 297–304
https://doi.org/10.1046/j.1523-1755.2002.00109.x pmid: 11786112
36 T Sakaeda, K Kadoyama, Y Okuno. Statin-associated muscular and renal adverse events: data mining of the public version of the FDA adverse event reporting system. PLoS One 2011; 6(12): e28124
https://doi.org/10.1371/journal.pone.0028124 pmid: 22205938
37 D de Zeeuw, DA Anzalone, VA Cain, MD Cressman, HJ Heerspink, BA Molitoris, JT Monyak, HH Parving, G Remuzzi, JR Sowers, DG Vidt. Renal effects of atorvastatin and rosuvastatin in patients with diabetes who have progressive renal disease (PLANET I): a randomised clinical trial. Lancet Diabetes Endocrinol 2015; 3(3): 181–190
https://doi.org/10.1016/S2213-8587(14)70246-3 pmid: 25660356
38 MA Albert, RJ Glynn, FA Fonseca, AJ Lorenzatti, KC Ferdinand, JG MacFadyen, PM Ridker. Race, ethnicity, and the efficacy of rosuvastatin in primary prevention: the Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial. Am Heart J 2011; 162(1): 106–14.e2
https://doi.org/10.1016/j.ahj.2011.03.032 pmid: 21742096
39 JE Kwon, Y Kim, S Hyun, H Won, SY Shin, KJ Lee, SW Kim, TH Kim, CJ Kim. Cholesterol lowering effects of low-dose statins in Korean patients. J Lipid Atheroscler 2014; 3(1): 21–28 (in Korean)
https://doi.org/10.12997/jla.2014.3.1.21
40 M Kim, HK Kim, Y Ahn, H Park, MH Jeong, JG Cho, JC Park, YJ Kim, MC Cho, CJ Kim. Comparing high-intensity versus low-to moderate-intensity statin therapy in Korean patients with acute myocardial infarction. J Lipid Atheroscler 2014; 3(2): 97–104 (in Korean)
https://doi.org/10.12997/jla.2014.3.2.97
41 HS Kim, H Kim, YJ Jeong, TM Kim, SJ Yang, SJ Baik, SH Lee, JH Cho, IY Choi, KH Yoon. Development of clinical data mart of HMG-CoA r(HMG-CoA) Reductase inhibitor for varied clinical research. Endocrinol Metab (Seoul) 2017; 32(1): 90–98
https://doi.org/10.3803/EnM.2017.32.1.90 pmid: 28256114
42 KW Cho, SM Kim, CH An, YM Chae. Diffusion of electronic medical record based public hospital information systems. Healthc Inform Res 2015; 21(3): 175–183
https://doi.org/10.4258/hir.2015.21.3.175 pmid: 26279954
[1] Rui Hou, Hongmin Zhang, Huan Chen, Yuankai Zhou, Yun Long, Dawei Liu. Total pancreatic necrosis after organophosphate intoxication[J]. Front. Med., 2019, 13(2): 285-288.
[2] Kyung Im Kim, Sohyun Jeong, Nayoung Han, Jung Mi Oh, Kook-Hwan Oh, In-Wha Kim. Identification of differentially expressed miRNAs associated with chronic kidney disease–mineral bone disorder[J]. Front. Med., 2017, 11(3): 378-385.
[3] Wei Zhuo, Yang Chen, Xiaomin Song, Yongzhang Luo. Endostatin specifically targets both tumor blood vessels and lymphatic vessels[J]. Front Med, 2011, 5(4): 336-340.
[4] Liu LIU MD, PhD, Yaogui NING MM, Chen CHEN MD, Daowen WANG MD, PhD, . Effect of atorvastatin on tumor growth and metastasis in a breast cancer cell xenograft model and its mechanism[J]. Front. Med., 2009, 3(4): 443-446.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed