Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2018, Vol. 12 Issue (4) : 426-439    https://doi.org/10.1007/s11684-018-0663-7
REVIEW |
Complex interplay between tumor microenvironment and cancer therapy
Minhong Shen, Yibin Kang()
Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
 Download: PDF(341 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Tumor microenvironment (TME) is comprised of cellular and non-cellular components that exist within and around the tumor mass. The TME is highly dynamic and its importance in different stages of cancer progression has been well recognized. A growing body of evidence suggests that TME also plays pivotal roles in cancer treatment responses. TME is significantly remodeled upon cancer therapies, and such change either enhances the responses or induces drug resistance. Given the importance of TME in tumor progression and therapy resistance, strategies that remodel TME to improve therapeutic responses are under developing. In this review, we provide an overview of the essential components in TME and the remodeling of TME in response to anti-cancer treatments. We also summarize the strategies that aim to enhance therapeutic efficacy by modulating TME.

Keywords tumor microenvironment      therapy response      treatment resistance     
Corresponding Authors: Yibin Kang   
Just Accepted Date: 10 July 2018   Online First Date: 10 August 2018    Issue Date: 03 September 2018
 Cite this article:   
Minhong Shen,Yibin Kang. Complex interplay between tumor microenvironment and cancer therapy[J]. Front. Med., 2018, 12(4): 426-439.
 URL:  
http://academic.hep.com.cn/fmd/EN/10.1007/s11684-018-0663-7
http://academic.hep.com.cn/fmd/EN/Y2018/V12/I4/426
Fig.1  TME components that regulate tumor progression. Schematic illustration of the major cellular and non-cellular components of TME that either promote (pink arrows) or inhibit (green “T” shapes) tumor progression. ECM, extracellular matrix; MDSC, myeloid derived suppressor cell; TAM, tumor-associated macrophage; Treg, regulatory T cell; CTL, cytotoxic T lymphocyte; NK, natural killer cell; CAF, cancer-associated fibroblast; TEC, tumor-associated endothelial cell; Th, CD4+ T helper lymphocyte; TIDC, tumor-infiltrating dendritic cell; TAN, tumor-associated neutrophil; TIL B, tumor-infiltrating lymphocyte B cell.
Fig.2  Treatment-induced TME remodeling that inhibits tumor progression or promotes treatment resistance. Top: treatment-induced TME remodeling with tumor inhibitory effect: chemo-/radio- and some target therapies could increase CTL and NK cell infiltration or activities, and decrease MDSC number in TME; targeted therapy could downregulate Tregs and the expression of PD-L1 in TME; hormone therapy could modulate ECM by reducing MMP9 and collagen; and all three therapies could increase immunostimulatory cytokines in the TME. Bottom: TME remodeling-induced treatment resistance: chemo/radiotherapy could upregulate WNT and Notch signaling in tumor cells by increasing WNT16B secretion from CAF, or Jagged1 expression in MSC and osteoblasts; chemo/radiotherapy could also disrupt vessels to induce hypoxia; all three therapies could recruit more TAM into TME; and hormone therapy could increase expression of resistant-promoting cytokines, such as IL-1b. MSC, mesenchymal stem cell.
Fig.3  Modulating TME to improve therapeutic responses. Immune-related strategies, such as immune checkpoint blockade, oncolytic virus, and oncolytic virus or vaccine based TAA delivery, could remodel TME by enhancing the activity of effector T cells, such as CTL, decreasing the activity of Tregs, and increasing tumor killing cytokines, such as INF-γ and TNF-α. Nanoparticles could modulate TME by disrupting or remodeling vessel growth to inhibit tumor growth or enhance drug delivery respectively. Nanoparticles could also target CAFs to decrease Wnt16 secretion. Moreover, nanoparticles conjugated with recombinant human hyaluronidase PH20 could digest ECM to improve drug delivery and reduce hypoxia. Other strategies such as nanoparticles loaded with laminin-mimic peptide could also mimic and reinforce ECM to prevent dissemination of tumor cells. TAA, tumor-associated antigen; NPs, nanoparticles.
1 Fukumura D, Jain RK. Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem 2007; 101(4): 937–949
https://doi.org/10.1002/jcb.21187 pmid: 17171643
2 Justus CR, Dong L, Yang LV. Acidic tumor microenvironment and pH-sensing G protein-coupled receptors. Front Physiol 2013; 4: 354
https://doi.org/10.3389/fphys.2013.00354 pmid: 24367336
3 Justus CR, Sanderlin EJ, Yang LV. Molecular connections between cancer cell metabolism and the tumor microenvironment. Int J Mol Sci 2015; 16(5): 11055–11086
https://doi.org/10.3390/ijms160511055 pmid: 25988385
4 Lin CS, Lee HT, Lee MH, Pan SC, Ke CY, Chiu AW, Wei YH. Role of mitochondrial DNA copy number alteration in human renal cell carcinoma. Int J Mol Sci 2016; 17(6): E814
https://doi.org/10.3390/ijms17060814 pmid: 27231905
5 Ruella M, Klichinsky M, Kenderian SS, Shestova O, Ziober A, Kraft DO, Feldman M, Wasik MA, June CH, Gill S. Overcoming the immunosuppressive tumor microenvironment of Hodgkin lymphoma using chimeric antigen receptor T cells. Cancer Discov 2017; 7(10): 1154–1167
https://doi.org/10.1158/2159-8290.CD-16-0850 pmid: 28576927
6 Liu Q, Liao Q, Zhao Y. Chemotherapy and tumor microenvironment of pancreatic cancer. Cancer Cell Int 2017; 17(1): 68
https://doi.org/10.1186/s12935-017-0437-3 pmid: 28694739
7 Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 2012; 12(12): 860–875
https://doi.org/10.1038/nrc3380 pmid: 23151605
8 Ito K, Hamamichi S, Abe T, Akagi T, Shirota H, Kawano S, Asano M, Asano O, Yokoi A, Matsui J, Umeda IO, Fujii H. Antitumor effects of eribulin depend on modulation of the tumor microenvironment by vascular remodeling in mouse models. Cancer Sci 2017; 108(11): 2273–2280
https://doi.org/10.1111/cas.13392 pmid: 28869796
9 Grantab R, Sivananthan S, Tannock IF. The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells. Cancer Res 2006; 66(2): 1033–1039
https://doi.org/10.1158/0008-5472.CAN-05-3077 pmid: 16424039
10 Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res 2000; 60(9): 2497–2503
pmid: 10811131
11 Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett 2017; 387: 61–68
pmid: 26845449
12 Chen Q, Liu G, Liu S, Su H, Wang Y, Li J, Luo C. Remodeling the tumor microenvironment with emerging nanotherapeutics. Trends Pharmacol Sci 2018; 39(1): 59–74
https://doi.org/10.1016/j.tips.2017.10.009 pmid: 29153879
13 Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene 2008; 27(45): 5904–5912
https://doi.org/10.1038/onc.2008.271 pmid: 18836471
14 Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer 2011; 105(1): 93–103
https://doi.org/10.1038/bjc.2011.189 pmid: 21629244
15 Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012; 12(4): 298–306
https://doi.org/10.1038/nrc3245 pmid: 22419253
16 Guerra N, Tan YX, Joncker NT, Choy A, Gallardo F, Xiong N, Knoblaugh S, Cado D, Greenberg NM, Raulet DH. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 2008; 28(4): 571–580
https://doi.org/10.1016/j.immuni.2008.02.016 pmid: 18394936
17 Coca S, Perez-Piqueras J, Martinez D, Colmenarejo A, Saez MA, Vallejo C, Martos JA, Moreno M. The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer 1997; 79(12): 2320–2328
https://doi.org/10.1002/(SICI)1097-0142(19970615)79:12<2320::AID-CNCR5>3.0.CO;2-P pmid: 9191519
18 Villegas FR, Coca S, Villarrubia VG, Jiménez R, Chillón MJ, Jareño J, Zuil M, Callol L. Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer 2002; 35(1): 23–28
https://doi.org/10.1016/S0169-5002(01)00292-6 pmid: 11750709
19 Taketomi A, Shimada M, Shirabe K, Kajiyama K, Gion T, Sugimachi K. Natural killer cell activity in patients with hepatocellular carcinoma: a new prognostic indicator after hepatectomy. Cancer 1998; 83(1): 58–63
https://doi.org/10.1002/(SICI)1097-0142(19980701)83:1<58::AID-CNCR8>3.0.CO;2-A pmid: 9655293
20 Ishigami S, Natsugoe S, Tokuda K, Nakajo A, Che X, Iwashige H, Aridome K, Hokita S, Aikou T. Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer 2000; 88(3): 577–583
https://doi.org/10.1002/(SICI)1097-0142(20000201)88:3<577::AID-CNCR13>3.0.CO;2-V pmid: 10649250
21 Takeuchi H, Maehara Y, Tokunaga E, Koga T, Kakeji Y, Sugimachi K. Prognostic significance of natural killer cell activity in patients with gastric carcinoma: a multivariate analysis. Am J Gastroenterol 2001; 96(2): 574–578
https://doi.org/10.1111/j.1572-0241.2001.03535.x pmid: 11232710
22 Larsen SK, Gao Y, Basse PH. NK cells in the tumor microenvironment. Crit Rev Oncog 2014; 19(1-2): 91–105
https://doi.org/10.1615/CritRevOncog.2014011142 pmid: 24941376
23 Shang B, Liu Y, Jiang SJ, Liu Y. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep 2015; 5(1): 15179
https://doi.org/10.1038/srep15179 pmid: 26462617
24 Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 1999; 163(10): 5211–5218
pmid: 10553041
25 Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody. Cancer Res 1999; 59(13): 3128–3133
pmid: 10397255
26 Yamaguchi T, Sakaguchi S. Regulatory T cells in immune surveillance and treatment of cancer. Semin Cancer Biol 2006; 16(2): 115–123
https://doi.org/10.1016/j.semcancer.2005.11.005 pmid: 16376102
27 Campbell DJ, Koch MA. Treg cells: patrolling a dangerous neighborhood. Nat Med 2011; 17(8): 929–930
https://doi.org/10.1038/nm.2433 pmid: 21818088
28 Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013; 19(11): 1423–1437
https://doi.org/10.1038/nm.3394 pmid: 24202395
29 Chen Y, Zhang S, Wang Q, Zhang X. Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein. J Hematol Oncol 2017; 10(1): 36
https://doi.org/10.1186/s13045-017-0408-0 pmid: 28143526
30 Yang L, Wang F, Wang L, Huang L, Wang J, Zhang B, Zhang Y. CD163+ tumor-associated macrophage is a prognostic biomarker and is associated with therapeutic effect on malignant pleural effusion of lung cancer patients. Oncotarget 2015; 6(12): 10592–10603
https://doi.org/10.18632/oncotarget.3547 pmid: 25871392
31 Shigeoka M, Urakawa N, Nakamura T, Nishio M, Watajima T, Kuroda D, Komori T, Kakeji Y, Semba S, Yokozaki H. Tumor associated macrophage expressing CD204 is associated with tumor aggressiveness of esophageal squamous cell carcinoma. Cancer Sci 2013; 104(8): 1112–1119
https://doi.org/10.1111/cas.12188 pmid: 23648122
32 Kim KJ, Wen XY, Yang HK, Kim WH, Kang GH. Prognostic implication of M2 macrophages are determined by the proportional balance of tumor associated macrophages and tumor infiltrating lymphocytes in microsatellite-unstable gastric carcinoma. PLoS One 2015; 10(12): e0144192
https://doi.org/10.1371/journal.pone.0144192 pmid: 26714314
33 Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, Taniguchi K, Yu GY, Osterreicher CH, Hung KE, Datz C, Feng Y, Fearon ER, Oukka M, Tessarollo L, Coppola V, Yarovinsky F, Cheroutre H, Eckmann L, Trinchieri G, Karin M. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 2012; 491(7423): 254–258
https://doi.org/10.1038/nature11465 pmid: 23034650
34 Greten FR, Karin M. The IKK/NF-κB activation pathway—a target for prevention and treatment of cancer. Cancer Lett 2004; 206(2): 193–199
https://doi.org/10.1016/j.canlet.2003.08.029 pmid: 15013524
35 Kong L, Zhou Y, Bu H, Lv T, Shi Y, Yang J. Deletion of interleukin-6 in monocytes/macrophages suppresses the initiation of hepatocellular carcinoma in mice. J Exp Clin Cancer Res 2016; 35(1): 131
https://doi.org/10.1186/s13046-016-0412-1 pmid: 27589954
36 Ueha S, Shand FH, Matsushima K. Myeloid cell population dynamics in healthy and tumor-bearing mice. Int Immunopharmacol 2011; 11(7): 783–788
https://doi.org/10.1016/j.intimp.2011.03.003 pmid: 21406269
37 Damuzzo V, Pinton L, Desantis G, Solito S, Marigo I, Bronte V, Mandruzzato S. Complexity and challenges in defining myeloid-derived suppressor cells. Cytometry B Clin Cytom 2015; 88(2): 77–91
https://doi.org/10.1002/cytob.21206 pmid: 25504825
38 Hossain F, Al-Khami AA, Wyczechowska D, Hernandez C, Zheng L, Reiss K, Valle LD, Trillo-Tinoco J, Maj T, Zou W, Rodriguez PC, Ochoa AC. Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol Res 2015; 3(11): 1236–1247
https://doi.org/10.1158/2326-6066.CIR-15-0036 pmid: 26025381
39 Xing F, Saidou J, Watabe K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci (Landmark Ed) 2011; 15:166–179
pmid: 20036813
40 Grum-Schwensen B, Klingelhofer J, Berg CH, El-Naaman C, Grigorian M, Lukanidin E, Ambartsumian N. Suppression of tumor development and metastasis formation in mice lacking the S100A4(mts1) gene. Cancer Res 2005; 65(9): 3772–3780
https://doi.org/10.1158/0008-5472.CAN-04-4510 pmid: 15867373
41 Goh PP, Sze DM, Roufogalis BD. Molecular and cellular regulators of cancer angiogenesis. Curr Cancer Drug Targets 2007; 7(8): 743–758
https://doi.org/10.2174/156800907783220462 pmid: 18220534
42 Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005; 121(3): 335–348
https://doi.org/10.1016/j.cell.2005.02.034 pmid: 15882617
43 Li G, Satyamoorthy K, Meier F, Berking C, Bogenrieder T, Herlyn M. Function and regulation of melanoma-stromal fibroblast interactions: when seeds meet soil. Oncogene 2003; 22(20): 3162–3171
https://doi.org/10.1038/sj.onc.1206455 pmid: 12789292
44 Cunha GR, Hayward SW, Wang YZ. Role of stroma in carcinogenesis of the prostate. Differentiation 2002; 70(9-10): 473–485
https://doi.org/10.1046/j.1432-0436.2002.700902.x pmid: 12492490
45 Bindra RS, Glazer PM. Genetic instability and the tumor microenvironment: towards the concept of microenvironment-induced mutagenesis. Mutat Res 2005; 569(1-2): 75–85
https://doi.org/10.1016/j.mrfmmm.2004.03.013 pmid: 15603753
46 Yuan J, Glazer PM. Mutagenesis induced by the tumor microenvironment. Mutat Res 1998; 400(1-2): 439–446
https://doi.org/10.1016/S0027-5107(98)00042-6 pmid: 9685702
47 Koukourakis MI, Giatromanolaki A, Harris AL, Sivridis E. Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res 2006; 66(2): 632–637
https://doi.org/10.1158/0008-5472.CAN-05-3260 pmid: 16423989
48 Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420(6917): 860–867
https://doi.org/10.1038/nature01322 pmid: 12490959
49 Camps JL, Chang SM, Hsu TC, Freeman MR, Hong SJ, Zhau HE, von Eschenbach AC, Chung LW. Fibroblast-mediated acceleration of human epithelial tumor growth in vivo. Proc Natl Acad Sci USA 1990; 87(1): 75–79
https://doi.org/10.1073/pnas.87.1.75 pmid: 2296606
50 Imai K. Matrix metalloproteinases and cancer cell invasion and metastasis. Tanpakushitsu Kakusan Koso 1997; 42(10 Suppl): 1694–1700 (in Japanese)
pmid: 9279101
51 Akino T, Hida K, Hida Y, Tsuchiya K, Freedman D, Muraki C, Ohga N, Matsuda K, Akiyama K, Harabayashi T, Shinohara N, Nonomura K, Klagsbrun M, Shindoh M. Cytogenetic abnormalities of tumor-associated endothelial cells in human malignant tumors. Am J Pathol 2009; 175(6): 2657–2667
https://doi.org/10.2353/ajpath.2009.090202 pmid: 19875502
52 Amin DN, Hida K, Bielenberg DR, Klagsbrun M. Tumor endothelial cells express epidermal growth factor receptor (EGFR) but not ErbB3 and are responsive to EGF and to EGFR kinase inhibitors. Cancer Res 2006; 66(4): 2173–2180
https://doi.org/10.1158/0008-5472.CAN-05-3387 pmid: 16489018
53 Tsuchiya K, Hida K, Hida Y, Muraki C, Ohga N, Akino T, Kondo T, Miseki T, Nakagawa K, Shindoh M, Harabayashi T, Shinohara N, Nonomura K, Kobayashi M. Adrenomedullin antagonist suppresses tumor formation in renal cell carcinoma through inhibitory effects on tumor endothelial cells and endothelial progenitor mobilization. Int J Oncol 2010; 36(6): 1379–1386
pmid: 20428760
54 Matsuda K, Ohga N, Hida Y, Muraki C, Tsuchiya K, Kurosu T, Akino T, Shih SC, Totsuka Y, Klagsbrun M, Shindoh M, Hida K. Isolated tumor endothelial cells maintain specific character during long-term culture. Biochem Biophys Res Commun 2010; 394(4): 947–954
https://doi.org/10.1016/j.bbrc.2010.03.089 pmid: 20302845
55 Maishi N, Ohba Y, Akiyama K, Ohga N, Hamada J, Nagao-Kitamoto H, Alam MT, Yamamoto K, Kawamoto T, Inoue N, Taketomi A, Shindoh M, Hida Y, Hida K. Tumour endothelial cells in high metastatic tumours promote metastasis via epigenetic dysregulation of biglycan. Sci Rep 2016; 6(1): 28039
https://doi.org/10.1038/srep28039 pmid: 27295191
56 Knutson KL, Disis ML. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 2005; 54(8): 721–728
https://doi.org/10.1007/s00262-004-0653-2 pmid: 16010587
57 Yoon NK, Maresh EL, Shen D, Elshimali Y, Apple S, Horvath S, Mah V, Bose S, Chia D, Chang HR, Goodglick L. Higher levels of GATA3 predict better survival in women with breast cancer. Hum Pathol 2010; 41(12): 1794–1801
https://doi.org/10.1016/j.humpath.2010.06.010 pmid: 21078439
58 Erdag G, Schaefer JT, Smolkin ME, Deacon DH, Shea SM, Dengel LT, Patterson JW, Slingluff CL Jr. Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Cancer Res 2012; 72(5): 1070–1080
https://doi.org/10.1158/0008-5472.CAN-11-3218 pmid: 22266112
59 Nedergaard BS, Ladekarl M, Nyengaard JR, Nielsen K. A comparative study of the cellular immune response in patients with stage IB cervical squamous cell carcinoma. Low numbers of several immune cell subtypes are strongly associated with relapse of disease within 5 years. Gynecol Oncol 2008; 108(1): 106–111
https://doi.org/10.1016/j.ygyno.2007.08.089 pmid: 17945335
60 Riemann D, Wenzel K, Schulz T, Hofmann S, Neef H, Lautenschläger C, Langner J. Phenotypic analysis of T lymphocytes isolated from non-small-cell lung cancer. Int Arch Allergy Immunol 1997; 114(1): 38–45
https://doi.org/10.1159/000237640 pmid: 9303329
61 Al-Shibli KI, Donnem T, Al-Saad S, Persson M, Bremnes RM, Busund LT. Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin Cancer Res 2008; 14(16): 5220–5227
https://doi.org/10.1158/1078-0432.CCR-08-0133 pmid: 18698040
62 Andreu P, Johansson M, Affara NI, Pucci F, Tan T, Junankar S, Korets L, Lam J, Tawfik D, DeNardo DG, Naldini L, de Visser KE, De Palma M, Coussens LM. FcRγ activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 2010; 17(2): 121–134
https://doi.org/10.1016/j.ccr.2009.12.019 pmid: 20138013
63 de Visser KE, Korets LV, Coussens LM. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 2005; 7(5): 411–423
https://doi.org/10.1016/j.ccr.2005.04.014 pmid: 15894262
64 Yuen GJ, Demissie E, Pillai S. B lymphocytes and cancer: a love-hate relationship. Trends Cancer 2016; 2(12): 747–757
https://doi.org/10.1016/j.trecan.2016.10.010 pmid: 28626801
65 Ammirante M, Luo JL, Grivennikov S, Nedospasov S, Karin M. B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 2010; 464(7286): 302–305
https://doi.org/10.1038/nature08782 pmid: 20220849
66 Luo JL, Tan W, Ricono JM, Korchynskyi O, Zhang M, Gonias SL, Cheresh DA, Karin M. Nuclear cytokine-activated IKKα controls prostate cancer metastasis by repressing Maspin. Nature 2007; 446(7136): 690–694
https://doi.org/10.1038/nature05656 pmid: 17377533
67 Woo JR, Liss MA, Muldong MT, Palazzi K, Strasner A, Ammirante M, Varki N, Shabaik A, Howell S, Kane CJ, Karin M, Jamieson CA. Tumor infiltrating B-cells are increased in prostate cancer tissue. J Transl Med 2014; 12(1): 30
https://doi.org/10.1186/1479-5876-12-30 pmid: 24475900
68 Ou Z, Wang Y, Liu L, Li L, Yeh S, Qi L, Chang C. Tumor microenvironment B cells increase bladder cancer metastasis via modulation of the IL-8/androgen receptor (AR)/MMPs signals. Oncotarget 2015; 6(28): 26065–26078
https://doi.org/10.18632/oncotarget.4569 pmid: 26305549
69 Rossi M, Young JW. Human dendritic cells: potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J Immunol 2005; 175(3): 1373–1381
https://doi.org/10.4049/jimmunol.175.3.1373 pmid: 16034072
70 Tran Janco JM, Lamichhane P, Karyampudi L, Knutson KL. Tumor-infiltrating dendritic cells in cancer pathogenesis. J Immunol 2015; 194(7): 2985–2991
https://doi.org/10.4049/jimmunol.1403134 pmid: 25795789
71 Ma Y, Shurin GV, Peiyuan Z, Shurin MR. Dendritic cells in the cancer microenvironment. J Cancer 2013; 4(1): 36–44
https://doi.org/10.7150/jca.5046 pmid: 23386903
72 Jochems C, Schlom J. Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity. Exp Biol Med (Maywood) 2011; 236(5): 567–579
https://doi.org/10.1258/ebm.2011.011007 pmid: 21486861
73 Bekes EM, Schweighofer B, Kupriyanova TA, Zajac E, Ardi VC, Quigley JP, Deryugina EI. Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. Am J Pathol 2011; 179(3): 1455–1470
https://doi.org/10.1016/j.ajpath.2011.05.031 pmid: 21741942
74 Eruslanov EB, Bhojnagarwala PS, Quatromoni JG, Stephen TL, Ranganathan A, Deshpande C, Akimova T, Vachani A, Litzky L, Hancock WW, Conejo-Garcia JR, Feldman M, Albelda SM, Singhal S. Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. J Clin Invest 2014; 124(12): 5466–5480
https://doi.org/10.1172/JCI77053 pmid: 25384214
75 Armulik A, Genové G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 2011; 21(2): 193–215
https://doi.org/10.1016/j.devcel.2011.07.001 pmid: 21839917
76 O’Keeffe MB, Devlin AH, Burns AJ, Gardiner TA, Logan ID, Hirst DG, McKeown SR. Investigation of pericytes, hypoxia, and vascularity in bladder tumors: association with clinical outcomes. Oncol Res 2008; 17(3): 93–101
https://doi.org/10.3727/096504008785055530 pmid: 18669161
77 Gee MS, Procopio WN, Makonnen S, Feldman MD, Yeilding NM, Lee WM. Tumor vessel development and maturation impose limits on the effectiveness of anti-vascular therapy. Am J Pathol 2003; 162(1): 183–193
https://doi.org/10.1016/S0002-9440(10)63809-6 pmid: 12507901
78 Yonenaga Y, Mori A, Onodera H, Yasuda S, Oe H, Fujimoto A, Tachibana T, Imamura M. Absence of smooth muscle actin-positive pericyte coverage of tumor vessels correlates with hematogenous metastasis and prognosis of colorectal cancer patients. Oncology 2005; 69(2): 159–166
https://doi.org/10.1159/000087840 pmid: 16127287
79 Sennino B, Falcón BL, McCauley D, Le T, McCauley T, Kurz JC, Haskell A, Epstein DM, McDonald DM. Sequential loss of tumor vessel pericytes and endothelial cells after inhibition of platelet-derived growth factor B by selective aptamer AX102. Cancer Res 2007; 67(15): 7358–7367
https://doi.org/10.1158/0008-5472.CAN-07-0293 pmid: 17671206
80 Cooke VG, LeBleu VS, Keskin D, Khan Z, O’Connell JT, Teng Y, Duncan MB, Xie L, Maeda G, Vong S, Sugimoto H, Rocha RM, Damascena A, Brentani RR, Kalluri R. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell 2012; 21(1): 66–81
https://doi.org/10.1016/j.ccr.2011.11.024 pmid: 22264789
81 Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 2012; 196(4): 395–406
https://doi.org/10.1083/jcb.201102147 pmid: 22351925
82 Naba A, Clauser KR, Lamar JM, Carr SA, Hynes RO. Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters. eLife 2014; 3e01308
https://doi.org/10.7554/eLife.01308
83 Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA, Celià-Terrassa T, Mercatali L, Khan Z, Goodarzi H, Hua Y, Wei Y, Hu G, Garcia BA, Ragoussis J, Amadori D, Harris AL, Kang Y. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med 2011; 17(9): 1101–1108
https://doi.org/10.1038/nm.2401 pmid: 21822286
84 Andrén-Sandberg A. Pancreatic cancer: chemotherapy and radiotherapy. N Am J Med Sci 2011; 3(1): 1–12
https://doi.org/10.4297/najms.2011.31 pmid: 22540056
85 O’Reilly EA, Gubbins L, Sharma S, Tully R, Guang MH, Weiner-Gorzel K, McCaffrey J, Harrison M, Furlong F, Kell M, McCann A. The fate of chemoresistance in triple negative breast cancer (TNBC). BBA Clin 2015; 3: 257–275
https://doi.org/10.1016/j.bbacli.2015.03.003 pmid: 26676166
86 Sun Y, Campisi J, Higano C, Beer TM, Porter P, Coleman I, True L, Nelson PS. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med 2012; 18(9): 1359–1368
https://doi.org/10.1038/nm.2890 pmid: 22863786
87 DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, Rugo HS, Hwang ES, Jirström K, West BL, Coussens LM. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 2011; 1(1): 54–67
https://doi.org/10.1158/2159-8274.CD-10-0028 pmid: 22039576
88 Ruffell B, Coussens LM. Macrophages and therapeutic resistance in cancer. Cancer Cell 2015; 27(4): 462–472
https://doi.org/10.1016/j.ccell.2015.02.015 pmid: 25858805
89 Takeuchi S, Baghdadi M, Tsuchikawa T, Wada H, Nakamura T, Abe H, Nakanishi S, Usui Y, Higuchi K, Takahashi M, Inoko K, Sato S, Takano H, Shichinohe T, Seino K, Hirano S. Chemotherapy-derived inflammatory responses accelerate the formation of immunosuppressive myeloid cells in the tissue microenvironment of human pancreatic cancer. Cancer Res 2015; 75(13): 2629–2640
https://doi.org/10.1158/0008-5472.CAN-14-2921 pmid: 25952647
90 Zheng H, Bae Y, Kasimir-Bauer S, Tang R, Chen J, Ren G, Yuan M, Esposito M, Li W, Wei Y, Shen M, Zhang L, Tupitsyn N, Pantel K, King C, Sun J, Moriguchi J, Jun HT, Coxon A, Lee B, Kang Y. Therapeutic antibody targeting tumor- and osteoblastic niche-derived jagged1 sensitizes bone metastasis to chemotherapy. Cancer Cell 2017; 32(6): 731–747.e736
https://doi.org/10.1016/j.ccell.2017.11.002
91 Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, Haimovitz-Friedman A, Cordon-Cardo C, Kolesnick R. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 2001; 293(5528): 293–297
https://doi.org/10.1126/science.1060191 pmid: 11452123
92 Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer 2015; 15(7): 409–425
https://doi.org/10.1038/nrc3958 pmid: 26105538
93 Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 2004; 5(5): 429–441
https://doi.org/10.1016/S1535-6108(04)00115-1 pmid: 15144951
94 Laoui D, Van Overmeire E, De Baetselier P, Van Ginderachter JA, Raes G. Functional relationship between tumor-associated macrophages and macrophage colony-stimulating factor as contributors to cancer progression. Front Immunol 2014; 5: 489
https://doi.org/10.3389/fimmu.2014.00489 pmid: 25339957
95 Zhou L, Zhang X, Li H, Niu C, Yu D, Yang G, Liang X, Wen X, Li M, Cui J. Validating the pivotal role of the immune system in low-dose radiation-induced tumor inhibition in Lewis lung cancer-bearing mice. Cancer Med 2018; 7(4): 1338–1348
https://doi.org/10.1002/cam4.1344 pmid: 29479834
96 Smalley KS, Xiao M, Villanueva J, Nguyen TK, Flaherty KT, Letrero R, Van Belle P, Elder DE, Wang Y, Nathanson KL, Herlyn M. CRAF inhibition induces apoptosis in melanoma cells with non-V600E BRAF mutations. Oncogene 2009; 28(1): 85–94
https://doi.org/10.1038/onc.2008.362 pmid: 18794803
97 Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 2008; 7(10): 3129–3140
https://doi.org/10.1158/1535-7163.MCT-08-0013 pmid: 18852116
98 Sprinzl MF, Reisinger F, Puschnik A, Ringelhan M, Ackermann K, Hartmann D, Schiemann M, Weinmann A, Galle PR, Schuchmann M, Friess H, Otto G, Heikenwalder M, Protzer U. Sorafenib perpetuates cellular anticancer effector functions by modulating the crosstalk between macrophages and natural killer cells. Hepatology 2013; 57(6): 2358–2368
https://doi.org/10.1002/hep.26328 pmid: 23424039
99 Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M, Schwartz M, Divino CM, Pan PY, Chen SH. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res 2009; 69(6): 2514–2522
https://doi.org/10.1158/0008-5472.CAN-08-4709 pmid: 19276342
100 Suh KJ, Sung JH, Kim JW, Han SH, Lee HS, Min A, Kang MH, Kim JE, Kim JW, Kim SH, Lee JO, Kim YJ, Lee KW, Kim JH, Bang SM, Im SA, Lee JS. EGFR or HER2 inhibition modulates the tumor microenvironment by suppression of PD-L1 and cytokines release. Oncotarget 2017; 8(38): 63901–63910
https://doi.org/10.18632/oncotarget.19194 pmid: 28969039
101 Huang J, Wang L, Cong Z, Amoozgar Z, Kiner E, Xing D, Orsulic S, Matulonis U, Goldberg MS. The PARP1 inhibitor BMN 673 exhibits immunoregulatory effects in a Brca1(−/−) murine model of ovarian cancer. Biochem Biophys Res Commun 2015; 463(4): 551–556
https://doi.org/10.1016/j.bbrc.2015.05.083 pmid: 26047697
102 Evans T, Matulonis U. PARP inhibitors in ovarian cancer: evidence, experience and clinical potential. Ther Adv Med Oncol 2017; 9(4): 253–267
https://doi.org/10.1177/1758834016687254 pmid: 28491146
103 Fujishita T, Kojima Y, Kajino-Sakamoto R, Taketo MM, Aoki M. Tumor microenvironment confers mTOR inhibitor resistance in invasive intestinal adenocarcinoma. Oncogene 2017; 36(46): 6480–6489
https://doi.org/10.1038/onc.2017.242 pmid: 28759045
104 Jiao S, Xia W, Yamaguchi H, Wei Y, Chen MK, Hsu JM, Hsu JL, Yu WH, Du Y, Lee HH, Li CW, Chou CK, Lim SO, Chang SS, Litton J, Arun B, Hortobagyi GN, Hung MC. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clin Cancer Res 2017; 23(14): 3711–3720
https://doi.org/10.1158/1078-0432.CCR-16-3215 pmid: 28167507
105 Pander J, Heusinkveld M, van der Straaten T, Jordanova ES, Baak-Pablo R, Gelderblom H, Morreau H, van der Burg SH, Guchelaar HJ, van Hall T. Activation of tumor-promoting type 2 macrophages by EGFR-targeting antibody cetuximab. Clin Cancer Res 2011; 17(17): 5668–5673
https://doi.org/10.1158/1078-0432.CCR-11-0239 pmid: 21788356
106 Recouvreux S, Sampayo R, Bessone MI, Simian M. Microenvironment and endocrine resistance in breast cancer: friend or foe? World J Clin Oncol 2015; 6(6): 207–211
https://doi.org/10.5306/wjco.v6.i6.207 pmid: 26677432
107 Smith JA, Das A, Butler JT, Ray SK, Banik NL. Estrogen or estrogen receptor agonist inhibits lipopolysaccharide induced microglial activation and death. Neurochem Res 2011; 36(9): 1587–1593
https://doi.org/10.1007/s11064-010-0336-7 pmid: 21127968
108 Keeton EK, Brown M. Cell cycle progression stimulated by tamoxifen-bound estrogen receptor-α and promoter-specific effects in breast cancer cells deficient in N-CoR and SMRT. Mol Endocrinol 2005; 19(6): 1543–1554
https://doi.org/10.1210/me.2004-0395 pmid: 15802375
109 Escamilla J, Schokrpur S, Liu C, Priceman SJ, Moughon D, Jiang Z, Pouliot F, Magyar C, Sung JL, Xu J, Deng G, West BL, Bollag G, Fradet Y, Lacombe L, Jung ME, Huang J, Wu L. CSF1 receptor targeting in prostate cancer reverses macrophage-mediated resistance to androgen blockade therapy. Cancer Res 2015; 75(6): 950–962
https://doi.org/10.1158/0008-5472.CAN-14-0992 pmid: 25736687
110 Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell 2010; 141(1): 39–51
https://doi.org/10.1016/j.cell.2010.03.014 pmid: 20371344
111 De Palma M, Lewis CE. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 2013; 23(3): 277–286
https://doi.org/10.1016/j.ccr.2013.02.013 pmid: 23518347
112 Liu Y, Fan L, Wang Y, Li P, Zhu J, Wang L, Zhang W, Zhang Y, Huang G. Tumor-associated macrophages promote tumor cell proliferation in nasopharyngeal NK/T-cell lymphoma. Int J Clin Exp Pathol 2014; 7(9): 5429–5435
pmid: 25337185
113 Yang Y, Bai Y, He Y, Zhao Y, Chen J, Ma L, Pan Y, Hinten M, Zhang J, Karnes RJ, Kohli M, Westendorf JJ, Li B, Zhu R, Huang H, Xu W. PTEN loss promotes intratumoral androgen synthesis and tumor microenvironment remodeling via aberrant activation of RUNX2 in castration-resistant prostate cancer. Clin Cancer Res 2018; 24(4): 834–846
https://doi.org/10.1158/1078-0432.CCR-17-2006 pmid: 29167276
114 Wang D, DuBois RN. Immunosuppression associated with chronic inflammation in the tumor microenvironment. Carcinogenesis 2015; 36(10): 1085–1093
https://doi.org/10.1093/carcin/bgv123 pmid: 26354776
115 Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 2015; 27(4): 450–461
https://doi.org/10.1016/j.ccell.2015.03.001 pmid: 25858804
116 Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol 2016; 39(1): 98–106
https://doi.org/10.1097/COC.0000000000000239 pmid: 26558876
117 Chambers CA, Kuhns MS, Egen JG, Allison JP. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 2001; 19(1): 565–594
https://doi.org/10.1146/annurev.immunol.19.1.565 pmid: 11244047
118 Collins AV, Brodie DW, Gilbert RJ, Iaboni A, Manso-Sancho R, Walse B, Stuart DI, van der Merwe PA, Davis SJ. The interaction properties of costimulatory molecules revisited. Immunity 2002; 17(2): 201–210
https://doi.org/10.1016/S1074-7613(02)00362-X pmid: 12196291
119 Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, Linsley PS, Thompson CB, Riley JL. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 2005; 25(21): 9543–9553
https://doi.org/10.1128/MCB.25.21.9543-9553.2005 pmid: 16227604
120 Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008; 26(1): 677–704
https://doi.org/10.1146/annurev.immunol.26.021607.090331 pmid: 18173375
121 He J, Hu Y, Hu M, Li B. Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci Rep 2015; 5(1): 13110
https://doi.org/10.1038/srep13110 pmid: 26279307
122 Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996; 271(5256): 1734–1736
https://doi.org/10.1126/science.271.5256.1734 pmid: 8596936
123 Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol 2015; 33(17): 1974–1982
https://doi.org/10.1200/JCO.2014.59.4358 pmid: 25605845
124 Maker AV, Attia P, Rosenberg SA. Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLA-4 blockade. J Immunol 2005; 175(11): 7746–7754
https://doi.org/10.4049/jimmunol.175.11.7746 pmid: 16301685
125 Quezada SA, Peggs KS, Curran MA, Allison JP. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J Clin Invest 2006; 116(7): 1935–1945
https://doi.org/10.1172/JCI27745 pmid: 16778987
126 Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, Mak TW, Sakaguchi S. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000; 192(2): 303–310
https://doi.org/10.1084/jem.192.2.303 pmid: 10899917
127 Hodi FS, Mihm MC, Soiffer RJ, Haluska FG, Butler M, Seiden MV, Davis T, Henry-Spires R, MacRae S, Willman A, Padera R, Jaklitsch MT, Shankar S, Chen TC, Korman A, Allison JP, Dranoff G. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci USA 2003; 100(8): 4712–4717
https://doi.org/10.1073/pnas.0830997100 pmid: 12682289
128 Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, Iyer AK. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 2017; 8: 561
https://doi.org/10.3389/fphar.2017.00561 pmid: 28878676
129 Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS, Hodi FS, Martin-Algarra S, Mandal R, Sharfman WH, Bhatia S, Hwu WJ, Gajewski TF, Slingluff CL Jr, Chowell D, Kendall SMChang H, Shah R, Kuo F, Morris LGT, Sidhom JW, Schneck JP, Horak CE, Weinhold N, Chan TA. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 2017; 171(4): 934–949.e915
https://doi.org/10.1016/j.cell.2017.09.028
130 Lichty BD, Breitbach CJ, Stojdl DF, Bell JC. Going viral with cancer immunotherapy. Nat Rev Cancer 2014; 14(8): 559–567
https://doi.org/10.1038/nrc3770 pmid: 24990523
131 Mastrangelo MJ, Maguire HC Jr, Eisenlohr LC, Laughlin CE, Monken CE, McCue PA, Kovatich AJ, Lattime EC. Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther 1999; 6(5): 409–422
https://doi.org/10.1038/sj.cgt.7700066 pmid: 10505851
132 de Vries CR, Kaufman HL, Lattime EC. Oncolytic viruses: focusing on the tumor microenvironment. Cancer Gene Ther 2015; 22(4): 169–171
https://doi.org/10.1038/cgt.2015.11 pmid: 25721204
133 Park BH, Hwang T, Liu TC, Sze DY, Kim JS, Kwon HC, Oh SY, Han SY, Yoon JH, Hong SH, Moon A, Speth K, Park C, Ahn YJ, Daneshmand M, Rhee BG, Pinedo HM, Bell JC, Kirn DH. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol 2008; 9(6): 533–542
https://doi.org/10.1016/S1470-2045(08)70107-4 pmid: 18495536
134 Kaufman HL, DeRaffele G, Divito J, Hörig H, Lee D, Panicali D, Voulo M. A phase I trial of intralesional rV-Tricom vaccine in the treatment of malignant melanoma. Hum Gene Ther 2001; 12(11): 1459–1480
https://doi.org/10.1089/104303401750298616 pmid: 11485637
135 Kaufman HL, Kim DW, DeRaffele G, Mitcham J, Coffin RS, Kim-Schulze S. Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol 2010; 17(3): 718–730
https://doi.org/10.1245/s10434-009-0809-6 pmid: 19915919
136 Kudo-Saito C, Schlom J, Hodge JW. Intratumoral vaccination and diversified subcutaneous/ intratumoral vaccination with recombinant poxviruses encoding a tumor antigen and multiple costimulatory molecules. Clin Cancer Res 2004; 10(3): 1090–1099
https://doi.org/10.1158/1078-0432.CCR-03-0145 pmid: 14871989
137 de Vries CR, Monken CE, Lattime EC. The addition of recombinant vaccinia HER2/neu to oncolytic vaccinia-GMCSF given into the tumor microenvironment overcomes MDSC-mediated immune escape and systemic anergy. Cancer Gene Ther 2015; 22(3): 154–162
https://doi.org/10.1038/cgt.2015.2 pmid: 25633483
138 Gulley JL, Heery CR, Madan RA, Walter BA, Merino MJ, Dahut WL, Tsang KY, Schlom J, Pinto PA. Phase I study of intraprostatic vaccine administration in men with locally recurrent or progressive prostate cancer. Cancer Immunol Immunother 2013; 62(9): 1521–1531
https://doi.org/10.1007/s00262-013-1448-0 pmid: 23836412
139 Madan RA, Heery CR, Gulley JL. Poxviral-based vaccine elicits immunologic responses in prostate cancer patients. Oncoimmunology 2014; 3e28611
https://doi.org/DOI: 10.4161/onci.28611
140 Anassi E, Ndefo UA. Sipuleucel-T (provenge) injection: the first immunotherapy agent (vaccine) for hormone-refractory prostate cancer. P T 2011; 36(4): 197–202
pmid: 21572775
141 Ojha T, Pathak V, Shi Y, Hennink WE, Moonen CTW, Storm G, Kiessling F, Lammers T. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors. Adv Drug Deliv Rev 2017; 119: 44–60
https://doi.org/10.1016/j.addr.2017.07.007 pmid: 28697952
142 Gao W, Li S, Liu Z, Sun Y, Cao W, Tong L, Cui G, Tang B. Targeting and destroying tumor vasculature with a near-infrared laser-activated “nanobomb” for efficient tumor ablation. Biomaterials 2017; 139: 1–11
https://doi.org/10.1016/j.biomaterials.2017.05.037 pmid: 28578297
143 Kunjachan S, Detappe A, Kumar R, Ireland T, Cameron L, Biancur DE, Motto-Ros V, Sancey L, Sridhar S, Makrigiorgos GM, Berbeco RI. Nanoparticle mediated tumor vascular disruption: a novel strategy in radiation therapy. Nano Lett 2015; 15(11): 7488–7496
https://doi.org/10.1021/acs.nanolett.5b03073 pmid: 26418302
144 Miao L, Wang Y, Lin CM, Xiong Y, Chen N, Zhang L, Kim WY, Huang L. Nanoparticle modulation of the tumor microenvironment enhances therapeutic efficacy of cisplatin. J Control Release 2015; 217: 27–41
https://doi.org/10.1016/j.jconrel.2015.08.027 pmid: 26285063
145 Hu K, Miao L, Goodwin TJ, Li J, Liu Q, Huang L. Quercetin remodels the tumor microenvironment to improve the permeation, retention, and antitumor effects of nanoparticles. ACS Nano 2017; 11(5): 4916–4925
https://doi.org/10.1021/acsnano.7b01522 pmid: 28414916
146 Miao L, Liu Q, Lin CM, Luo C, Wang Y, Liu L, Yin W, Hu S, Kim WY, Huang L. Targeting tumor-associated fibroblasts for therapeutic delivery in desmoplastic tumors. Cancer Res 2017; 77(3): 719–731
https://doi.org/10.1158/0008-5472.CAN-16-0866 pmid: 27864344
147 Lee S, Han H, Koo H, Na JH, Yoon HY, Lee KE, Lee H, Kim H, Kwon IC, Kim K. Extracellular matrix remodeling in vivo for enhancing tumor-targeting efficiency of nanoparticle drug carriers using the pulsed high intensity focused ultrasound. J Control Release 2017; 263: 68–78
https://doi.org/10.1016/j.jconrel.2017.02.035 pmid: 28257990
148 Zhou H, Fan Z, Deng J, Lemons PK, Arhontoulis DC, Bowne WB, Cheng H. Hyaluronidase embedded in nanocarrier PEG shell for enhanced tumor penetration and highly efficient antitumor efficacy. Nano Lett 2016; 16(5): 3268–3277
https://doi.org/10.1021/acs.nanolett.6b00820 pmid: 27057591
149 Gong H, Chao Y, Xiang J, Han X, Song G, Feng L, Liu J, Yang G, Chen Q, Liu Z. Hyaluronidase to enhance nanoparticle-based photodynamic tumor therapy. Nano Lett 2016; 16(4): 2512–2521
https://doi.org/10.1021/acs.nanolett.6b00068 pmid: 27022664
150 Shay G, Lynch CC, Fingleton B. Moving targets: emerging roles for MMPs in cancer progression and metastasis. Matrix Biol 2015; 44– 46: 200–206
https://doi.org/10.1016/j.matbio.2015.01.019
151 Hu XX, He PP, Qi GB, Gao YJ, Lin YX, Yang C, Yang PP, Hao H, Wang L, Wang H. Transformable nanomaterials as an artificial extracellular matrix for inhibiting tumor invasion and metastasis. ACS Nano 2017; 11(4): 4086–4096
https://doi.org/10.1021/acsnano.7b00781 pmid: 28334523
[1] Qiang Gao, Yinghong Shi, Xiaoying Wang, Jian Zhou, Shuangjian Qiu, Jia Fan. Translational medicine in hepatocellular carcinoma[J]. Front Med, 2012, 6(2): 122-133.
[2] Hui QIU, Hui ZHANG, Zuohua FENG. 4-1BBL expressed by eukaryotic cells activates immune cells and suppresses the progression of murine tumor[J]. Front Med Chin, 2009, 3(1): 20-25.
[3] XU Qingwen, CHEN Weifeng. Developing effective tumor vaccines: basis, challenges and perspectives[J]. Front. Med., 2007, 1(1): 11-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed