Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2018, Vol. 12 Issue (6) : 678-687    https://doi.org/10.1007/s11684-018-0671-7
RESEARCH ARTICLE |
Type 2 diabetes is causally associated with depression: a Mendelian randomization analysis
Liping Xuan1,2,3, Zhiyun Zhao1,2,3, Xu Jia1,2,3, Yanan Hou1,2,3, Tiange Wang1,2,3, Mian Li1,2,3, Jieli Lu1,2,3, Yu Xu1,2,3, Yuhong Chen1,2,3, Lu Qi4, Weiqing Wang1,2,3, Yufang Bi1,2,3, Min Xu1,2,3()
1. State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, National Clinical Research Center for Metabolic Diseases, Collaborative Innovation Center of Systems Biomedicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
2. Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
3. Department of Endocrine and Metabolic Diseases, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
4. Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
 Download: PDF(147 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Type 2 diabetes (T2D) has been associated with a high prevalence of depression. We aimed to determine the causal relation by performing a Mendelian randomization (MR) study using 34 T2D risk genetic variants validated in East Asians as the instrumental variable (IV). An MR analysis was performed involving 11 506 participants from a large longitudinal study. The T2D genetic risk score (GRS) was built using the 34 typical T2D common variants. We used T2D_GRS as the IV estimator and performed inverse-variance weighted (IVW) and Egger MR analysis. The T2D_GRS was found to be associated with depression with an OR of 1.21 (95% CI: 1.07–1.37) after adjustments for age, sex, body mass index, current smoking and drinking, physical activity, education, and marital status. Using T2D_GRS as the IV, we similarly found a causal relationship between genetically determined T2D and depression (OR: 1.84, 95% CI: 1.25–2.70). Though we found no association between the combined effect of the genetic IVs for T2D and depression with Egger MR (OR: 0.95, 95% CI: 0.42–2.14), we found an association for T2D and depression with IVW (OR: 1.75, 95% CI: 1.31–2.46) after excluding pleiotropic SNPs. Overall, the MR analyses provide evidence inferring a potential causal relationship between T2D and depression.

Keywords causal modeling      depression      Mendelian randomization      type 2 diabetes     
Corresponding Authors: Min Xu   
Just Accepted Date: 25 October 2018   Online First Date: 16 November 2018    Issue Date: 03 December 2018
 Cite this article:   
Liping Xuan,Zhiyun Zhao,Xu Jia, et al. Type 2 diabetes is causally associated with depression: a Mendelian randomization analysis[J]. Front. Med., 2018, 12(6): 678-687.
 URL:  
http://academic.hep.com.cn/fmd/EN/10.1007/s11684-018-0671-7
http://academic.hep.com.cn/fmd/EN/Y2018/V12/I6/678
T2D_GRS P for trend
Quartile 1 Quartile 2 Quartile 3 Quartile 4
n 2878 2874 2876 2878 /
Age, year 63.2±0.3 63.4±0.3 63.3±0.3 63.2±0.3 0.92
Male, n (%) 987 (34.3) 978 (34.0) 1052 (36.6) 1073 (37.3) 0.0039
Current smoker, n (%) 396 (14.6) 389 (14.4) 412 (15.1) 438 (16.0) 0.11
Current drinker, n (%) 240 (8.8) 245 (9.1) 265 (9.8) 279 (10.2) 0.05
BMI, kg/m2 25.4±0.07 25.4±0.07 25.2±0.07 25.1±0.07 0.0004
FPG, mmol/L 5.78±0.03 5.97±0.03 6.08±0.03 6.20±0.03 <0.0001
2h PG, mmol/L 8.30±0.07 8.82±0.07 9.05±0.07 9.40±0.07 <0.0001
log10HOMA-IR 0.47±0.01 0.49±0.01 0.50±0.01 0.50±0.01 0.03
log10HOMA-β, % 4.14±0.01 4.06±0.01 4.03±0.01 3.97±0.01 <0.0001
log10TG, mmol/L 0.29±0.009 0.28±0.009 0.28±0.009 0.29±0.009 0.82
TC, mmol/L 4.92±0.02 4.94±0.02 4.95±0.02 4.96±0.02 0.31
SBP, mmHg 136.3±0.4 137.0±0.4 137.1±0.4 137.2±0.4 0.02
DBP, mmHg 77.4±0.2 77.2±0.2 77.4±0.2 76.9±0.2 0.27
Hypertension, n (%) 1680 (58.4) 1646 (57.3) 1650 (57.4) 1647 (57.3) 0.42
Diabetes, n (%) 523 (18.2) 692 (24.1) 749 (26.0) 896 (31.1) <0.0001
PHQ-9 score 0.475±0.028 0.506±0.028 0.501±0.028 0.586±0.028 0.009
Depression, n (%) 60 (2.08) 71 (2.47) 75 (2.61) 84 (2.92) 0.04
Sub-threshold depression, n (%) 53 (1.85) 55 (1.92) 64 (2.23) 70 (2.44) 0.08
Probable depression, n (%) 7 (0.24) 16 (0.56) 11 (0.38) 14 (0.49) 0.30
Tab.1  Characteristics of the participants according to quartiles of weighted T2D_GRS
Gene Chr. SNP Effect/other allele EAF Pleiotropic effect Diabetes Present depression
OR 95% CI P value OR 95% CI P value
PROX1 1 rs340874 G/A 0.38 No 1.04 1.03–1.04 0.18 1.16 0.99–1.38 0.07
BCL11 2 rs243021 A/G 0.67 Yes 1.08 1.01–1.15 0.02 1.13 0.94–1.35 0.20
GCKR 2 rs780094 G/A 0.47 Yes 1.01 0.95–1.08 0.67 1.02 0.86–1.20 0.86
IRS1 2 rs2943641 C/T 0.94 No 1.32 1.15–1.51 <0.0001 1.16 0.81–1.66 0.43
IGF2BP2 3 rs4402960 T/G 0.24 Yes 1.17 1.08–1.25 <0.0001 0.94 0.77–1.14 0.50
PPARG 3 rs1801282 C/G 0.94 No 1.11 0.98–1.27 0.10 0.83 0.61–1.14 0.26
PSMD6 3 rs831571 C/T 0.64 No 1.01 0.95–1.08 0.67 1.12 0.94–1.33 0.20
UBE2E2 3 rs7612463 C/A 0.79 Yes 1.15 1.07–1.25 0.0003 0.89 0.73–1.08 0.23
MAEA 4 rs6815464 C/G 0.57 No 1.07 1.01–1.14 0.02 1.13 0.96–1.34 0.14
CDKAL1 6 rs9356744 T/C 0.40 Yes 1.24 1.17–1.32 <0.0001 1.07 0.91–1.27 0.40
ZFAND3 6 rs9470794 C/T 0.29 No 1.04 0.97–1.11 0.31 1.08 0.91–1.29 0.38
DGKB 7 rs2191349 T/G 0.65 Yes 1.07 0.998–1.14 0.06 1.14 0.95–1.36 0.16
GCC1/PAX4 7 rs6467136 A/G 0.12 No 0.93 0.86–1.01 0.10 1.14 0.90–1.45 0.28
JAZF1 7 rs864745 T/C 0.77 Yes 1.05 0.97–1.12 0.23 1.12 0.92–1.36 0.28
SLC30A8 8 rs13266634 C/T 0.56 Yes 1.13 1.06–1.20 <0.0001 1.17 0.997–1.38 0.06
TP53INP1 8 rs896854 A/G 0.33 No 1.09 1.02–1.17 0.007 1.12 0.94–1.33 0.20
CDKN2A/B 9 rs10811661 T/C 0.53 No 1.19 1.12–1.26 <0.0001 1.00 0.84–1.17 0.95
GLIS3 9 rs7041847 A/G 0.45 No 1.01 0.95–1.07 0.86 0.94 0.80–1.11 0.48
PTPRD 9 rs17584499 T/C 0.09 Yes 0.95 0.86–1.06 0.40 1.04 0.78–1.39 0.77
CDC123/CAMK1D 10 rs10906115 A/G 0.63 Yes 1.12 1.05–1.19 0.0005 1.02 0.86–1.21 0.79
CDC123/CAMK1D 10 rs12779790 G/A 0.17 No 1.06 0.98–1.15 0.16 1.13 0.92–1.40 0.25
HHEX/IDE 10 rs1111875 G/A 0.27 Yes 1.07 0.998–1.14 0.06 0.96 0.80–1.15 0.65
TCF7L2 10 rs7903146 T/C 0.03 Yes 1.27 1.08–1.49 0.005 1.25 0.83–1.88 0.30
CENTD2 11 rs1552224 A/C 0.92 Yes 1.08 0.97–1.20 0.19 1.13 0.83–1.53 0.45
KCNQ1 11 rs231362 C/T 0.89 Yes 1.10 0.997–1.22 0.06 1.08 0.82–1.41 0.59
KCNQ1 11 rs2237892 C/T 0.67 Yes 1.24 1.16–1.32 <0.0001 0.91 0.77–1.08 0.29
KCNJ11 11 rs5215 C/T 0.39 Yes 1.08 1.01–1.15 0.02 0.94 0.79–1.11 0.46
SPRY2 13 rs1359790 G/A 0.72 No 1.13 1.05–1.21 0.0009 1.09 0.90–1.31 0.38
C2CD4A/C2CD4B 15 rs7172432 A/G 0.61 No 1.07 1.01–1.14 0.03 1.06 0.90–1.26 0.49
FTO 16 rs17817449 G/T 0.12 Yes 1.10 1.00–1.21 0.049 1.10 0.86–1.42 0.43
TCF2(HNF1B) 17 rs4430796 G/A 0.29 Yes 1.19 1.11–1.27 <0.0001 1.01 0.85–1.22 0.88
SRR 17 rs391300 G/A 0.70 No 1.02 0.95–1.09 0.65 1.08 0.90–1.29 0.43
PEPD 19 rs3786897 A/G 0.52 Yes 1.09 1.03–1.16 0.006 0.93 0.79–1.10 0.41
FITM2/R3HDML/HNF4A 20 rs6017317 G/T 0.57 Yes 1.05 0.98–1.11 0.17 1.08 0.91–1.27 0.38
Tab.2  Information of each individual SNP and its association with diabetes and depression
Gene SNP BMI SBP DBP TC log10TG
β (SE) P value β (SE) P value β (SE) P value β (SE) P value β (SE) P value
PPARG rs1801282 −0.11 (0.10) 0.27 −0.08 (0.51) 0.88 −0.15 (0.26) 0.56 0.03 (0.03) 0.33 0.001 (0.006) 0.85
KCNJ11 rs5215 −0.13 (0.05) 0.006 0.27 (0.26) 0.29 0.23 (0.13) 0.08 −0.003 (0.02) 0.87 −0.002 (0.003) 0.50
TCF7L2 rs7903146 −0.18 (0.13) 0.16 0.63 (0.69) 0.36 0.20 (0.35) 0.57 0.05 (0.04) 0.25 0.009 (0.008) 0.27
TCF2(HNF1B) rs4430796 −0.04 (0.05) 0.40 0.48 (0.28) 0.08 0.04 (0.14) 0.75 0.03 (0.02) 0.06 0.003 (0.003) 0.38
IGF2BP2 rs4402960 −0.11 (0.06) 0.046 0.29 (0.29) 0.32 −0.04 (0.15) 0.78 0.004 (0.02) 0.84 0.005 (0.003) 0.16
CDKN2A/B rs10811661 −0.01 (0.05) 0.76 0.40 (0.25) 0.15 −0.09 (0.13) 0.47 −0.004 (0.02) 0.81 0.004 (0.003) 0.18
HHEX/IDE rs1111875 −0.15 (0.05) 0.005 −0.11 (0.28) 0.68 −0.02 (0.14) 0.92 −0.03 (0.02) 0.08 0.005 (0.003) 0.13
SLC30A8 rs13266634 −0.01 (0.05) 0.76 0.49 (0.24) 0.04 0.12 (0.13) 0.34 0.04 (0.01) 0.01 −0.0004 (0.003) 0.89
JAZF1 rs864745 −0.03 (0.06) 0.65 0.07 (0.29) 0.81 −0.14 (0.15) 0.37 0.02 (0.02) 0.24 0.005 (0.003) 0.16
CDC123/CAMK1D rs12779790 −0.03 (0.06) 0.65 0.22 (0.33) 0.51 0.002 (0.17) 0.99 0.02 (0.02) 0.28 0.0003 (0.004) 0.95
IRS1 rs2943641 0.15 (0.10) 0.12 0.41 (0.52) 0.43 0.24 (0.27) 0.37 −0.02 (0.03) 0.59 0.009 (0.006) 0.15
PROX1 rs340874 −0.05 (0.05) 0.31 −0.26 (0.26) 0.31 −0.10 (0.13) 0.44 −0.00002 (0.02) 0.999 0.0007 (0.003) 0.81
GCKR rs780094 0.02 (0.05) 0.61 −0.59 (0.25) 0.02 −0.21 (0.13) 0.11 −0.05 (0.02) 0.0007 −0.02 (0.003) <0.0001
DGKB rs2191349 −0.02 (0.05) 0.73 0.75 (0.26) 0.004 0.45 (0.13) 0.0008 0.03 (0.02) 0.04 0.005 (0.003) 0.13
BCL11 rs243021 0.11 (0.05) 0.04 −0.003 (0.27) 0.99 0.12 (0.14) 0.38 −0.03 (0.02) 0.03 −0.003 (0.003) 0.30
CENTD2 rs1552224 −0.07 (0.08) 0.40 −1.39 (0.44) 0.002 −0.51 (0.23) 0.03 0.02 (0.03) 0.44 0.003 (0.005) 0.51
KCNQ1 rs231362 −0.15 (0.07) 0.045 −0.14 (0.40) 0.72 0.03 (0.20) 0.88 0.02 (0.02) 0.34 −0.01 (0.005) 0.02
TP53INP1 rs896854 0.01 (0.05) 0.84 0.06 (0.26) 0.82 0.01 (0.14) 0.94 0.0006 (0.02) 0.97 0.0008 (0.003) 0.79
KCNQ1 rs2237892 −0.08 (0.05) 0.09 0.04 (0.27) 0.88 −0.05 (0.14) 0.70 −0.005 (0.02) 0.79 0.0008 (0.003) 0.79
C2CD4A/C2CD4B rs7172432 −0.06 (0.05) 0.20 −0.002 (0.26) 0.99 −0.15 (0.13) 0.26 0.03 (0.02) 0.07 −0.0004 (0.0002) 0.66
SPRY2 rs1359790 −0.04 (0.05) 0.41 −0.18 (0.28) 0.53 −0.07 (0.14) 0.62 −0.0008 (0.02) 0.96 −0.005 (0.003) 0.09
FITM2/R3HDML/HNF4A rs6017317 0.06 (0.05) 0.22 −0.55 (0.25) 0.03 −0.005 (0.13) 0.97 0.01 (0.02) 0.41 0.003 (0.003) 0.32
UBE2E2 rs7612463 −0.05 (0.06) 0.36 0.12 (0.31) 0.70 −0.44 (0.16) 0.005 0.02 (0.02) 0.20 0.003 (0.004) 0.46
PTPRD rs17584499 0.07 (0.08) 0.39 0.94 (0.44) 0.03 0.10 (0.23) 0.67 −0.03 (0.03) 0.28 −0.006 (0.005) 0.26
SRR rs391300 −0.06 (0.05) 0.21 −0.17 (0.27) 0.54 −0.18 (0.14) 0.20 0.003 (0.02) 0.87 −0.002 (0.003) 0.59
CDC123/CAMK1D rs10906115 −0.09 (0.05) 0.07 0.51 (0.26) 0.048 −0.01 (0.13) 0.93 0.01 (0.02) 0.54 0.0003 (0.003) 0.92
PSMD6 rs831571 −0.09 (0.05) 0.06 −0.07 (0.26) 0.78 −0.04 (0.13) 0.77 0.005 (0.02) 0.74 −0.002 (0.003) 0.43
MAEA rs6815464 0.007 (0.05) 0.88 −0.04 (0.25) 0.87 −0.10 (0.13) 0.42 −0.009 (0.02) 0.54 0.005 (0.003) 0.08
ZFAND3 rs9470794 0.09 (0.05) 0.08 −0.47 (0.27) 0.09 −0.19 (0.14) 0.18 0.004 (0.02) 0.81 0.002 (0.003) 0.46
GCC1/PAX4 rs6467136 −0.005 (0.06) 0.94 −0.08 (0.34) 0.82 −0.09 (0.17) 0.60 0.002 (0.02) 0.91 −0.004 (0.004) 0.32
GLIS3 rs7041847 −0.04 (0.05) 0.36 0.32 (0.25) 0.21 0.11 (0.13) 0.37 0.02 (0.02) 0.14 0.0002 (0.003) 0.95
PEPD rs3786897 −0.10 (0.05) 0.03 0.74 (0.25) 0.003 −0.02 (0.13) 0.86 −0.01 (0.02) 0.43 0.005 (0.003) 0.06
CDKAL1 rs9356744 −0.11 (0.05) 0.02 0.50 (0.25) 0.048 0.16 (0.13) 0.22 0.01 (0.02) 0.44 0.002 (0.003) 0.40
FTO rs17817449 0.21 (0.07) 0.004 0.13 (0.39) 0.74 −0.19 (0.20) 0.34 −0.01 (0.02) 0.66 −0.008 (0.004) 0.09
Tab.3  The associations of each SNP with T2D related traits
Depression
Model 1 Model 2 Model 3
OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value
Un-weighted GRS (per SD, points)
T2D_GRS/concluding 34 SNPs (3.62) 1.18 (1.05–1.33) 0.006 1.21 (1.07–1.37) 0.002 1.17 (1.03–1.32) 0.01
T2D_GRS/concluding 14 SNPs (2.33) 1.19 (1.05–1.34) 0.004 1.21 (1.07–1.37) 0.002 1.19 (1.06–1.33) 0.004
Weighted GRS (per SD, points)
T2D_GRS/concluding 34 SNPs (3.90) 1.11 (0.99–1.25) 0.08 1.14 (1.01–1.29) 0.03 1.10 (0.97–1.25) 0.13
T2D_GRS/concluding 14 SNPs (2.51) 1.15 (1.03–1.30) 0.02 1.19 (1.06–1.35) 0.004 1.16 (1.02–1.31) 0.02
Present T2D 1.37 (1.05–1.78) 0.02 1.45 (1.10–1.92) 0.009 / /
Tab.4  Associations of present depression with T2D_GRS and T2D
T2D (N = 2860) Non-T2D (N = 8646)
OR (95% CI) P value OR (95% CI) P value
Depression (n, %) 84 (2.94) / 206 (2.38) /
Un-weighted GRS (per SD, points)
T2D_GRS/concluding 34 SNPs (3.62) 1.31 (1.04–1.65) 0.02 1.12 (0.97–1.30) 0.12
T2D_GRS/concluding 14 SNPs (2.33) 1.44 (1.14–1.82) 0.002 1.09 (0.95–1.26) 0.23
Weighted GRS (per SD, points)
T2D_GRS/concluding 34 SNPs (3.90) 1.32 (1.04–1.67) 0.02 1.03 (0.89–1.19) 0.65
T2D_GRS/concluding 14 SNPs (2.51) 1.46 (1.15–1.85) 0.002 1.06 (0.92–1.23) 0.43
Tab.5  The associations of present depression with T2D_GRS according to present T2D status
T2D_GRS /concluding 34 SNPs T2D_GRS/concluding 14 SNPs
OR 95% CI P value OR 95% CI P value
Weighted GRS 1.57 1.04–2.37 0.02 3.41 1.48–7.86 0.001
Un-weighted GRS 1.83 1.25–2.70 0.0003 3.67 1.63–8.26 0.0002
IVW 1.30 1.03–1.63 0.03 1.79 1.31–2.46 0.003
Egger Estimate 0.75 0.50–1.13 0.18 0.95 0.42–2.14 0.91
Egger Intercept (in b) 0.08 0.03–0.11 0.005 0.08 −0.02–0.19 0.13
Tab.6  Sensitivity analysis of T2D with depression
1 Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, Charlson FJ, Norman RE, Flaxman AD, Johns N, Burstein R, Murray CJ, Vos T. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet 2013; 382(9904):1575–1586
" target="_blank">https://doi.org/10.1016/S0140-6736(13)61611-6
2 Ferrari AJ, Charlson FJ, Norman RE, Patten SB, Freedman G, Murray CJ, Vos T, Whiteford HA. Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS Med 2013; 10(11): e1001547
https://doi.org/10.1371/journal.pmed.1001547 pmid: 24223526
3 World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates. 2017. Available from
4 Roy T, Lloyd CE. Epidemiology of depression and diabetes: a systematic review. J Affect Disord 2012; 142(Suppl): S8–S21
https://doi.org/10.1016/S0165-0327(12)70004-6 pmid: 23062861
5 Nanditha A, Ma RC, Ramachandran A, Snehalatha C, Chan JC, Chia KS, Shaw JE, Zimmet PZ. Diabetes in Asia and the Pacific: implications for the Global Epidemic. Diabetes Care 2016; 39(3): 472–485
https://doi.org/10.2337/dc15-1536 pmid: 26908931
6 Xu Y, Wang L, He J, Bi Y, Li M, Wang T, Wang L, Jiang Y, Dai M, Lu J, Xu M, Li Y, Hu N, Li J, Mi S, Chen CS, Li G, Mu Y, Zhao J, Kong L, Chen J, Lai S, Wang W, Zhao W, Ning G; 2010 China Noncommunicable Disease Surveillance Group. Prevalence and control of diabetes in Chinese adults. JAMA 2013; 310(9): 948–959
https://doi.org/10.1001/jama.2013.168118 pmid: 24002281
7 Black SA, Markides KS, Ray LA. Depression predicts increased incidence of adverse health outcomes in older Mexican Americans with type 2 diabetes. Diabetes Care 2003; 26(10): 2822–2828
https://doi.org/10.2337/diacare.26.10.2822 pmid: 14514586
8 Anderson BJ, Edelstein S, Abramson NW, Katz LE, Yasuda PM, Lavietes SJ, Trief PM, Tollefsen SE, McKay SV, Kringas P, Casey TL, Marcus MD. Depressive symptoms and quality of life in adolescents with type 2 diabetes: baseline data from the TODAY study. Diabetes Care 2011; 34(10): 2205–2207
https://doi.org/10.2337/dc11-0431 pmid: 21836107
9 Mezuk B, Eaton WW, Albrecht S, Golden SH. Depression and type 2 diabetes over the lifespan: a meta-analysis. Diabetes Care 2008; 31(12): 2383–2390
https://doi.org/10.2337/dc08-0985 pmid: 19033418
10 Golden SH, Lazo M, Carnethon M, Bertoni AG, Schreiner PJ, Diez Roux AV, Lee HB, Lyketsos C. Examining a bidirectional association between depressive symptoms and diabetes. JAMA 2008; 299(23): 2751–2759
https://doi.org/10.1001/jama.299.23.2751 pmid: 18560002
11 Nouwen A, Winkley K, Twisk J, Lloyd CE, Peyrot M, Ismail K, Pouwer F; European Depression in Diabetes (EDID) Research Consortium. Type 2 diabetes mellitus as a risk factor for the onset of depression: a systematic review and meta-analysis. Diabetologia 2010; 53(12): 2480–2486
https://doi.org/10.1007/s00125-010-1874-x pmid: 20711716
12 Rotella F, Mannucci E. Diabetes mellitus as a risk factor for depression. A meta-analysis of longitudinal studies. Diabetes Res Clin Pract 2013; 99(2): 98–104
https://doi.org/10.1016/j.diabres.2012.11.022 pmid: 23265924
13 Sun JC, Xu M, Lu JL, Bi YF, Mu YM, Zhao JJ, Liu C, Chen LL, Shi LX, Li Q, Yang T, Yan L, Wan Q, Wu SL, Liu Y, Wang GX, Luo ZJ, Tang XL, Chen G, Huo YN, Gao ZN, Su Q, Ye Z, Wang YM, Qin GJ, Deng HC, Yu XF, Shen FX, Chen L, Zhao LB, Wang TG, Lai SH, Li DH, Wang WQ, Ning G; Risk Evaluation of Cancers in Chinese Diabetic Individuals: A Longitudinal (REACTION) Study group. Associations of depression with impaired glucose regulation, newly diagnosed diabetes and previously diagnosed diabetes in Chinese adults. Diabet Med 2015; 32(7): 935–943
https://doi.org/10.1111/dme.12649 pmid: 25439630
14 Harrison SC, Holmes MV, Humphries SE. Mendelian randomisation, lipids, and cardiovascular disease. Lancet 2012; 380(9841): 543–545
https://doi.org/10.1016/S0140-6736(12)60481-4 pmid: 22607824
15 Xu M, Huang Y, Xie L, Peng K, Ding L, Lin L, Wang P, Hao M, Chen Y, Sun Y, Qi L, Wang W, Ning G, Bi Y. Diabetes and risk of arterial stiffness: a Mendelian randomization analysis. Diabetes 2016; 65(6): 1731–1740
https://doi.org/10.2337/db15-1533 pmid: 26953161
16 Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 2008; 27(8): 1133–1163
https://doi.org/10.1002/sim.3034 pmid: 17886233
17 Palmer TM, Lawlor DA, Harbord RM, Sheehan NA, Tobias JH, Timpson NJ, Davey Smith G, Sterne JA. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat Methods Med Res 2012; 21(3): 223–242
https://doi.org/10.1177/0962280210394459 pmid: 21216802
18 Liu S, Song Y. Building genetic scores to predict risk of complex diseases in humans: is it possible? Diabetes 2010; 59(11): 2729–2731
https://doi.org/10.2337/db10-1081 pmid: 20980472
19 Bi Y, Lu J, Wang W, Mu Y, Zhao J, Liu C, Chen L, Shi L, Li Q, Wan Q, Wu S, Yang T, Yan L, Liu Y, Wang G, Luo Z, Tang X, Chen G, Huo Y, Gao Z, Su Q, Ye Z, Wang Y, Qin G, Deng H, Yu X, Shen F, Chen L, Zhao L, Zhang J, Sun J, Dai M, Xu M, Xu Y, Chen Y, Lai S, Bloomgarden ZT, Li D, Ning G. Cohort profile: risk evaluation of cancers in Chinese diabetic individuals: a longitudinal (REACTION) study. J Diabetes 2014; 6(2): 147–157
https://doi.org/10.1111/1753-0407.12108 pmid: 24237858
20 Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med 2001; 16(9): 606–613
https://doi.org/10.1046/j.1525-1497.2001.016009606.x pmid: 11556941
21 Löwe B, Kroenke K, Herzog W, Gräfe K. Measuring depression outcome with a brief self-report instrument: sensitivity to change of the Patient Health Questionnaire (PHQ-9). J Affect Disord 2004; 81(1): 61–66
https://doi.org/10.1016/S0165-0327(03)00198-8 pmid: 15183601
22 Pignone MP, Gaynes BN, Rushton JL, Burchell CM, Orleans CT, Mulrow CD, Lohr KN. Screening for depression in adults: a summary of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med 2002; 136(10): 765–776
https://doi.org/10.7326/0003-4819-136-10-200205210-00013 pmid: 12020146
23 Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28(7): 412–419
https://doi.org/10.1007/BF00280883 pmid: 3899825
24 Cersosimo E, Solis-Herrera C, Trautmann ME, Malloy J, Triplitt CL. Assessment of pancreatic β-cell function: review of methods and clinical applications. Curr Diabetes Rev 2014; 10(1): 2–42
https://doi.org/10.2174/1573399810666140214093600 pmid: 24524730
25 Hagströmer M, Oja P, Sjöström M. The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr 2006; 9(6): 755–762
https://doi.org/10.1079/PHN2005898 pmid: 16925881
26 Xu M, Bi Y, Huang Y, Xie L, Hao M, Zhao Z, Xu Y, Lu J, Chen Y, Sun Y, Qi L, Wang W, Ning G. Type 2 diabetes, diabetes genetic score and risk of decreased renal function and albuminuria: a Mendelian randomization study. EBioMedicine 2016; 6: 162–170
https://doi.org/10.1016/j.ebiom.2016.02.032 pmid: 27211558
27 Cho YS, Lee JY, Park KS, Nho CW. Genetics of type 2 diabetes in East Asian populations. Curr Diab Rep 2012; 12(6): 686–696
https://doi.org/10.1007/s11892-012-0326-z pmid: 22993124
28 Kato N. Insights into the genetic basis of type 2 diabetes. J Diabetes Investig 2013; 4(3): 233–244
https://doi.org/10.1111/jdi.12067 pmid: 24843659
29 Cho YS, Chen CH, Hu C, Long J, Ong RT, Sim X, Takeuchi F, Wu Y, Go MJ, Yamauchi T, Chang YC, Kwak SH, Ma RC, Yamamoto K, Adair LS, Aung T, Cai Q, Chang LC, Chen YT, Gao Y, Hu FB, Kim HL, Kim S, Kim YJ, Lee JJ, Lee NR, Li Y, Liu JJ, Lu W, Nakamura J, Nakashima E, Ng DP, Tay WT, Tsai FJ, Wong TY, Yokota M, Zheng W, Zhang R, Wang C, So WY, Ohnaka K, Ikegami H, Hara K, Cho YM, Cho NH, Chang TJ, Bao Y, Hedman ÅK, Morris AP, McCarthy MI; DIAGRAM Consortium; MuTHER Consortium,Takayanagi R, Park KS, Jia W, Chuang LM, Chan JC, Maeda S, Kadowaki T, Lee JY, Wu JY, Teo YY, Tai ES, Shu XO, Mohlke KL, Kato N, Han BG, Seielstad M. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet 2012; 44(1): 67–72
https://doi.org/10.1038/ng.1019 pmid: 22158537
30 Balding DJ. A tutorial on statistical methods for population association studies. Nat Rev Genet 2006; 7(10): 781–791
https://doi.org/10.1038/nrg1916 pmid: 16983374
31 Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 2015; 44(2): 512–525
https://doi.org/10.1093/ije/dyv080 pmid: 26050253
32 Samaan Z, Garasia S, Gerstein HC, Engert JC, Mohan V, Diaz R, Anand SS, Meyre D. Lack of association between type 2 diabetes and major depression: epidemiologic and genetic evidence in a multiethnic population. Transl Psychiatry 2015; 5(8): e618
https://doi.org/10.1038/tp.2015.113 pmid: 26261886
33 Clarke TK, Obsteter J, Hall LS, Hayward C, Thomson PA, Smith BH, Padmanabhan S, Hocking LJ, Deary IJ, Porteous DJ, McIntosh AM. Investigating shared aetiology between type 2 diabetes and major depressive disorder in a population based cohort. Am J Med Genet B Neuropsychiatr Genet 2017; 174(3): 227–234
https://doi.org/10.1002/ajmg.b.32478 pmid: 27480393
34 Wium-Andersen MK, Ørsted DD, Nordestgaard BG. Tobacco smoking is causally associated with antipsychotic medication use and schizophrenia, but not with antidepressant medication use or depression. Int J Epidemiol 2015; 44(2): 566–577
https://doi.org/10.1093/ije/dyv090 pmid: 26054357
35 Wium-Andersen MK, Ørsted DD, Tolstrup JS, Nordestgaard BG. Increased alcohol consumption as a cause of alcoholism, without similar evidence for depression: a Mendelian randomization study. Int J Epidemiol 2015; 44(2): 526–539
https://doi.org/10.1093/ije/dyu220 pmid: 25433705
36 Hartwig FP, Bowden J, Loret de Mola C, Tovo-Rodrigues L, Davey Smith G, Horta BL. Body mass index and psychiatric disorders: a Mendelian randomization study. Sci Rep 2016; 6(1): 32730
https://doi.org/10.1038/srep32730 pmid: 27601421
37 Moulton CD, Pickup JC, Ismail K. The link between depression and diabetes: the search for shared mechanisms. Lancet Diabetes Endocrinol 2015; 3(6): 461–471
https://doi.org/10.1016/S2213-8587(15)00134-5 pmid: 25995124
38 U.S. Preventive Services Task Force. Screening for depression: recommendations and rationale. Ann Intern Med 2002; 136(10): 760–764
https://doi.org/10.7326/0003-4819-136-10-200205210-00012 pmid: 12020145
39 Kroenke K, Spitzer RL, Williams JB, Löwe B. The Patient Health Questionnaire Somatic, Anxiety, and Depressive Symptom Scales: a systematic review. Gen Hosp Psychiatry 2010; 32(4): 345–359
https://doi.org/10.1016/j.genhosppsych.2010.03.006 pmid: 20633738
[1] Xiaoqing Li, Xinxin Li, Genbei Wang, Yan Xu, Yuanyuan Wang, Ruijia Hao, Xiaohui Ma. Xiao Ke Qing improves glycometabolism and ameliorates insulin resistance by regulating the PI3K/Akt pathway in KKAy mice[J]. Front. Med., 2018, 12(6): 688-696.
[2] Han Wang, Hong Zhou, Yan Zhang, Yan Wang, Jing Sun. Association of maternal depression with dietary intake, growth, and development of preterm infants: a cohort study in Beijing, China[J]. Front. Med., 2018, 12(5): 533-541.
[3] Palka Kaur Khanuja,Satish Chander Narula,Rajesh Rajput,Rajinder Kumar Sharma,Shikha Tewari. Association of periodontal disease with glycemic control in patients with type 2 diabetes in Indian population[J]. Front. Med., 2017, 11(1): 110-119.
[4] Xiaoyan Chen,Wenxia Xiao,Xinchun Li,Jianxun He,Xiaochun Huang,Yuyu Tan. In vivo evaluation of renal function using diffusion weighted imaging and diffusion tensor imaging in type 2 diabetics with normoalbuminuria versus microalbuminuria[J]. Front. Med., 2014, 8(4): 471-476.
[5] Jianping Ye. Mechanisms of insulin resistance in obesity[J]. Front Med, 2013, 7(1): 14-24.
[6] Jingyi Lu, Guoxiang Xie, Weiping Jia, Wei Jia. Metabolomics in human type 2 diabetes research[J]. Front Med, 2013, 7(1): 4-13.
[7] Ranhua JIANG, Zhibo HAN, Guangsheng ZHUO, Xiaodan QU, Xue LI, Xin WANG, Yuankang SHAO, Shimin YANG, Zhong Chao HAN. Transplantation of placenta-derived mesenchymal stem cells in type 2 diabetes: a pilot study[J]. Front Med, 2011, 5(1): 94-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed