Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2019, Vol. 13 Issue (5) : 564-574    https://doi.org/10.1007/s11684-018-0676-2
RESEARCH ARTICLE
Deciphering the pharmacological mechanism of Guan-Jie-Kang in treating rat adjuvant-induced arthritis using omics analysis
Hudan Pan1, Yanfang Zheng1,2, Zhongqiu Liu3, Zhongwen Yuan1, Rutong Ren1, Hua Zhou1, Ying Xie1(), Liang Liu1()
1. State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
2. Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
3. International Institute for Translational Research of Traditional Chinese Medicine of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
 Download: PDF(3036 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Traditional Chinese medicine (TCM) formulas have attracted increasing attention worldwide in the past few years for treating complex disease including rheumatoid arthritis. However, their mechanisms are complex and remain unclear. Guan-Jie-Kang (GJK), a prescription modified from “Wu Tou Decoction,” was found to significantly relieve arthritis symptoms in rats with adjuvant-induced arthritis after 30-day treatment, especially in the 24 g/kg/day group. By analyzing 1749 targets related to 358 compounds in the five herbs of GJK, we identified the possible anti-arthritis pathways of GJK, including the calcium signaling and metabolic pathways. Bone damage levels were assessed by micro-computed tomography, and greater bone protective effect was observed with GJK treatment than with methotrexate. Receptor activator of nuclear factor κB ligand (RANKL)–RANK signaling, which is related to calcium signaling, was significantly regulated by GJK. Moreover, a target metabolomics assay of serum was conducted; 17 metabolic biomarkers showed significant correlations with treatment. An integrated pathway analysis revealed that pyruvate metabolism, purine metabolism, and glycolysis metabolism were significantly associated with the effects of GJK in arthritis treatment. Thus, this study establishes a new omics analytical method integrated with bioinformatics analysis for elucidating the multi-pathway mechanisms of TCM.

Keywords rheumatoid arthritis      traditional Chinese medicine      pharmacological mechanism      metabolism      adjuvant-induced arthritis      omics analysis     
Corresponding Author(s): Ying Xie,Liang Liu   
Just Accepted Date: 01 March 2019   Online First Date: 15 May 2019    Issue Date: 14 October 2019
 Cite this article:   
Hudan Pan,Yanfang Zheng,Zhongqiu Liu, et al. Deciphering the pharmacological mechanism of Guan-Jie-Kang in treating rat adjuvant-induced arthritis using omics analysis[J]. Front. Med., 2019, 13(5): 564-574.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-018-0676-2
https://academic.hep.com.cn/fmd/EN/Y2019/V13/I5/564
Fig.1  Study overview.
Fig.2  Pharmacological effects of GJK in AIA rats. Rats were randomly divided into five groups: normal group (N), vehicle disease control group (M), positive control group (MTX), 16 g/kg GJK group, and 24 g/kg GJK group. (A) Changes in body weight in each group (n = 12). (B) Arthritis score changes in the five groups during the 30-day study period (n = 12). (C) Effects of GJK on increased paw volume (n = 12). Group differences in (A), (B), and (C) were analyzed by two-way ANOVA (*P<0.05, **P<0.01, ***P<0.001 vs. model). (D) ESR measurements on the day of sacrifice (n = 11–12). (E) Spleen index assessments in the five groups (n = 12). (F) Effects of GJK on pro-inflammatory cytokine expression (n = 8–12 in IL-1β, IL-17A, and IL-6; n = 5–6 in TNF-α). Group differences in (D), (E), and (F) analyzed by one-way ANOVA (*P<0.05, **P<0.01, ***P<0.001 vs. model).
Fig.3  Bone protective effects of GJK in AIA rats. (A) Representative micro-CT image of the ankles. (B) Inter-group micro-CT score assessments (n = 5–6). (C) Bone destruction level alteration based on micro-CT score. Levels were divided according to micro-CT score. Very severe: 0–0.2; severe: 0.2–0.4; moderate: 0.4–0.6; mild: 0.6–0.8; normal: 0.8–1. (D) MMP-1 mRNA expression of the upper tibia (n = 6). (E) MMP-3 mRNA expression of the upper tibia (n = 5). (F) MMP-13 mRNA expression of the upper tibia (n = 6). (G) MMP-9 mRNA expression of the upper tibia (n = 5). (H) OPG/RANKL rate improvement in the GJK group (n = 5). (I) TNF-α mRNA expression of the upper tibia (n = 5). ###P<0.001 vs. control, *P<0.05 vs. model, **P<0.01 vs. model, ***P<0.001 vs. model.
Fig.4  Metabolic alterations in AIA rats. (A) Multiple pattern recognition analysis of plasma biomarkers between normal control group and model group on day 30. OPLS-DA score plot (R2X= 0.987, R2Y= 0.992, Q2= 0.192, n = 8) of control, model, MTX, and GJK group. (B) Potential biomarkers in response to RA and their metabolic pathways. (C) Potential biomarkers in response to AIA detected by cluster analysis (heatmap).
Fig.5  Correlations between RA parameters and serum metabolite levels with P<0.05 based on correlation analysis. Abbreviation: GSSG, glutathione disulfide; GSH, glutathione; LPC, lysophosphatidylcholine; GDCA, glycodeoxycholic acid; GCDCA, glycochenodeoxycholic acid.
Fig.6  Effects of GJK on regulating metabolic disorder in AIA rats. (A) Integrated analysis of the targets of GJK and the disease-related metabolites. (B) Quantification of the identified metabolites in serum. #P<0.05 vs. control, ##P<0.01 vs. control, *P<0.05 vs. model, **P<0.01 vs. model.
1 TR Mikuls. Co-morbidity in rheumatoid arthritis. Best Pract Res Clin Rheumatol 2003; 17(5): 729–752
https://doi.org/10.1016/S1521-6942(03)00041-X pmid: 12915155
2 DL Scott, F Wolfe, TW Huizinga. Rheumatoid arthritis. Lancet 2010; 376(9746): 1094–1108
https://doi.org/10.1016/S0140-6736(10)60826-4 pmid: 20870100
3 SE Gabriel. The epidemiology of rheumatoid arthritis. Rheum Dis Clin North Am 2011; 27(2): 269–281
4 GS Firestein. Evolving concepts of rheumatoid arthritis. Nature 2003; 423(6937): 356–361
https://doi.org/10.1038/nature01661 pmid: 12748655
5 NJ Cooper. Economic burden of rheumatoid arthritis: a systematic review. Rheumatology (Oxford) 2000; 39(1): 28–33
https://doi.org/10.1093/rheumatology/39.1.28 pmid: 10662870
6 JA Singh, KG Saag, SL Bridges Jr, EA Akl, RR Bannuru, MC Sullivan, E Vaysbrot, C McNaughton, M Osani, RH Shmerling, JR Curtis, DE Furst, D Parks, A Kavanaugh, J O’Dell, C King, A Leong, EL Matteson, JT Schousboe, B Drevlow, S Ginsberg, J Grober, EW St Clair, E Tindall, AS Miller, T McAlindon. 2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Rheumatol 2016; 68(1): 1–26
https://doi.org/10.1002/art.39480 pmid: 26545940
7 JA Singh, R Christensen, GA Wells, ME Suarez-Almazor, R Buchbinder, MA Lopez-Olivo, ET Ghogomu, P Tugwell. Biologics for rheumatoid arthritis: an overview of Cochrane reviews. Sao Paulo Med J 2010; 128(5): 309–310
https://doi.org/10.1590/S1516-31802010000500013 pmid: 21181074
8 GS Firestein, IB McInnes. Immunopathogenesis of rheumatoid arthritis. Immunity 2017; 46(2): 183–196
https://doi.org/10.1016/j.immuni.2017.02.006 pmid: 28228278
9 AE Koch. The pathogenesis of rheumatoid arthritis. Am J Orthop (Belle Mead NJ) 2007; 36(7 Suppl): 5–8
pmid: 17694191
10 I Haro, R Sanmartí. Rheumatoid arthritis: current advances in pathogenesis, diagnosis and therapy. Curr Top Med Chem 2013; 13(6): 697
https://doi.org/10.2174/15680266113139990091 pmid: 23574517
11 XR Wang, Y Su, Y An, YS Zhou, XY Zhang, TJ Duan, JX Zhu, XF Li, CH Wang, LZ Wang, YF Wang, R Yang, GC Wang, X Lu, P Zhu, LN Chen, Y Wang, XY Wang, HT Jin, JT Liu, HY Chen, P Wei, JX Wang, XY Liu, L Sun, LF Cui, R Shu, BL Liu, ZL Zhang, GT Li, ZB Li, J Yang, JF Li, B Jia, FX Zhnag, , JM Tao, JY Lin, MQ Wei, XM Liu, D Ke, SX Hu, C Ye, SL Han, XY Yang, H Li, CB Huang, M Gao, P Lai, LJ Song, R Mu, ZG Li. Survey of tumor necrosis factor inhibitors application in patients with rheumatoid arthritis in China. J Peking Univ (Health Sci) (Beijing Da Xue Xue Bao Yi Xue Ban) 2012. 44(2): p. 182–7 (in Chinese)
12 C Xu, X Wang, R Mu, L Yang, Y Zhang, S Han, X Li, Y Wang, G Wang, P Zhu, H Jin, L Sun, H Chen, L Cui, Z Zhang, Z Li, J Li, F Zhang, J Lin, X Liu, S Hu, X Yang, B Lai, X Li, X Wang, Y Su, Z Li. Societal costs of rheumatoid arthritis in China: a hospital-based cross-sectional study. Arthritis Care Res (Hoboken) 2014; 66(4): 523–531
https://doi.org/10.1002/acr.22160 pmid: 24023001
13 J Liu, Y Sun. How does Chinese medicine target cytokine imbalance in rheumatoid arthritis? Chin J Integr Med 2013; 19(11): 874–880
https://doi.org/10.1007/s11655-013-1620-6 pmid: 24170633
14 J Liu, Z Chen. Traditional Chinese medicine in the new century. Front Med 2011; 5(2): 111–114
https://doi.org/10.1007/s11684-011-0125-y pmid: 21695612
15 Z Xiang, X Wang, T Liu, D Lv. Thoughts and exploration on studying pharmacological mechanism of traditional Chinese medicine using network biology approach. China J Chin Materia Medica (Zhongguo Zhong Yao Za Zhi) 2012; 37(2): 146–151 (in Chinese)
pmid: 22737841
16 J Wu, Y Xie, Z Xiang, C Wang, H Zhou, L Liu. Simultaneous determination of multiple components in Guanjiekang in rat plasma via the UPLC-MS/MS method and its application in pharmacokinetic study. Molecules 2016; 21(12): E1732
https://doi.org/10.3390/molecules21121732 pmid: 27999285
17 Y Ma, K Zhou, J Fan, S Sun. Traditional Chinese medicine: potential approaches from modern dynamical complexity theories. Front Med 2016; 10(1): 28–32
https://doi.org/10.1007/s11684-016-0434-2 pmid: 26809465
18 R Xue, Z Fang, M Zhang, Z Yi, C Wen, T Shi. TCMID: traditional Chinese medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res 2013; 41(Database issue): D1089–D1095
pmid: 23203875
19 S Li, B Zhang. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med 2013; 11(2): 110–120
https://doi.org/10.1016/S1875-5364(13)60037-0 pmid: 23787177
20 C Wang, Y Xie, Z Xiang, H Zhou, L Liu. Simultaneous determination of thirteen major active compounds in Guanjiekang preparation by UHPLC-QQQ-MS/MS. J Pharm Biomed Anal 2016; 118: 315–321
https://doi.org/10.1016/j.jpba.2015.10.043 pmid: 26588049
21 X1 Cai, YF Wong, H Zhou, ZQ Liu, Y Xie, ZH Jiang, ZX Bian, HX Xu, L Liu. Manipulation of the induction of adjuvant arthritis in Sprague-Dawley rats. Inflamm Res 2006; 55(9): 368–377
https://doi.org/10.1007/s00011-006-6026-x pmid: 17122958
22 J Zuo, Y Xia, X Li, JW Chen. Therapeutic effects of dichloromethane fraction of Securidaca inappendiculata on adjuvant-induced arthritis in rat. J Ethnopharmacol 2014; 153(2): 352–358
https://doi.org/10.1016/j.jep.2014.02.015 pmid: 24583103
23 AB Lemmey. Rheumatoid cachexia: the undiagnosed, untreated key to restoring physical function in rheumatoid arthritis patients? Rheumatology (Oxford) 2016; 55(7): 1149–1150
https://doi.org/10.1093/rheumatology/kev412 pmid: 26672906
24 SV Komarova, MF Pilkington, AF Weidema, SJ Dixon, SM Sims. RANK ligand-induced elevation of cytosolic Ca2+ accelerates nuclear translocation of nuclear factor κ B in osteoclasts. J Biol Chem 2003; 278(10): 8286–8293
https://doi.org/10.1074/jbc.M206421200 pmid: 12496256
25 P Zhang, J Li, Y Han, XW Yu, L Qin. Traditional Chinese medicine in the treatment of rheumatoid arthritis: a general review. Rheumatol Int 2010; 30(6): 713–718
https://doi.org/10.1007/s00296-010-1370-0 pmid: 20204371
26 P Hemon, Y Renaudineau, M Debant, N Le Goux, S Mukherjee, W Brooks, O Mignen. Calcium signaling: from normal B cell development to tolerance breakdown and autoimmunity. Clin Rev Allergy Immunol 2017; 53(2): 141–165
https://doi.org/10.1007/s12016-017-8607-6 pmid: 28500564
27 H Kajiya. Calcium signaling in osteoclast differentiation and bone resorption. Adv Exp Med Biol 2012; 740: 917–932
https://doi.org/10.1007/978-94-007-2888-2_41 pmid: 22453976
28 T Negishi-Koga, H Takayanagi. Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol Rev 2009; 231(1): 241–256
https://doi.org/10.1111/j.1600-065X.2009.00821.x pmid: 19754901
29 E Leah. Rheumatoid arthritis. Assessment of CVD in patients with RA by strain imaging. Nat Rev Rheumatol 2013; 9(9): 506
https://doi.org/10.1038/nrrheum.2013.117 pmid: 23917955
30 BJ Paul, HI Kandy, V Krishnan. Pre-rheumatoid arthritis and its prevention. Eur J Rheumatol 2017; 4(2): 161–165
https://doi.org/10.5152/eurjrheum.2017.16006 pmid: 28638695
31 VR da Cunha, CV Brenol, JC Brenol, RM Xavier. Rheumatoid arthritis and metabolic syndrome. Rev Bras Reumatol 2011; 51(3): 260–268
pmid: 21625814
32 X Chang, C Wei. Glycolysis and rheumatoid arthritis. Int J Rheum Dis 2011; 14(3): 217–222
https://doi.org/10.1111/j.1756-185X.2011.01598.x pmid: 21816017
33 Z Yang, Y Shen, H Oishi, EL Matteson, L Tian, JJ Goronzy, CM Weyand. Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Sci Transl Med 2016; 8(331): 331ra38
https://doi.org/10.1126/scitranslmed.aad7151 pmid: 27009267
34 LR Gray, SC Tompkins, EB Taylor. Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci 2014; 71(14): 2577–2604
https://doi.org/10.1007/s00018-013-1539-2 pmid: 24363178
35 A Perl. Review: Metabolic control of immune system activation in rheumatic diseases. Arthritis Rheumatol 2017; 69(12): 2259–2270
https://doi.org/10.1002 /art.40223 pmid: 28841779
36 CM Weyand, JJ Goronzy. Immunometabolism in early and late stages of rheumatoid arthritis. Nat Rev Rheumatol 2017; 13(5): 291–301
https://doi.org/10.1038/nrrheum.2017.49 pmid: 28360422
37 BN Cronstein. Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol Rev 2005; 57(2): 163–172
https://doi.org/10.1124/pr.57.2.3 pmid: 15914465
[1] FMD-18043-OF-LL_suppl_1 Download
[1] Wenwen Shang, Lei Wu, Rui Xu, Xian Chen, Shasha Yao, Peijun Huang, Fang Wang. Clinical laboratory features of Meigs’ syndrome: a retrospective study from 2009 to 2018[J]. Front. Med., 2021, 15(1): 116-124.
[2] Zixin Shu, Yana Zhou, Kai Chang, Jifen Liu, Xiaojun Min, Qing Zhang, Jing Sun, Yajuan Xiong, Qunsheng Zou, Qiguang Zheng, Jinghui Ji, Josiah Poon, Baoyan Liu, Xuezhong Zhou, Xiaodong Li. Clinical features and the traditional Chinese medicine therapeutic characteristics of 293 COVID-19 inpatient cases[J]. Front. Med., 2020, 14(6): 760-775.
[3] Qingwei Li, Han Wang, Xiuyang Li, Yujiao Zheng, Yu Wei, Pei Zhang, Qiyou Ding, Jiaran Lin, Shuang Tang, Yikun Zhao, Linhua Zhao, Xiaolin Tong. The role played by traditional Chinese medicine in preventing and treating COVID-19 in China[J]. Front. Med., 2020, 14(5): 681-688.
[4] Mengxue Huang, Jingjing Wang, Runshun Zhang, Zhuying Ni, Xiaoying Liu, Wenwen Liu, Weilian Kong, Yao Chen, Tiantian Huang, Guihua Li, Dan Wei, Jianzhong Liu, Xuezhong Zhou. Symptom network topological features predict the effectiveness of herbal treatment for pediatric cough[J]. Front. Med., 2020, 14(3): 357-367.
[5] Qiqi Zhao, Xin Gao, Guangli Yan, Aihua Zhang, Hui Sun, Ying Han, Wenxiu Li, Liang Liu, Xijun Wang. Chinmedomics facilitated quality-marker discovery of Sijunzi decoction to treat spleen qi deficiency syndrome[J]. Front. Med., 2020, 14(3): 335-356.
[6] Yuan Gao, Zhilei Wang, Jinfa Tang, Xiaoyi Liu, Wei Shi, Nan Qin, Xiaoyan Wang, Yu Pang, Ruisheng Li, Yaming Zhang, Jiabo Wang, Ming Niu, Zhaofang Bai, Xiaohe Xiao. New incompatible pair of TCM: Epimedii Folium combined with Psoraleae Fructus induces idiosyncratic hepatotoxicity under immunological stress conditions[J]. Front. Med., 2020, 14(1): 68-80.
[7] Xiaokun Li. The FGF metabolic axis[J]. Front. Med., 2019, 13(5): 511-530.
[8] Xin Wu, Xiaobao Sheng, Rong Sheng, Hongjuan Lu, Huji Xu. Genetic and clinical markers for predicting treatment responsiveness in rheumatoid arthritis[J]. Front. Med., 2019, 13(4): 411-419.
[9] Xiaoyi Li, Hong Kang, Wensheng Liu, Sarita Singhal, Na Jiao, Yong Wang, Lixin Zhu, Ruixin Zhu. In silico design of novel proton-pump inhibitors with reduced adverse effects[J]. Front. Med., 2019, 13(2): 277-284.
[10] Li Ma, Bin Wang, Yuanxiong Long, Hanmin Li. Effect of traditional Chinese medicine combined with Western therapy on primary hepatic carcinoma: a systematic review with meta-analysis[J]. Front. Med., 2017, 11(2): 191-202.
[11] Yunfang Liu,Zhiping Yang,Jing Cheng,Daiming Fan. Barriers and countermeasures in developing traditional Chinese medicine in Europe[J]. Front. Med., 2016, 10(3): 360-376.
[12] Yan Ma,Kehua Zhou,Jing Fan,Shuchen Sun. Traditional Chinese medicine: potential approaches from modern dynamical complexity theories[J]. Front. Med., 2016, 10(1): 28-32.
[13] Shuwen Qian,Haiyan Huang,Qiqun Tang. Brown and beige fat: the metabolic function, induction, and therapeutic potential[J]. Front. Med., 2015, 9(2): 162-172.
[14] Li Ma,Baoyan Liu,Qi Xie,Shusong Mao,Zhiwei Cui. Ontological reconstruction of the clinical terminology of traditional Chinese medicine[J]. Front. Med., 2014, 8(3): 358-361.
[15] Runshun Zhang,Yinghui Wang,Baoyan Liu,Guangli Song,Xuezhong Zhou,Shizhen Fan,Xishui Pan. Clinical data quality problems and countermeasure for real world study[J]. Front. Med., 2014, 8(3): 352-357.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed