Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2019, Vol. 13 Issue (1) : 3-11    https://doi.org/10.1007/s11684-019-0684-x
REVIEW |
Adoptive cell transfer therapy for hepatocellular carcinoma
Renyu Zhang, Zhao Zhang, Zekun Liu, Ding Wei, Xiaodong Wu, Huijie Bian(), Zhinan Chen()
Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi’an 710032, China
 Download: PDF(141 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. This malignancy is associated with poor prognosis and high mortality. Novel approaches for prolonging the overall survival of patients with advanced HCC are urgently needed. The antitumor activities of adoptive cell transfer therapy (ACT), such as strategies based on tumor-infiltrating lymphocytes and cytokine-induced killer cells, are more effective than those of traditional strategies. Currently, chimeric antigen receptor T-cell (CAR-T) immunotherapy has achieved numerous breakthroughs in the treatment of hematological malignancies, including relapsed or refractory lymphoblastic leukemia and refractory large B-cell lymphoma. Nevertheless, this approach only provides a modest benefit in the treatment of solid tumors. The clinical results of CAR-T immunotherapy for HCC that could be obtained at present are limited. Some published studies have demonstrated that CAR-T could inhibit tumor growth and cause severe side effects. In this review, we summarized the current application of ACT, the challenges encountered by CAR-T technology in HCC treatment, and some possible strategies for the future direction of immunotherapeutic research.

Keywords adoptive cell transfer therapy      hepatocellular carcinoma      T cell      chimeric antigen receptor      immunotherapy     
Corresponding Authors: Huijie Bian,Zhinan Chen   
Just Accepted Date: 29 December 2018   Online First Date: 18 January 2019    Issue Date: 12 March 2019
 Cite this article:   
Renyu Zhang,Zhao Zhang,Zekun Liu, et al. Adoptive cell transfer therapy for hepatocellular carcinoma[J]. Front. Med., 2019, 13(1): 3-11.
 URL:  
http://academic.hep.com.cn/fmd/EN/10.1007/s11684-019-0684-x
http://academic.hep.com.cn/fmd/EN/Y2019/V13/I1/3
Cells used for ACT Patients (n) total Patients (n) treated with ACT Overall survival
(ACT vs. Control or ACT alone)
Recurrence rate (ACT vs. Control or ACT alone) Study reference
Tumor-infiltrating lymphocytes 15 15 100% (14 months) 20% (14 months) [23]
Tumor-infiltrating lymphocytes 150 76 68% vs. 62% (5 years) 59% vs. 77% (4.4 years) [24]
Cytokine-induced killer cells 132 66 42.4% vs. 24.2%(3 years) [25]
Cytokine-induced killer cells 127 41/43 37.9%/38.1% vs. 36.9% (5 years) 73%/72% vs. 76% (5 years) [26]
Cytokine-induced killer cells 230 115 39.5% vs. 49.1% (4.4 years) [27]
Cytokine-induced killer cells 85 45 100% vs. 100% (18 months) 15.6% vs. 40.0% (18 months) [28]
Cytokine-induced killer cells 83 42 7.14% vs. 23.1% (1 year) [29]
Cytokine-induced killer cells 146 72 62.4% vs. 18.8% (2 years) [30]
Tab.1  Summary of clinical trials on the applicability of TIL and CIK as HCC treatment strategies
Clinical trial identifier Antigen Phase Estimated enrollment Infusion Doses Sponsor Status
NCT02715362 GPC3 I/II 30 Transcatheter arterial infusion (1–10) × 106/kg Shanghai GeneChem Co., Ltd. Recruiting
NCT03130712 GPC3 I/II 10 Intratumor injection (1–10) × 106 Shanghai GeneChem Co., Ltd. Recruiting
NCT03198546 GPC3 I 30 Second Affiliated Hospital of Guangzhou Medical University Recruiting
NCT03146234 GPC3 20 Intravenous injection Self-controlled dose escalation Renji Hospital Recruiting
NCT03349255 AFP I 18 Intravenous infusion and intrahepatic artery infusion Aeon Therapeutics (Shanghai) Co., Ltd. Recruiting
NCT02587689 MUC1 I/II 20 PersonGen BioTherapeutics (Suzhou) Co., Ltd. Recruiting
NCT02959151 GPC3 I/II 20 Vascular interventional therapy or intratumor injection (1.25–4) × 107/cm3 tumor bulk Shanghai GeneChem Co., Ltd. Recruiting
NCT03013712 EpCAM I/II 60 Vascular interventional mediated or endoscopy infusion (1–10) × 106/kg First Affiliated Hospital of Chengdu Medical College Recruiting
NCT02905188 GPC3 I 14 1 × 107/m2
3 × 107/m2
1 × 108/m2
3 × 108/m2
1 × 109/m2
Baylor College of Medicine Not yet recruiting
NCT03084380 GPC3 I/II 20 Transcatheter arterial chemoembolization combined with CAR-T infusion Xinqiao Hospital of Chongqing Not yet recruiting
NCT03302403 GPC3 48 Intravenous injection Self-controlled dose escalation First Affiliated Hospital of Wenzhou Medical University Not yet recruiting
NCT02723942 GPC3 I/II 60 Fuda Cancer Hospital, Guangzhou Completed
NCT02395250 GPC3 I 13 Renji Hospital Terminated
Tab.2  Summary of clinical trials on the applicability of CAR-T therapy as a HCC treatment strategy
1 RLSiegel, KD Miller, AJemal . Cancer statistics, 2018. CA Cancer J Clin 2018; 68(1): 7–30
https://doi.org/10.3322/caac.21442 pmid: 29313949
2 WChen, R Zheng, PDBaade, SZhang, HZeng, F Bray, AJemal , XQYu, J He. Cancer statistics in China, 2015. CA Cancer J Clin 2016; 66(2): 115–132
https://doi.org/10.3322/caac.21338 pmid: 26808342
3 AForner, M Reig, JBruix. Hepatocellular carcinoma. Lancet 2018; 391(10127): 1301–1314
https://doi.org/10.1016/S0140-6736(18)30010-2 pmid: 29307467
4 OVMakarova-Rusher, JMedina-Echeverz, AGDuffy, TFGreten. The yin and yang of evasion and immune activation in HCC. J Hepatol 2015; 62(6): 1420–1429
https://doi.org/10.1016/j.jhep.2015.02.038 pmid: 25733155
5 TFGreten, XW Wang, FKorangy. Current concepts of immune based treatments for patients with HCC: from basic science to novel treatment approaches. Gut 2015; 64(5): 842–848
https://doi.org/10.1136/gutjnl-2014-307990 pmid: 25666193
6 RDésert, F Rohart, FCanal , MSicard, MDesille, SRenaud, BTurlin, PBellaud, CPerret, BClément, KALê Cao, OMusso. Human hepatocellular carcinomas with a periportal phenotype have the lowest potential for early recurrence after curative resection. Hepatology 2017; 66(5): 1502–1518
https://doi.org/10.1002/hep.29254 pmid: 28498607
7 DGalun, T Srdic-Rajic, ABogdanovic, ZLoncar, MZuvela. Targeted therapy and personalized medicine in hepatocellular carcinoma: drug resistance, mechanisms, and treatment strategies. J Hepatocell Carcinoma 2017; 4: 93–103
https://doi.org/10.2147/JHC.S106529 pmid: 28744453
8 CChen, K Li, HJiang, FSong, H Gao, XPan, BShi, Y Bi, HWang, HWang, Z Li. Development of T cells carrying two complementary chimeric antigen receptors against glypican-3 and asialoglycoprotein receptor 1 for the treatment of hepatocellular carcinoma. Cancer Immunol Immunother 2017; 66(4): 475–489
https://doi.org/10.1007/s00262-016-1949-8 pmid: 28035433
9 HGao, K Li, HTu, XPan, H Jiang, BShi, JKong, H Wang, SYang, JGu, Z Li. Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma. Clin Cancer Res 2014; 20(24): 6418–6428
https://doi.org/10.1158/1078-0432.CCR-14-1170 pmid: 25320357
10 JMLlovet, S Ricci, VMazzaferro, PHilgard, EGane, JF Blanc, ACde Oliveira, ASantoro, JLRaoul, AForner, MSchwartz, CPorta, SZeuzem, LBolondi, TFGreten, PRGalle, JFSeitz, IBorbath, DHäussinger, TGiannaris, MShan, M Moscovici, DVoliotis, JBruix; SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359(4): 378–390
https://doi.org/10.1056/NEJMoa0708857 pmid: 18650514
11 MKudo, RS Finn, SQin, KHHan, K Ikeda, FPiscaglia, ABaron, JWPark, GHan, J Jassem, JFBlanc, AVogel, DKomov, TRJEvans, CLopez, CDutcus, MGuo, K Saito, SKraljevic, TTamai, MRen, AL. Cheng Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 2018; 391(10126): 1163–1173
https://doi.org/10.1016/S0140-6736(18)30207-1 pmid: 29433850
12 JBruix, S Qin, PMerle, AGranito, YHHuang, GBodoky, MPracht, OYokosuka, ORosmorduc, VBreder, RGerolami, GMasi, PJ Ross, TSong, JPBronowicki, IOllivier-Hourmand, MKudo, AL Cheng, JMLlovet, RSFinn, MALeBerre, ABaumhauer, GMeinhardt, GHan; RESORCE Investigators. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017; 389(10064): 56–66
https://doi.org/10.1016/S0140-6736(16)32453-9 pmid: 27932229
13 JMLlovet, R Montal , DSia, RSFinn. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol 2018; 15(10): 599–616
https://doi.org/10.1038/s41571-018-0073-4 pmid: 30061739
14 HBian, JS Zheng, GNan, RLi, C Chen, CXHu, YZhang, BSun, XL Wang, SCCui, JWu, J Xu, DWei, XZhang, HLiu, W Yang, YDing, JLi, ZN Chen. Randomized trial of [131I] metuximab in treatment of hepatocellular carcinoma after percutaneous radiofrequency ablation. J Natl Cancer Inst 2014; 106(9): dju239
https://doi.org/10.1093/jnci/dju239 pmid: 25210200
15 DPBogdanos, B Gao, MEGershwin. Liver immunology. Compr Physiol 2013; 3(2): 567–598
pmid: 23720323
16 MRingelhan, D Pfister, TO’Connor, EPikarsky, MHeikenwalder. The immunology of hepatocellular carcinoma. Nat Immunol 2018; 19(3): 222–232
https://doi.org/10.1038/s41590-018-0044-z pmid: 29379119
17 ABEl-Khoueiry, B Sangro, TYau, TSCrocenzi, MKudo, C Hsu, TYKim, SPChoo, JTrojan, THWelling 3rd, TMeyer, YKKang, WYeo, A Chopra, JAnderson, CDela Cruz, LLang, J Neely, HTang, HBDastani, IMelero. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017; 389(10088): 2492–2502
https://doi.org/10.1016/S0140-6736(17)31046-2 pmid: 28434648
18 AXZhu, RS Finn, JEdeline, SCattan, SOgasawara, DPalmer, CVerslype, VZagonel, LFartoux, AVogel, DSarker, GVerset, SLChan, JKnox, B Daniele, ALWebber, SWEbbinghaus, JMa, AB Siegel, ALCheng, MKudo; KEYNOTE-224 investigators. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol 2018; 19(7): 940–952
https://doi.org/10.1016/S1470-2045(18)30351-6 pmid: 29875066
19 SARosenberg, MT Lotze, LMMuul, SLeitman, AEChang, SEEttinghausen, YLMatory, JMSkibber, EShiloni, JTVetto, CASeipp, CSimpson, CMReichert. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 1985; 313(23): 1485–1492
https://doi.org/10.1056/NEJM198512053132327 pmid: 3903508
20 SARosenberg, BS Packard, PMAebersold, DSolomon, SLTopalian, STToy, P Simon, MTLotze, JCYang, CASeipp, CSimpson, CCarter, SBock, D Schwartzentruber, JPWei, DEWhite. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 1988; 319(25): 1676–1680
https://doi.org/10.1056/NEJM198812223192527 pmid: 3264384
21 SARosenberg, NP Restifo. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 2015; 348(6230): 62–68
https://doi.org/10.1126/science.aaa4967 pmid: 25838374
22 YNSWong, K Joshi, MPule, KSPeggs, CSwanton, SAQuezada, MLinch. Evolving adoptive cellular therapies in urological malignancies. Lancet Oncol 2017; 18(6): e341–e353
https://doi.org/10.1016/S1470-2045(17)30327-3 pmid: 28593860
23 SSJiang, Y Tang, YJZhang, DSWeng, ZGZhou, KPan, QZ Pan, QJWang, QLiu, J He, JJZhao, JLi, MS Chen, AEChang, QLi, JC Xia. A phase I clinical trial utilizing autologous tumor-infiltrating lymphocytes in patients with primary hepatocellular carcinoma. Oncotarget 2015; 6(38): 41339–41349
https://doi.org/10.18632/oncotarget.5463 pmid: 26515587
24 TTakayama, T Sekine, MMakuuchi, SYamasaki, TKosuge, JYamamoto, KShimada, MSakamoto, SHirohashi, YOhashi, TKakizoe. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet 2000; 356(9232): 802–807
https://doi.org/10.1016/S0140-6736(00)02654-4 pmid: 11022927
25 XYu, H Zhao, LLiu, SCao, B Ren, NZhang, XAn, J Yu, HLi, XRen. A randomized phase II study of autologous cytokine-induced killer cells in treatment of hepatocellular carcinoma. J Clin Immunol 2014; 34(2): 194–203
https://doi.org/10.1007/s10875-013-9976-0 pmid: 24337625
26 DHui, L Qiang, WJian, ZTi, K Da-Lu. A randomized, controlled trial of postoperative adjuvant cytokine-induced killer cells immunotherapy after radical resection of hepatocellular carcinoma. Dig Liver Dis 2009; 41(1): 36–41
https://doi.org/10.1016/j.dld.2008.04.007 pmid: 18818130
27 JHLee, JH Lee, YSLim, JEYeon, TJSong, SJYu, GY Gwak, KMKim, YJKim, JW Lee, JHYoon. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. Gastroenterology 2015; 148(7): 1383–1391.e6
https://doi.org/10.1053/j.gastro.2015.02.055
28 DSWeng, J Zhou, QMZhou, MZhao, QJ Wang, LXHuang, YQLi, SP Chen, PHWu, JCXia. Minimally invasive treatment combined with cytokine-induced killer cells therapy lower the short-term recurrence rates of hepatocellular carcinomas. J Immunother 2008; 31(1): 63–71
https://doi.org/10.1097/CJI.0b013e31815a121b pmid: 18157013
29 CCPan, ZL Huang, WLi, MZhao, QM Zhou, JCXia, PHWu. Serum α-fetoprotein measurement in predicting clinical outcome related to autologous cytokine-induced killer cells in patients with hepatocellular carcinoma undergone minimally invasive therapy. Chin J Cancer 2010; 29(6): 596–602
https://doi.org/10.5732/cjc.009.10580 pmid: 20507732
30 MZHao, HL Lin, QChen, YBYe, QZ Chen, MSChen. Efficacy of transcatheter arterial chemoembolization combined with cytokine-induced killer cell therapy on hepatocellular carcinoma: a comparative study. Chin J Cancer 2010; 29(2): 172–177
https://doi.org/10.5732/cjc.009.10410 pmid: 20109346
31 MVMaus, JA Fraietta, BLLevine, MKalos, YZhao, CH June. Adoptive immunotherapy for cancer or viruses. Annu Rev Immunol 2014; 32(1): 189–225
https://doi.org/10.1146/annurev-immunol-032713-120136 pmid: 24423116
32 GGross, Z Eshhar. Therapeutic potential of T cell chimeric antigen receptors (CARs) in cancer treatment: counteracting off-tumor toxicities for safe CAR T cell therapy. Annu Rev Pharmacol Toxicol 2016; 56(1): 59–83
https://doi.org/10.1146/annurev-pharmtox-010814-124844 pmid: 26738472
33 CJochems, J Schlom. Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity. Exp Biol Med (Maywood) 2011; 236(5): 567–579
https://doi.org/10.1258/ebm.2011.011007 pmid: 21486861
34 YWada, O Nakashima, RKutami, OYamamoto, MKojiro. Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. Hepatology 1998; 27(2): 407–414
https://doi.org/10.1002/hep.510270214 pmid: 9462638
35 WMa, L Wu, FZhou, ZHong, Y Yuan, ZLiu. T cell-associated immunotherapy for hepatocellular carcinoma. Cell Physiol Biochem 2017; 41(2): 609–622
https://doi.org/10.1159/000457883 pmid: 28214839
36 JJMata-Molanes, M Sureda González, B Valenzuela Jiménez, EM Martínez Navarro, A Brugarolas Masllorens. Cancer immunotherapy with cytokine-induced killer cells. Target Oncol 2017; 12(3): 289–299
https://doi.org/10.1007/s11523-017-0489-2 pmid: 28474278
37 TMorisaki, T Hirano, NKoya, AKiyota, HTanaka, MUmebayashi, HOnishi, MKatano. NKG2D-directed cytokine-activated killer lymphocyte therapy combined with gemcitabine for patients with chemoresistant metastatic solid tumors. Anticancer Res 2014; 34(8): 4529–4538
pmid: 25075096
38 KPan, YQ Li, WWang, LXu, YJ Zhang, HXZheng, JJZhao, HJQiu, DS Weng, JJLi, QJWang, LXHuang, JHe, SP Chen, MLKe, PHWu, MS Chen, SPLi, JCXia, YX Zeng. The efficacy of cytokine-induced killer cell infusion as an adjuvant therapy for postoperative hepatocellular carcinoma patients. Ann Surg Oncol 2013; 20(13): 4305–4311
https://doi.org/10.1245/s10434-013-3144-x pmid: 23892527
39 LCSchmeel, FC Schmeel, CCoch, IGSchmidt-Wolf. Cytokine-induced killer (CIK) cells in cancer immunotherapy: report of the international registry on CIK cells (IRCC). J Cancer Res Clin Oncol 2015; 141(5): 839–849
https://doi.org/10.1007/s00432-014-1864-3 pmid: 25381063
40 QZPan, QJ Wang, JQDan, KPan, YQ Li, YJZhang, JJZhao, DSWeng, YTang, LX Huang, JHe, SPChen, MLKe, MS Chen, MSWicha, AEChang, YXZeng, QLi, JC Xia. A nomogram for predicting the benefit of adjuvant cytokine-induced killer cell immunotherapy in patients with hepatocellular carcinoma. Sci Rep 2015; 5(1): 9202
https://doi.org/10.1038/srep09202 pmid: 25776856
41 JNBrudno, JN Kochenderfer. Chimeric antigen receptor T-cell therapies for lymphoma. Nat Rev Clin Oncol 2018; 15(1): 31–46
https://doi.org/10.1038/nrclinonc.2017.128 pmid: 28857075
42 CHJune, RS O’Connor, OUKawalekar, SGhassemi, MCMilone. CAR T cell immunotherapy for human cancer. Science 2018; 359(6382): 1361–1365
https://doi.org/10.1126/science.aar6711 pmid: 29567707
43 DWLee, JN Kochenderfer, MStetler-Stevenson, YKCui, CDelbrook, SAFeldman, TJFry, R Orentas, MSabatino, NNShah, SMSteinberg, DStroncek, NTschernia, CYuan, H Zhang, LZhang, SARosenberg, ASWayne, CLMackall. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 2015; 385(9967): 517–528
https://doi.org/10.1016/S0140-6736(14)61403-3 pmid: 25319501
44 JHartmann, M Schüßler-Lenz, ABondanza, CJBuchholz. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med 2017; 9(9): 1183–1197
https://doi.org/10.15252/emmm.201607485 pmid: 28765140
45 YLiu, X Chen, WHan, YZhang. Tisagenlecleucel, an approved anti-CD19 chimeric antigen receptor T-cell therapy for the treatment of leukemia. Drugs Today (Barc) 2017; 53(11): 597–608
https://doi.org/10.1358/dot.2017.53.11.2725754 pmid: 29451276
46 PVormittag, R Gunn, SGhorashian, FSVeraitch. A guide to manufacturing CAR T cell therapies. Curr Opin Biotechnol 2018; 53: 164–181
https://doi.org/10.1016/j.copbio.2018.01.025 pmid: 29462761
47 SDi, Z Li. Treatment of solid tumors with chimeric antigen receptor-engineered T cells: current status and future prospects. Sci China Life Sci 2016; 59(4): 360–369
https://doi.org/10.1007/s11427-016-5025-6 pmid: 26968709
48 CWMount, RG Majzner, SSundaresh, EPArnold, MKadapakkam, SHaile, LLabanieh, EHulleman, PJWoo, SP Rietberg, HVogel, MMonje, CLMackall. Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas. Nat Med 2018; 24(5): 572–579
https://doi.org/10.1038/s41591-018-0006-x pmid: 29662203
49 ADFesnak, CH June, BLLevine. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer 2016; 16(9): 566–581
https://doi.org/10.1038/nrc.2016.97 pmid: 27550819
50 BLZhang, DY Qin, ZMMo, YLi, W Wei, YSWang, WWang, YQ Wei. Hurdles of CAR-T cell-based cancer immunotherapy directed against solid tumors. Sci China Life Sci 2016; 59(4): 340–348
https://doi.org/10.1007/s11427-016-5027-4 pmid: 26965525
51 ZJiang, X Jiang, SChen, YLai, X Wei, BLi, SLin, S Wang, QWu, QLiang, QLiu, M Peng, FYu, JWeng, X Du, DPei, PLiu, Y Yao, PXue, PLi. Anti-GPC3-CAR T cells suppress the growth of tumor cells in patient-derived xenografts of hepatocellular carcinoma. Front Immunol 2017; 7: 690
https://doi.org/10.3389/fimmu.2016.00690 pmid: 28123387
52 ASaied, L Licata, RABurga, MThorn, EMcCormack, BFStainken, EOAssanah, PDKhare, RDavies, NJEspat, RPJunghans, SCKatz. Neutrophil:lymphocyte ratios and serum cytokine changes after hepatic artery chimeric antigen receptor-modified T-cell infusions for liver metastases. Cancer Gene Ther 2014; 21(11): 457–462
https://doi.org/10.1038/cgt.2014.50 pmid: 25277132
53 RAMorgan, JC Yang, MKitano, MEDudley, CMLaurencot, SARosenberg. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010; 18(4): 843–851
https://doi.org/10.1038/mt.2010.24 pmid: 20179677
54 RABurga, M Thorn, GRPoint, PGuha, CT Nguyen, LALicata, RPDeMatteo, AAyala, NJoseph Espat, RPJunghans, SCKatz. Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T. Cancer Immunol Immunother 2015; 64(7): 817–829
https://doi.org/10.1007/s00262-015-1692-6 pmid: 25850344
55 WALim, CH June. The principles of engineering immune cells to treat cancer. Cell 2017; 168(4): 724–740
https://doi.org/10.1016/j.cell.2017.01.016 pmid: 28187291
56 KAdachi, Y Kano, TNagai, NOkuyama, YSakoda, KTamada. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat Biotechnol 2018; 36(4): 346–351
https://doi.org/10.1038/nbt.4086 pmid: 29505028
57 JJMilner, C Toma, BYu, KZhang, KOmilusik, ATPhan, DWang, AJ Getzler, TNguyen, SCrotty, WWang, ME Pipkin, AWGoldrath. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. Nature 2017; 552(7684): 253–257
https://doi.org/10.1038/nature24993 pmid: 29211713
58 VFako, XW Wang. The status of transarterial chemoembolization treatment in the era of precision oncology. Hepat Oncol 2017; 4(2): 55–63
https://doi.org/10.2217/hep-2017-0009 pmid: 28989699
59 EUnitt, A Marshall, WGelson, SMRushbrook, SDavies, SLVowler, LSMorris, NColeman, GJAlexander. Tumour lymphocytic infiltrate and recurrence of hepatocellular carcinoma following liver transplantation. J Hepatol 2006; 45(2): 246–253
https://doi.org/10.1016/j.jhep.2005.12.027 pmid: 16580084
60 KFYoong, G McNab, SGHübscher, DHAdams. Vascular adhesion protein-1 and ICAM-1 support the adhesion of tumor-infiltrating lymphocytes to tumor endothelium in human hepatocellular carcinoma. J Immunol 1998; 160(8): 3978–3988
pmid: 9558106
61 TFlecken, N Schmidt, SHild, EGostick, ODrognitz, RZeiser, PSchemmer, HBruns, TEiermann, DAPrice, HEBlum, CNeumann-Haefelin, RThimme. Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology 2014; 59(4): 1415–1426
https://doi.org/10.1002/hep.26731 pmid: 24002931
62 JPrieto, I Melero, BSangro. Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2015; 12(12): 681–700
https://doi.org/10.1038/nrgastro.2015.173 pmid: 26484443
63 JAJoyce, DT Fearon. T cell exclusion, immune privilege, and the tumor microenvironment. Science 2015; 348(6230): 74–80
https://doi.org/10.1126/science.aaa6204 pmid: 25838376
64 GZhou, D Sprengers, PPCBoor, MDoukas, HSchutz, SMancham, APedroza-Gonzalez, WGPolak, Jde Jonge, MGaspersz, HDong, K Thielemans, QPan, IJJNM, MJ Bruno, JKwekkeboom. Antibodies against immune checkpoint molecules restore functions of tumor-infiltrating T cells in hepatocellular carcinomas. Gastroenterology 2017; 153(4): 1107–1119.e10
https://doi.org/10.1053/j.gastro.2017.06.017
65 JRen, X Liu, CFang, SJiang, CHJune, YZhao. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res 2017; 23(9): 2255–2266
https://doi.org/10.1158/1078-0432.CCR-16-1300 pmid: 27815355
66 SSNeelapu, S Tummala, PKebriaei, WWierda, CGutierrez, FLLocke, KVKomanduri, YLin, N Jain, NDaver, JWestin, AMGulbis, MELoghin, JFde Groot, SAdkins, SEDavis, KRezvani, PHwu, EJ Shpall. Chimeric antigen receptor T-cell therapy — assessment and management of toxicities. Nat Rev Clin Oncol 2018; 15(1): 47–62
https://doi.org/10.1038/nrclinonc.2017.148 pmid: 28925994
[1] Sumedha Roy, Yuan Zhuang. Paradoxical role of Id proteins in regulating tumorigenic potential of lymphoid cells[J]. Front. Med., 2018, 12(4): 374-386.
[2] Chia-Wei Li, Yun-Ju Lai, Jennifer L. Hsu, Mien-Chie Hung. Activation of phagocytosis by immune checkpoint blockade[J]. Front. Med., 2018, 12(4): 473-480.
[3] Zhilin Hu, Qiang Zou, Bing Su. Regulation of T cell immunity by cellular metabolism[J]. Front. Med., 2018, 12(4): 463-472.
[4] Xiao-Dong Yang, Shao-Cong Sun. Deubiquitinases as pivotal regulators of T cell functions[J]. Front. Med., 2018, 12(4): 451-462.
[5] Fang Fang, Weihua Xiao, Zhigang Tian. Challenges of NK cell-based immunotherapy in the new era[J]. Front. Med., 2018, 12(4): 440-450.
[6] Xuefu Wang, Zhigang Tian. γδ T cells in liver diseases[J]. Front. Med., 2018, 12(3): 262-268.
[7] Shasha Zhu, Huimin Zhang, Li Bai. NKT cells in liver diseases[J]. Front. Med., 2018, 12(3): 249-261.
[8] Guangbiao Zhou, Xinchun Zhao. Carcinogens that induce the A:T>T:A nucleotide substitutions in the genome[J]. Front. Med., 2018, 12(2): 236-238.
[9] Simone Nüssing, Sneha Sant, Marios Koutsakos, Kanta Subbarao, Thi H.O. Nguyen, Katherine Kedzierska. Innate and adaptive T cells in influenza disease[J]. Front. Med., 2018, 12(1): 34-47.
[10] Min Yu, Zonghai Li. Natural killer cells in hepatocellular carcinoma: current status and perspectives for future immunotherapeutic approaches[J]. Front. Med., 2017, 11(4): 509-521.
[11] Zhen He,Cheng Hu,Weiping Jia. miRNAs in non-alcoholic fatty liver disease[J]. Front. Med., 2016, 10(4): 389-396.
[12] Xinsen Xu,Yanyan Zhou,Runchen Miao,Wei Chen,Kai Qu,Qing Pang,Chang Liu. Transcriptional modules related to hepatocellular carcinoma survival: coexpression network analysis[J]. Front. Med., 2016, 10(2): 183-190.
[13] Zhi Xu,Chunxiang Cao,Haiyan Xia,Shujing Shi,Lingzhi Hong,Xiaowei Wei,Dongying Gu,Jianmin Bian,Zijun Liu,Wenbin Huang,Yixin Zhang,Song He,Nikki Pui-Yue Lee,Jinfei Chen. Protein phosphatase magnesium-dependent 1δ is a novel tumor marker and target in hepatocellular carcinoma[J]. Front. Med., 2016, 10(1): 52-60.
[14] Felice Ho-Ching Tsang,Sandy Leung-Kuen Au,Lai Wei,Dorothy Ngo-Yin Fan,Joyce Man-Fong Lee,Carmen Chak-Lui Wong,Irene Oi-Lin Ng,Chun-Ming Wong. MicroRNA-142-3p and microRNA-142-5p are downregulated in hepatocellular carcinoma and exhibit synergistic effects on cell motility[J]. Front. Med., 2015, 9(3): 331-343.
[15] Farhad Sahebjam,John M. Vierling. Autoimmune hepatitis[J]. Front. Med., 2015, 9(2): 187-219.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed