Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2019, Vol. 13 Issue (5) : 602-609    https://doi.org/10.1007/s11684-019-0704-x
RESEARCH ARTICLE
PET imaging on neurofunctional changes after optogenetic stimulation in a rat model of panic disorder
Xiao He1,2,3, Chentao Jin1,2,3, Mindi Ma1,2,3, Rui Zhou1,2,3, Shuang Wu1,2,3, Haoying Huang1,2,3, Yuting Li1,2,3, Qiaozhen Chen2,4, Mingrong Zhang5(), Hong Zhang1,2,3(), Mei Tian1,2,3()
1. Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
2. Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou 310009, China
3. Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou 310009, China
4. Department of Psychiatry, The Second Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
5. Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences,?National Institutes for Quantum and Radiological Science and Technology,?Anagawa 4-9-1, Inage-ku, Chiba, 263-8555, Japan
 Download: PDF(4496 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Panic disorder (PD) is an acute paroxysmal anxiety disorder with poorly understood pathophysiology. The dorsal periaqueductal gray (dPAG) is involved in the genesis of PD. However, the downstream neurofunctional changes of the dPAG during panic attacks have yet to be evaluated in vivo. In this study, optogenetic stimulation to the dPAG was performed to induce panic-like behaviors, and in vivo positron emission tomography (PET) imaging with 18F-flurodeoxyglucose (18F-FDG) was conducted to evaluate neurofunctional changes before and after the optogenetic stimulation. Compared with the baseline, post-optogenetic stimulation PET imaging demonstrated that the glucose metabolism significantly increased (P<0.001) in dPAG, the cuneiform nucleus, the cerebellar lobule, the cingulate cortex, the alveus of the hippocampus, the primary visual cortex, the septohypothalamic nucleus, and the retrosplenial granular cortex but significantly decreased (P<0.001) in the basal ganglia, the frontal cortex, the forceps minor corpus callosum, the primary somatosensory cortex, the primary motor cortex, the secondary visual cortex, and the dorsal lateral geniculate nucleus. Taken together, these data indicated that in vivo PET imaging can successfully detect downstream neurofunctional changes involved in the panic attacks after optogenetic stimulation to the dPAG.

Keywords panic disorder (PD)      positron emission tomography (PET)      optogenetics      dorsal periaqueductal gray (dPAG)     
Corresponding Author(s): Mingrong Zhang,Hong Zhang,Mei Tian   
Just Accepted Date: 24 June 2019   Online First Date: 19 July 2019    Issue Date: 14 October 2019
 Cite this article:   
Xiao He,Chentao Jin,Mindi Ma, et al. PET imaging on neurofunctional changes after optogenetic stimulation in a rat model of panic disorder[J]. Front. Med., 2019, 13(5): 602-609.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-019-0704-x
https://academic.hep.com.cn/fmd/EN/Y2019/V13/I5/602
Fig.1  Experimental design and the site of optogenetic stimulation. (A) PET scanning and optogenetic stimulation protocol. (B) Schematic showing panic-like defensive behaviors induced by 473 nm blue laser stimulation. (C) Schematic showing the site of target nucleus undergoing the laser stimulation.
Brain region Coordinate (mm) Ke T value Z score Puncorrected
x y z
Increased
Dorsal periaqueductal gray 1 5 -7 3051 15.66 4.27 <0.001
Cuneiform nucleus -2 6 -8 7.83 3.46 <0.001
Cerebellar lobule 1 2 -13 1312 10.47 3.81 <0.001
Cingulate cortex 1 2 2 221 7.05 3.32 <0.001
Alveus of the hippocampus -6 4 -7 1305 8.44 3.55 <0.001
Primary visual cortex -4 2 -9 7.87 3.46 <0.001
Septohypothalamic nucleus -1 6 0 962 18.40 4.45 <0.001
Retrosplenial granular cortex 0 2 -3 158 7.47 3.40 <0.001
Decreased
Basal ganglia 3 5 2 1694 8.00 3.49 <0.001
Frontal cortex 4 4 4 8.04 3.49 <0.001
Forceps minor corpus callosum -3 3 4 7173 19.35 4.50 <0.001
Primary somatosensory cortex -5 5 1 16.93 4.36 <0.001
Primary motor cortex -3 2 2 10.17 3.78 <0.001
Secondary visual cortex -3 1 -5 890 14.61 4.20 <0.001
Dorsal lateral geniculate nucleus 3 4 -4 1073 11.95 3.97 <0.001
Tab.1  Significant metabolic changes after optogenetic stimulation of the dPAG (baseline vs. stimulation)
Fig.2  In vivo 18F-FDG PET images of the rat brain. (A) Representative sagittal (top), transverse (middle), and coronal (bottom) PET images demonstrated alternation of glucose metabolism in the dPAG, the cuneiform nucleus (CnF), cerebellar lobule (Cb), cingulate cortex (Cg), basal ganglia (BG) after dPAG stimulation (n = 6 in each group; P<0.001). (B) ROI results showed glucose metabolism (GluM) in the region of stimulation. (C) Individual metabolic values (normalized to whole brain) in the dPAG cluster during the baseline and stimulation PET scans in the ChR2 (left) and ChR2+ (right) groups (n = 6 in each group; ***P<0.001, **P<0.01).
Fig.3  Expression of AAV2/9-CaMKIIa-(ChR2)-mCherry in the excitatory neurons of dPAG. (A) Left: Diagrams showing the virus injection site in the dPAG. Right: Representative fluorescent images confirming the fiber position (the tract) and expression of ChR2 (the red mCherry signal) in the dPAG. (B) Representative immunofluorescent images showing the co-expression of CaMKIIa and mCherry in the ChR2 and ChR2+ groups. (C) Quantification showed that CaMKIIa and mCherry+ cells were less than 8% of the total mCherry+ neurons in each group. Meanwhile, mCherry+ and CaMKIIa+ cells were more than 70% of the total CaMKIIa+ neurons in each group (n = 4 in ChR2, n = 5 in ChR2+).
Fig.4  Expression of c-Fos in the dPAG with or without stimulation. (A) Representative immunofluorescent images showed expression of c-Fos with or without stimulation in the ChR2 and ChR2+ groups. (B) Quantification of c-Fos positive cells in the dPAG with (n = 4 in ChR2, n = 5 in ChR2+; ***P<0.001) or without (n = 3 in each group; N.S., no significance) stimulation. (C) Correlation between c-Fos expression and GluM in the dPAG after stimulation (n = 4 in ChR2, n = 5 in ChR2+; r= 0.5955, P = 0.0149).
1 SM Meier, J Deckert. Genetics of anxiety disorders. Curr Psychiatry Rep 2019; 21(3): 16
https://doi.org/10.1007/s11920-019-1002-7 pmid: 30826936
2 O Tuescher, X Protopopescu, H Pan, M Cloitre, T Butler, M Goldstein, JC Root, A Engelien, D Furman, M Silverman, Y Yang, J Gorman, J LeDoux, D Silbersweig, E Stern. Differential activity of subgenual cingulate and brainstem in panic disorder and PTSD. J Anxiety Disord 2011; 25(2): 251–257
https://doi.org/10.1016/j.janxdis.2010.09.010 pmid: 21075593
3 L Goossens, N Leibold, R Peeters, G Esquivel, I Knuts, W Backes, M Marcelis, P Hofman, E Griez, K Schruers. Brainstem response to hypercapnia: a symptom provocation study into the pathophysiology of panic disorder. J Psychopharmacol 2014; 28(5): 449–456
https://doi.org/10.1177/0269881114527363 pmid: 24646808
4 Y Sakai, H Kumano, M Nishikawa, Y Sakano, H Kaiya, E Imabayashi, T Ohnishi, H Matsuda, A Yasuda, A Sato, M Diksic, T Kuboki. Cerebral glucose metabolism associated with a fear network in panic disorder. Neuroreport 2005; 16(9): 927–931
https://doi.org/10.1097/00001756-200506210-00010 pmid: 15931063
5 ML Boshuisen, GJ Ter Horst, AM Paans, AA Reinders, JA den Boer. rCBF differences between panic disorder patients and control subjects during anticipatory anxiety and rest. Biol Psychiatry 2002; 52(2): 126–135
https://doi.org/10.1016/S0006-3223(02)01355-0 pmid: 12114004
6 RP Iacono, BS Nashold Jr. Mental and behavioral effects of brain stem and hypothalamic stimulation in man. Hum Neurobiol 1982; 1(4): 273–279
pmid: 7185797
7 LJ Bertoglio, VC de Bortoli, H Zangrossi Jr. Cholecystokinin-2 receptors modulate freezing and escape behaviors evoked by the electrical stimulation of the rat dorsolateral periaqueductal gray. Brain Res 2007; 1156: 133–138
https://doi.org/10.1016/j.brainres.2007.04.038 pmid: 17498673
8 LC Schenberg, EC Vasquez, MB da Costa. Cardiac baroreflex dynamics during the defence reaction in freely moving rats. Brain Res 1993; 621(1): 50–58
https://doi.org/10.1016/0006-8993(93)90296-Y pmid: 8221073
9 LC Schenberg, AS Bittencourt, EC Sudré, LC Vargas. Modeling panic attacks. Neurosci Biobehav Rev 2001; 25(7-8): 647–659
https://doi.org/10.1016/S0149-7634(01)00060-4 pmid: 11801290
10 FA Moreira, PH Gobira, TG Viana, MA Vicente, H Zangrossi, FG Graeff. Modeling panic disorder in rodents. Cell Tissue Res 2013; 354(1): 119–125
https://doi.org/10.1007/s00441-013-1610-1 pmid: 23584609
11 LC Vargas, LC Schenberg. Long-term effects of clomipramine and fluoxetine on dorsal periaqueductal grey-evoked innate defensive behaviours of the rat. Psychopharmacology (Berl) 2001; 155(3): 260–268
https://doi.org/10.1007/s002130100698 pmid: 11432688
12 S Hogg, L Michan, M Jessa. Prediction of anti-panic properties of escitalopram in the dorsal periaqueductal grey model of panic anxiety. Neuropharmacology 2006; 51(1): 141–145
https://doi.org/10.1016/j.neuropharm.2006.03.009 pmid: 16678216
13 MV Fogaça, SF Lisboa, DC Aguiar, FA Moreira, FV Gomes, PC Casarotto, FS Guimarães. Fine-tuning of defensive behaviors in the dorsal periaqueductal gray by atypical neurotransmitters. Braz J Med Biol Res 2012; 45(4): 357–365
https://doi.org/10.1590/S0100-879X2012007500029 pmid: 22392189
14 TO Sergio, A Spiacci Jr, H Zangrossi Jr. Effects of dorsal periaqueductal gray CRF1- and CRF2-receptor stimulation in animal models of panic. Psychoneuroendocrinology 2014; 49: 321–330
https://doi.org/10.1016/j.psyneuen.2014.07.026 pmid: 25146701
15 F Ullah, T Dos Anjos-Garcia, J Mendes-Gomes, DH Elias-Filho, LL Falconi-Sobrinho, RL Freitas, AU Khan, R Oliveira, NC Coimbra. Connexions between the dorsomedial division of the ventromedial hypothalamus and the dorsal periaqueductal grey matter are critical in the elaboration of hypothalamically mediated panic-like behaviour. Behav Brain Res 2017; 319: 135–147
https://doi.org/10.1016/j.bbr.2016.11.026 pmid: 27856260
16 FG Graeff. Serotonin, the periaqueductal gray and panic. Neurosci Biobehav Rev 2004; 28(3): 239–259
https://doi.org/10.1016/j.neubiorev.2003.12.004 pmid: 15225969
17 S Chen, H Zhou, S Guo, J Zhang, Y Qu, Z Feng, K Xu, X Zheng. Optogenetics based rat-robot control: optical stimulation encodes “Stop” and “Escape” commands. Ann Biomed Eng 2015; 43(8): 1851–1864
https://doi.org/10.1007/s10439-014-1235-x pmid: 25567506
18 G Sandner, G Di Scala, B Rocha, MJ Angst. C-fos immunoreactivity in the brain following unilateral electrical stimulation of the dorsal periaqueductal gray in freely moving rats. Brain Res 1992; 573(2): 276–283
https://doi.org/10.1016/0006-8993(92)90773-3 pmid: 1504765
19 LW Lim, Y Temel, V Visser-Vandewalle, A Blokland, H Steinbusch. Fos immunoreactivity in the rat forebrain induced by electrical stimulation of the dorsolateral periaqueductal gray matter. J Chem Neuroanat 2009; 38(2): 83–96
https://doi.org/10.1016/j.jchemneu.2009.06.011 pmid: 19589381
20 PK Thanos, L Robison, EJ Nestler, R Kim, M Michaelides, MK Lobo, ND Volkow. Mapping brain metabolic connectivity in awake rats with mPET and optogenetic stimulation. J Neurosci 2013; 33(15): 6343–6349
https://doi.org/10.1523/JNEUROSCI.4997-12.2013 pmid: 23575833
21 Y Zhu, K Xu, C Xu, J Zhang, J Ji, X Zheng, H Zhang, M Tian. PET mapping for brain-computer interface stimulation of the ventroposterior medial nucleus of the thalamus in rats with implanted electrodes. J Nucl Med 2016; 57(7): 1141–1145
https://doi.org/10.2967/jnumed.115.171868 pmid: 26917709
22 Y Zhu, R Du, Y Zhu, Y Shen, K Zhang, Y Chen, F Song, S Wu, H Zhang, M Tian. PET mapping of neurofunctional changes in a posttraumatic stress disorder model. J Nucl Med 2016; 57(9): 1474–1477
https://doi.org/10.2967/jnumed.116.173443 pmid: 26985058
23 P Mergenthaler, U Lindauer, GA Dienel, A Meisel. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 2013; 36(10): 587–597
https://doi.org/10.1016/j.tins.2013.07.001 pmid: 23968694
24 ND Volkow, GJ Wang, F Telang, JS Fowler, RZ Goldstein, N Alia-Klein, J Logan, C Wong, PK Thanos, Y Ma, K Pradhan. Inverse association between BMI and prefrontal metabolic activity in healthy adults. Obesity (Silver Spring) 2009; 17(1): 60–65
https://doi.org/10.1038/oby.2008.469 pmid: 18948965
25 AS Bittencourt, EM Nakamura-Palacios, H Mauad, S Tufik, LC Schenberg. Organization of electrically and chemically evoked defensive behaviors within the deeper collicular layers as compared to the periaqueductal gray matter of the rat. Neuroscience 2005; 133(4): 873–892
https://doi.org/10.1016/j.neuroscience.2005.03.012 pmid: 15916856
26 CC McIntyre, S Mori, DL Sherman, NV Thakor, JL Vitek. Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol 2004; 115(3): 589–595
https://doi.org/10.1016/j.clinph.2003.10.033 pmid: 15036055
27 RT LaLumiere. A new technique for controlling the brain: optogenetics and its potential for use in research and the clinic. Brain Stimul 2011; 4(1): 1–6
https://doi.org/10.1016/j.brs.2010.09.009 pmid: 21255749
28 O Menant, F Andersson, D Zelena, E Chaillou. The benefits of magnetic resonance imaging methods to extend the knowledge of the anatomical organisation of the periaqueductal gray in mammals. J Chem Neuroanat 2016; 77: 110–120
https://doi.org/10.1016/j.jchemneu.2016.06.003 pmid: 27344962
29 DM Vianna, ML Brandão. Anatomical connections of the periaqueductal gray: specific neural substrates for different kinds of fear. Braz J Med Biol Res 2003; 36(5): 557–566
https://doi.org/10.1590/S0100-879X2003000500002 pmid: 12715074
30 SB Sébille, H Belaid, AC Philippe, A André, B Lau, C François, C Karachi, E Bardinet. Anatomical evidence for functional diversity in the mesencephalic locomotor region of primates. Neuroimage 2017; 147: 66–78
https://doi.org/10.1016/j.neuroimage.2016.12.011 pmid: 27956208
31 VS Chakravarthy, D Joseph, RS Bapi. What do the basal ganglia do? A modeling perspective. Biol Cybern 2010; 103(3): 237–253
https://doi.org/10.1007/s00422-010-0401-y pmid: 20644953
32 E Sillery, RG Bittar, MD Robson, TE Behrens, J Stein, TZ Aziz, H Johansen-Berg. Connectivity of the human periventricular-periaqueductal gray region. J Neurosurg 2005; 103(6): 1030–1034
https://doi.org/10.3171/jns.2005.103.6.1030 pmid: 16381189
33 VM Moers-Hornikx, JS Vles, LW Lim, M Ayyildiz, S Kaplan, AW Gavilanes, G Hoogland, HW Steinbusch, Y Temel. Periaqueductal grey stimulation induced panic-like behaviour is accompanied by deactivation of the deep cerebellar nuclei. Cerebellum 2011; 10(1): 61–69
https://doi.org/10.1007/s12311-010-0228-z pmid: 21076996
34 A Stark-Inbar, E Dayan. Preferential encoding of movement amplitude and speed in the primary motor cortex and cerebellum. Hum Brain Mapp 2017; 38(12): 5970–5986
https://doi.org/10.1002/hbm.23802 pmid: 28885740
35 A Garakani, MS Buchsbaum, RE Newmark, C Goodman, CJ Aaronson, JM Martinez, Y Torosjan, KW Chu, JM Gorman. The effect of doxapram on brain imaging in patients with panic disorder. Eur Neuropsychopharmacol 2007; 17(10): 672–686
https://doi.org/10.1016/j.euroneuro.2007.04.002 pmid: 17560768
36 T Sobanski, G Wagner. Functional neuroanatomy in panic disorder: status quo of the research. World J Psychiatry 2017; 7(1): 12–33
https://doi.org/10.5498/wjp.v7.i1.12 pmid: 28401046
37 A Bisaga, JL Katz, A Antonini, CE Wright, C Margouleff, JM Gorman, D Eidelberg. Cerebral glucose metabolism in women with panic disorder. Am J Psychiatry 1998; 155(9): 1178–1183
https://doi.org/10.1176/ajp.155.9.1178 pmid: 9734539
38 D Bernal-Casas, HJ Lee, AJ Weitz, JH Lee. Studying brain circuit function with dynamic causal modeling for optogenetic fMRI. Neuron 2017; 93(3): 522–532.e5
https://doi.org/10.1016/j.neuron.2016.12.035 pmid: 28132829
[1] FMD-19013-OF-TM_suppl_1 Video  
[2] FMD-19013-OF-TM_suppl_2 Video  
[3] FMD-19013-OF-TM_suppl_3 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed