Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2020, Vol. 14 Issue (3) : 284-292    https://doi.org/10.1007/s11684-019-0713-9
RESEARCH ARTICLE
Temporal echocardiography findings in patients with fulminant myocarditis: beyond ejection fraction decline
Houjuan Zuo1,2, Rui Li1,2, Fei Ma1,2, Jiangang Jiang1,2, Kun Miao1,2, Haojie Li3, Eike Nagel4, Marijana Tadic5, Hong Wang1,2(), Dao Wen Wang1,2()
1. Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
2. Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Wuhan 430030, China
3. Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
4. Institute for Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, University Hospital Frankfurt/Main, Frankfurt, Germany
5. Department of Internal Medicine and Cardiology, Charité–Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353 Berlin, Germany
 Download: PDF(1653 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The features of myocardial strains from speckle-tracking echocardiography (STE) have not been well defined in fulminant myocarditis (FM) patients. In this study, changes in the left ventricular ejection fraction (LVEF) and global and layer-specific myocardial strains over time were monitored. We aimed to determine the echocardiographic patterns of FM and ascertain their significance in FM treatment. Twenty patients who were clinically diagnosed with FM and received mechanical life support were prospectively enrolled. Conventional echocardiographic measurements were obtained, and serial strain echocardiography was performed from admission to hospital discharge until LVEF recovery (>50%). Global/regional peak systolic longitudinal strains (GLS/RLS) and layer-specific longitudinal strains were quantified, and their changes with time were monitored in 14 FM patients. All patients had severely impaired cardiac function. Steep improvement in LVEF and GLS were observed within 6 days. Layer-specific strain analysis showed that reduction at admission or recovery at discharge in the endocardium and epicardium strains were equal. In conclusion, FM patients who received mechanical circulatory supports exhibited steep improvement in ventricular function within 6 days. The patchy and diffused distribution pattern of reduced RLS and equally and severely impaired strain in the endocardium and epicardium are valuable features in the diagnosis of FM.

Keywords fulminant myocarditis      acute myocarditis      2D speckle tracking echocardiography      left ventricular function      global longitudinal strain     
Corresponding Author(s): Hong Wang,Dao Wen Wang   
Just Accepted Date: 10 October 2019   Online First Date: 19 December 2019    Issue Date: 08 June 2020
 Cite this article:   
Houjuan Zuo,Rui Li,Fei Ma, et al. Temporal echocardiography findings in patients with fulminant myocarditis: beyond ejection fraction decline[J]. Front. Med., 2020, 14(3): 284-292.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-019-0713-9
https://academic.hep.com.cn/fmd/EN/Y2020/V14/I3/284
Fig.1  CMR images of two patients with FM showed edema in the left ventricle. Short-axis view of cardiac MRI phase-sensitive inversion recovery sequence showing LGE in the wall. (A) A 19-year-old male and (B) another 17-year-old male with diffuse myocardial hyper-intense signal at T2WI (signal intensity ratio between myocardium and skeletal muscle= 3.5; arrows) and diffuse LGE pattern (arrows).
Male, n (%) 9 (45)
Age (year) 34±18
Height (cm) 164±5
Weight (kg) 63.5±9.2
Clinical presentation
Flu-like illness 20 (100%)
Fever 18 (90%)
Chest tightness 19 (95%)
Vomit 8 (40%)
Diarrhea 5 (25%)
Physical examinations
Systolic blood pressure (mmHg) 91±11
Diastolic blood pressure (mmHg) 59±10
Heart rate (bpm) 100±23
Temperature at admission (°C) 36.6±0.3
Laboratory findings
Leucocytes, 109/L 9.6±3.6
ESR (mm/h) 17.1±19.9
C-reactive protein (mg/L) 65.2±86.5
Peak troponin-T (pg/mL) 28 864.7±17 372.9
NT-proBNP (pg/mL) 17 019.2±16 796.4
ALT (U/L) 224.4±652.7
AST (U/L) 354.9±643.6
Creatinine (mmol/L) 83.7±43.7
Lactic acid (mmol/L) 2.8±1.1
Glucose (mg/dL) 8.4±1.6
ECG at admission
ST segment elevation, n (%) 8 (40)
Episodes of complete AV block during myocarditis, n (%) 5 (25)
Non-sustain ventricular tachycardia, n (%) 6 (30)
Coronary angiography performed, n (%) 7 (35)
In-hospital day (day) 12±4
Treatments in-hospital
Methylprednisolone, n (%) 20 (100)
Gamma globulin, n (%) 20 (100)
CRRT, n (%) 18 (90)
IABP, n (%) 20 (100)
ECMO, n (%) 5 (25)
Tab.1  Baseline clinical characteristics of patients with fulminant myocarditis ( total= 20)
Parameters Admission (n = 20) Hospital discharge (n = 20) P
IVS diastolic (cm) 1.07±0.19 1.05±0.18 0.336
IVS systolic (cm) 1.33±0.18 1.37±0.16 0.168
LVPW diastolic (cm) 1.03±0.21 1.01±0.16 0.345
LVPW systolic (cm) 1.27±0.19 1.34±0.13 0.057
LVEDD (cm) 4.53±0.47 4.5±0.52 0.316
LVESD (cm) 3.49±0.53 3.22±0.53 0.016
LVEDV (mL) 98.26±23.67 100.36±22.50 0.319
LVESV (mL) 63.57±19.71 47.26±14.92 <0.001
LA diameter (cm) 3.03±0.51 2.91±0.48 0.205
EF (%) 30±12 59±7 <0.001
FS (%) 15±6 32±6 <0.001
E 76.92±22.45 76.14±20.21 0.45
A 54.81±22.62 58.25±21.31 0.328
E/A 1.61±0.69 1.28±0.55 0.06
E/E' 18.74±11.6 11.22±3.46 0.008
Tab.2  Conventional echocardiographic parameters measurements
Parameters Admission (n = 14) Hospital discharge (n = 14) P
GLS (%) −8.45±3.83 −16.95±1.85 <0.001
Apical PSLS (%) −8.14±5.44 −19.21±3.98 <0.001
Mid PSLS (%) −8.48±3.70 −16.00±2.51 <0.001
Basal PSLS (%) −7.22±3.82 −13.93±4.40 <0.001
Mid and basal PSLS (%) −7.85±3.36 −14.97±3.15 <0.001
Tab.3  Strain analysis of FM between admission and hospital discharge
Fig.2  (A) Comparison of regional strain upon admission and hospital discharge. (B) Representative images of the regional strain distribution presented as “bull’s-eye” displays, showing strain changes in FM patient on day 1, day 5, and day10 of hospitalization. Fourteen of the twenty patients were enrolled for strain analysis, and six patients were excluded for the unanalyzable strain data. *P<0.05, ** P<0.001 compared with the values taken on admission.
Fig.3  Changes in EF and GLS with time at an interval of approximately 1 day were displayed in all FM patients. EF and GLS varied with time in FM patients. Fourteen of the twenty patients were enrolled for strain analysis, and six patients were excluded for the unanalyzable strain data. *P<0.05, ** P<0.001 compared with the values taken 1 day after admission.
Fig.4  (A) Quantification of the layer-specific strains upon admission and hospital discharge. No difference was observed between the epicardium and endocardium. *P<0.05 compared with the values obtained upon admission. (B) Representative bull’s-eye display of the layer-specific strains upon admission and hospital discharge. Endo, endocardium; Epi, epicardium.
1 S Sagar, PP Liu, LT Cooper Jr. Myocarditis. Lancet 2012; 379(9817): 738–747
https://doi.org/10.1016/S0140-6736(11)60648-X pmid: 22185868
2 HT Aretz, ME Billingham, WD Edwards, SM Factor, JT Fallon, JJ Fenoglio Jr, EG Olsen, FJ Schoen. Myocarditis. A histopathologic definition and classification. Am J Cardiovasc Pathol 1987; 1(1): 3–14
pmid: 3455232
3 G Fung, H Luo, Y Qiu, D Yang, B McManus. Myocarditis. Circ Res 2016; 118(3): 496–514
https://doi.org/10.1161/CIRCRESAHA.115.306573 pmid: 26846643
4 YS Chen, HY Yu, SC Huang, JW Lin, NH Chi, CH Wang, SS Wang, FY Lin, WJ Ko. Extracorporeal membrane oxygenation support can extend the duration of cardiopulmonary resuscitation. Crit Care Med 2008; 36(9): 2529–2535
https://doi.org/10.1097/CCM.0b013e318183f491 pmid: 18679121
5 SY Chung, JJ Sheu, YJ Lin, CK Sun, LT Chang, YL Chen, TH Tsai, CJ Chen, CH Yang, CL Hang, S Leu, CJ Wu, FY Lee, HK Yip. Outcome of patients with profound cardiogenic shock after cardiopulmonary resuscitation and prompt extracorporeal membrane oxygenation support. A single-center observational study. Circ J 2012; 76(6): 1385–1392
https://doi.org/10.1253/circj.CJ-11-1015 pmid: 22447007
6 S Saito, K Toda, S Miyagawa, Y Yoshikawa, H Hata, D Yoshioka, K Domae, Y Tsukamoto, Y Sakata, Y Sawa. Diagnosis, medical treatment, and stepwise mechanical circulatory support for fulminat myocarditis. J Artif Organs 2018; 21(2): 172–179
https://doi.org/10.1007/s10047-017-1011-4 pmid: 29236180
7 E Ammirati, M Cipriani, M Lilliu, P Sormani, M Varrenti, C Raineri, D Petrella, A Garascia, P Pedrotti, A Roghi, E Bonacina, A Moreo, M Bottiroli, MP Gagliardone, M Mondino, S Ghio, R Totaro, FM Turazza, CF Russo, F Oliva, PG Camici, M Frigerio. Survival and left ventricular function changes in fulminant versus nonfulminant acute myocarditis. Circulation 2017; 136(6): 529–545
https://doi.org/10.1161/CIRCULATIONAHA.117.026386 pmid: 28576783
8 R Cheng, R Hachamovitch, M Kittleson, J Patel, F Arabia, J Moriguchi, F Esmailian, B Azarbal. Clinical outcomes in fulminant myocarditis requiring extracorporeal membrane oxygenation: a weighted meta-analysis of 170 patients. J Card Fail 2014; 20(6): 400–406
https://doi.org/10.1016/j.cardfail.2014.03.005 pmid: 24642377
9 RE McCarthy 3rd, JP Boehmer, RH Hruban, GM Hutchins, EK Kasper, JM Hare, KL Baughman. Long-term outcome of fulminant myocarditis as compared with acute (nonfulminant) myocarditis. N Engl J Med 2000; 342(10): 690–695
https://doi.org/10.1056/NEJM200003093421003 pmid: 10706898
10 GM Felker, JP Boehmer, RH Hruban, GM Hutchins, EK Kasper, KL Baughman, JM Hare. Echocardiographic findings in fulminant and acute myocarditis. J Am Coll Cardiol 2000; 36(1): 227–232
https://doi.org/10.1016/S0735-1097(00)00690-2 pmid: 10898439
11 S Li, S Xu, C Li, X Ran, G Cui, M He, K Miao, C Zhao, J Yan, R Hui, N Zhou, Y Wang, J Jiang, J Zhang, D Wang. A life support-based comprehensive treatment regimen dramatically lowers the in-hospital mortality of patients with fulminant myocarditis: a multiple center study. Sci China Life Sci 2019; 62(3): 369–380
https://doi.org/10.1007/s11427-018-9501-9 pmid: 30850929
12 LT Cooper, KL Baughman, AM Feldman, A Frustaci, M Jessup, U Kuhl, GN Levine, J Narula, RC Starling, J Towbin, R Virmani; American Heart Association; American College of Cardiology; European Society of Cardiology; Heart Failure Society of America; Heart Failure Association of the European Society of Cardiology. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. J Am Coll Cardiol 2007; 50(19): 1914–1931
https://doi.org/10.1016/j.jacc.2007.09.008 pmid: 17980265
13 MG Friedrich, U Sechtem, J Schulz-Menger, G Holmvang, P Alakija, LT Cooper, JA White, H Abdel-Aty, M Gutberlet, S Prasad, A Aletras, JP Laissy, I Paterson, NG Filipchuk, A Kumar, M Pauschinger, P Liu; International Consensus Group on Cardiovascular Magnetic Resonance in Myocarditis. Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. J Am Coll Cardiol 2009; 53(17): 1475–1487
https://doi.org/10.1016/j.jacc.2009.02.007 pmid: 19389557
14 J Gorcsan 3rd, H Tanaka. Echocardiographic assessment of myocardial strain. J Am Coll Cardiol 2011; 58(14): 1401–1413
https://doi.org/10.1016/j.jacc.2011.06.038 pmid: 21939821
15 H Zuo, J Yan, H Zeng, W Li, P Li, Z Liu, G Cui, J Lv, D Wang, H Wang. Diagnostic power of longitudinal strain at rest for the detection of obstructive coronary artery disease in patients with type 2 diabetes mellitus. Ultrasound Med Biol 2015; 41(1): 89–98
https://doi.org/10.1016/j.ultrasmedbio.2014.08.011 pmid: 25438840
16 BB Løgstrup, JM Nielsen, WY Kim, SH Poulsen. Myocardial oedema in acute myocarditis detected by echocardiographic 2D myocardial deformation analysis. Eur Heart J Cardiovasc Imaging 2016; 17(9): 1018–1026
https://doi.org/10.1093/ehjci/jev302 pmid: 26588987
17 T Caspar, P Germain, S El Ghannudi, O Morel, H Samet, A Trinh, H Petit-Eisenmann, S Talha, M Fichot, L Jesel, P Ohlmann. Acute myocarditis diagnosed by layer-specific 2D longitudinal speckle tracking analysis. Echocardiography 2016; 33(1): 157–158
https://doi.org/10.1111/echo.13045 pmid: 26343232
18 Section of Precision Medical of Chinese Society of Cardiology of Chinese Medical Association; Editorial Board of Chinese Journal of Cardiology; Working Group on Adult Myocarditis. Chinese expert consensus statement on clinical diagnosis and treatment of fulminant myocarditis in adults. Chin J Cardiol (Zhonghua Xin Xue Guan Bing Za Zhi) 2017; 45: 742–752 (in Chinese)
https://doi.org/10.3760/cma.j.issn.0253-3758.2017.09.004 pmid: 29036971
19 D Wang, S Li, J Jiang, J Yan, C Zhao, Y Wang, Y Ma, H Zeng, X Guo, H Wang, J Tang, H Zuo, L Lin, G Cui; Section of Precision Medicine Group of Chinese Society of Cardiology, Editorial Board of Chinese Journal of Cardiology & Working Group of Adult Fulminant Myocarditis. Chinese society of cardiology expert consensus statement on the diagnosis and treatment of adult fulminant myocarditis. Sci China Life Sci 2019; 62(2):187–202
https://doi.org/10.1007/s11427-018-9385-3
20 Z Jing, W Hang, R Hui, Q Zhao, S Desai. China’s treatment regimen for fulminant myocarditis is bringing wonderful achievement to the world. Sci China Life Sci 2019; 62(2):282–284
https://doi.org/10.1007/s11427-018-9445-2
21 M Edin, D Zeldin. An improved protocol for the treatment of fulminant myocarditis. Sci China Life Sci 2019; 62(3):433–434
https://doi.org/10.1007/s11427-019-9507-x
22 B Maisch, V Ruppert, S Pankuweit. Management of fulminant myocarditis: a diagnosis in search of its etiology but with therapeutic options. Curr Heart Fail Rep 2014; 11(2): 166–177
https://doi.org/10.1007/s11897-014-0196-6 pmid: 24723087
23 E Ammirati, M Cipriani, PG Camici. New concepts in fulminant myocarditis and risk of cardiac mortality. Oncotarget 2017; 8(49): 84624–84625
https://doi.org/10.18632/oncotarget.21393 pmid: 29156663
24 JF Hsiao, Y Koshino, CR Bonnichsen, Y Yu, FA Miller Jr, PA Pellikka, LT Cooper Jr, HR Villarraga. Speckle tracking echocardiography in acute myocarditis. Int J Cardiovasc Imaging 2013; 29(2): 275–284
https://doi.org/10.1007/s10554-012-0085-6 pmid: 22736428
25 S Heymans, U Eriksson, J Lehtonen, LT Cooper Jr. The quest for new approaches in myocarditis and inflammatory cardiomyopathy. J Am Coll Cardiol 2016; 68(21): 2348–2364
https://doi.org/10.1016/j.jacc.2016.09.937 pmid: 27884253
26 F Escher, M Kasner, U Kühl, J Heymer, U Wilkenshoff, C Tschöpe, HP Schultheiss. New echocardiographic findings correlate with intramyocardial inflammation in endomyocardial biopsies of patients with acute myocarditis and inflammatory cardiomyopathy. Mediators Inflamm 2013; 2013: 875420
https://doi.org/10.1155/2013/875420 pmid: 23576857
27 L Longobardo, MC Todaro, C Zito, MC Piccione, G Di Bella, L Oreto, BK Khandheria, S Carerj. Role of imaging in assessment of atrial fibrosis in patients with atrial fibrillation: state-of-the-art review. Eur Heart J Cardiovasc Imaging 2014; 15(1): 1–5
https://doi.org/10.1093/ehjci/jet116 pmid: 23798579
28 P Lurz, I Eitel, B Klieme, C Luecke, S de Waha, S Desch, G Fuernau, K Klingel, R Kandolf, M Grothoff, G Schuler, M Gutberlet, H Thiele. The potential additional diagnostic value of assessing for pericardial effusion on cardiac magnetic resonance imaging in patients with suspected myocarditis. Eur Heart J Cardiovasc Imaging 2014; 15(6): 643–650
https://doi.org/10.1093/ehjci/jet267 pmid: 24378485
29 JL Robinson, L Hartling, E Crumley, B Vandermeer, TP Klassen. A systematic review of intravenous gamma globulin for therapy of acute myocarditis. BMC Cardiovasc Disord 2005; 5(1): 12
https://doi.org/10.1186/1471-2261-5-12 pmid: 15932639
30 GC Bhatt, J Sankar, KP Kushwaha. Use of intravenous immunoglobulin compared with standard therapy is associated with improved clinical outcomes in children with acute encephalitis syndrome complicated by myocarditis. Pediatr Cardiol 2012; 33(8): 1370–1376
https://doi.org/10.1007/s00246-012-0350-4 pmid: 22588459
31 J Schulz-Menger, B Maisch, H Abdel-Aty, S Pankuweit. Integrated biomarkers in cardiomyopathies: cardiovascular magnetic resonance imaging combined with molecular and immunologic markers—a stepwise approach for diagnosis and treatment. Herz 2007; 32(6): 458–472
https://doi.org/10.1007/s00059-007-3046-4 pmid: 17882371
32 A Frustaci, MA Russo, C Chimenti. Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: the TIMIC study. Eur Heart J 2009; 30(16): 1995–2002
https://doi.org/10.1093/eurheartj/ehp249 pmid: 19556262
33 Y Asaumi, S Yasuda, I Morii, H Kakuchi, Y Otsuka, A Kawamura, Y Sasako, T Nakatani, H Nonogi, S Miyazaki. Favourable clinical outcome in patients with cardiogenic shock due to fulminant myocarditis supported by percutaneous extracorporeal membrane oxygenation. Eur Heart J 2005; 26(20): 2185–2192
https://doi.org/10.1093/eurheartj/ehi411 pmid: 16014643
[1] FMD-19022-OF-WDW_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed