Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2019, Vol. 13 Issue (5) : 610-617    https://doi.org/10.1007/s11684-019-0714-8
RESEARCH ARTICLE
Management of cytokine release syndrome related to CAR-T cell therapy
Hongli Chen1, Fangxia Wang1, Pengyu Zhang1, Yilin Zhang1, Yinxia Chen1, Xiaohu Fan2, Xingmei Cao1, Jie Liu1, Yun Yang1, Baiyan Wang1, Bo Lei1, Liufang Gu1, Ju Bai1, Lili Wei1, Ruili Zhang1, Qiuchuan Zhuang2, Wanggang Zhang1(), Wanhong Zhao1(), Aili He1()
1. Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
2. Nanjing Legend Biotech Inc., Nanjing 210000, China
 Download: PDF(630 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Chimeric antigen receptor T (CAR-T) cell therapy is a novel cellular immunotherapy that is widely used to treat hematological malignancies, including acute leukemia, lymphoma, and multiple myeloma. Despite its remarkable clinical effects, this therapy has side effects that cannot be underestimated. Cytokine release syndrome (CRS) is one of the most clinically important and potentially life-threatening toxicities. This syndrome is a systemic immune storm that involves the mass cytokines releasing by activated immune cells. This phenomenon causes multisystem damages and sometimes even death. In this study, we reported the management of a patient with recurrent and refractory multiple myeloma and three patients with acute lymphocytic leukemia who suffered CRS during CAR-T treatment. The early application of tocilizumab, an anti-IL-6 receptor antibody, according to toxicity grading and clinical manifestation is recommended especially for patients who suffer continuous hyperpyrexia, hypotensive shock, acute respiratory failure, and whose CRS toxicities deteriorated rapidly. Moreover, low doses of dexamethasone (5–10 mg/day) were used for refractory CRS not responding to tocilizumab. The effective management of the toxicities associated with CRS will bring additional survival opportunities and improve the quality of life for patients with cancer.

Keywords chimeric antigen receptor T cell      cytokine release syndrome      tocilizumab     
Corresponding Author(s): Wanggang Zhang,Wanhong Zhao,Aili He   
Just Accepted Date: 30 August 2019   Online First Date: 29 September 2019    Issue Date: 14 October 2019
 Cite this article:   
Hongli Chen,Fangxia Wang,Pengyu Zhang, et al. Management of cytokine release syndrome related to CAR-T cell therapy[J]. Front. Med., 2019, 13(5): 610-617.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-019-0714-8
https://academic.hep.com.cn/fmd/EN/Y2019/V13/I5/610
Grade Toxicity
I Symptoms, e.g., fever, nausea, fatigue, headache, myalgia, and malaise, requiring only symptomatic management
II Symptoms responding to moderate intervention, including oxygen requirement<40%, grade 2 organ toxicity, or hypotension responding to IV fluids or low doses of one vasopressor (e.g.,<20 mg/min of norepinephrine)
III Oxygen requirement>40%, hypotension requiring high-dose or multiple vasopressors, grade 4 transaminitis, and grade 3 organ toxicity at other sites
IV Life-threatening symptoms requiring ventilator support or grade 4 organ toxicity other than transaminitis
V Death
Tab.1  CRS grading system
Fig.1  Cytokine changes in case 1 with grade 3 CRS. IL-2R, IL-6, IL-8, IL-10, and TNF-α were significantly elevated through days 8 to 13 (IL-6>123-fold and IL-10>89-fold over baseline levels). Tocilizumab was given at a dose of 8 mg/kg on day 10.
Fig.2  Cytokine changes in case 2 with grade 3 CRS. IL-2R, IL-6, IL-8, IL-10, and TNF-α were significantly elevated through days 10 to 17 (IL-6>294-fold, IL-8>20-fold, and IL-10>20-fold over baseline levels). Tocilizumab was administered at a dose of 4 mg/kg on days 13 and 14.
Fig.3  Cytokine changes in case 3 with grade 3 CRS. IL-2R, IL-6, IL-8, IL-10, and TNF-α were significantly elevated on days 11 to 15 (IL-6>294-fold and IL-10>109-fold over baseline levels). Tocilizumab was administered at a dose of 4 mg/kg on days 11 and 12. Dexamethasone was provided at a dose of 10 mg/day on days 10, 13, and 14.
Fig.4  Cytokine changes in case 4 with grade 2 CRS. IL-2R, IL-6, IL-8, IL-10, and TNF-α were significantly elevated through days 9 to 15 (IL-6>185-fold and IL-10>36-fold). Tocilizumab was administered at a dose of 4 mg/kg on days 12 and 13. Dexamethasone was administered at a dose of 10 mg/day on day 16.
1 S Srivastava, SR Riddell. Engineering CAR-T cells: design concepts. Trends Immunol 2015; 36(8): 494–502
https://doi.org/10.1016/j.it.2015.06.004 pmid: 26169254
2 M Sadelain, R Brentjens, I Rivière. The basic principles of chimeric antigen receptor design. Cancer Discov 2013; 3(4): 388–398
https://doi.org/10.1158/2159-8290.CD-12-0548 pmid: 23550147
3 M Cartellieri, M Bachmann, A Feldmann, C Bippes, S Stamova, R Wehner, A Temme, M Schmitz. Chimeric antigen receptor-engineered T cells for immunotherapy of cancer. J Biomed Biotechnol 2010; 2010: 956304
https://doi.org/10.1155/2010/956304 pmid: 20467460
4 JN Brudno, JN Kochenderfer. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood 2016; 127(26): 3321–3330
https://doi.org/10.1182/blood-2016-04-703751 pmid: 27207799
5 ML Davila, I Riviere, X Wang, S Bartido, J Park, K Curran, SS Chung, J Stefanski, O Borquez-Ojeda, M Olszewska, J Qu, T Wasielewska, Q He, M Fink, H Shinglot, M Youssif, M Satter, Y Wang, J Hosey, H Quintanilla, E Halton, Y Bernal, DC Bouhassira, ME Arcila, M Gonen, GJ Roboz, P Maslak, D Douer, MG Frattini, S Giralt, M Sadelain, R Brentjens. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 2014; 6(224): 224ra25
https://doi.org/10.1126/scitranslmed.3008226 pmid: 24553386
6 DW Lee, JN Kochenderfer, M Stetler-Stevenson, YK Cui, C Delbrook, SA Feldman, TJ Fry, R Orentas, M Sabatino, NN Shah, SM Steinberg, D Stroncek, N Tschernia, C Yuan, H Zhang, L Zhang, SA Rosenberg, AS Wayne, CL Mackall. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 2015; 385(9967): 517–528
https://doi.org/10.1016/S0140-6736(14)61403-3 pmid: 25319501
7 SL Maude, N Frey, PA Shaw, R Aplenc, DM Barrett, NJ Bunin, A Chew, VE Gonzalez, Z Zheng, SF Lacey, YD Mahnke, JJ Melenhorst, SR Rheingold, A Shen, DT Teachey, BL Levine, CH June, DL Porter, SA Grupp. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014; 371(16): 1507–1517
https://doi.org/10.1056/NEJMoa1407222 pmid: 25317870
8 DW Lee, R Gardner, DL Porter, CU Louis, N Ahmed, M Jensen, SA Grupp, CL Mackall. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014; 124(2): 188–195
https://doi.org/10.1182/blood-2014-05-552729 pmid: 24876563
9 SS Neelapu, S Tummala, P Kebriaei, W Wierda, C Gutierrez, FL Locke, KV Komanduri, Y Lin, N Jain, N Daver, J Westin, AM Gulbis, ME Loghin, JF de Groot, S Adkins, SE Davis, K Rezvani, P Hwu, EJ Shpall. Chimeric antigen receptor T-cell therapy — assessment and management of toxicities. Nat Rev Clin Oncol 2018; 15(1): 47–62
https://doi.org/10.1038/nrclinonc.2017.148 pmid: 28925994
10 KA Hay, LA Hanafi, D Li, J Gust, WC Liles. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood 2017; 130(21): 2295–2306
https://doi.org/10.1182/blood-2017-06-793141 PMID:28924019
11 DL Porter, WT Hwang, NV Frey, SF Lacey, PA Shaw, AW Loren, A Bagg, KT Marcucci, A Shen, V Gonzalez, D Ambrose, SA Grupp, A Chew, Z Zheng, MC Milone, BL Levine, JJ Melenhorst, CH June. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med 2015; 7(303): 303ra139
https://doi.org/10.1126/scitranslmed.aac5415 pmid: 26333935
12 SA Grupp, M Kalos, D Barrett, R Aplenc, DL Porter, SR Rheingold, DT Teachey, A Chew, B Hauck, JF Wright, MC Milone, BL Levine, CH June. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013; 368(16): 1509–1518
https://doi.org/10.1056/NEJMoa1215134 pmid: 23527958
13 CJ Turtle, LA Hanafi, C Berger, TA Gooley, S Cherian, M Hudecek, D Sommermeyer, K Melville, B Pender, TM Budiarto, E Robinson, NN Steevens, C Chaney, L Soma, X Chen, C Yeung, B Wood, D Li, J Cao, S Heimfeld, MC Jensen, SR Riddell, DG Maloney. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest 2016; 126(6): 2123–2138
https://doi.org/10.1172/JCI85309 pmid: 27111235
14 JN Kochenderfer, ME Dudley, SH Kassim, RP Somerville, RO Carpenter, M Stetler-Stevenson, JC Yang, GQ Phan, MS Hughes, RM Sherry, M Raffeld, S Feldman, L Lu, YF Li, LT Ngo, A Goy, T Feldman, DE Spaner, ML Wang, CC Chen, SM Kranick, A Nath, DA Nathan, KE Morton, MA Toomey, SA Rosenberg. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 2015; 33(6): 540–549
https://doi.org/10.1200/JCO.2014.56.2025 pmid: 25154820
15 AL Garfall, MV Maus, WT Hwang, SF Lacey, YD Mahnke, JJ Melenhorst, Z Zheng, DT Vogl, AD Cohen, BM Weiss, K Dengel, ND Kerr, A Bagg, BL Levine, CH June, EA Stadtmauer. Chimeric antigen receptor T cells against CD19 for multiple myeloma. N Engl J Med 2015; 373(11): 1040–1047
https://doi.org/10.1056/NEJMoa1504542 pmid: 26352815
16 DT Teachey, SF Lacey, PA Shaw, JJ Melenhorst, SL Maude, N Frey, E Pequignot, VE Gonzalez, F Chen, J Finklestein, DM Barrett, SL Weiss, JC Fitzgerald, RA Berg, R Aplenc, C Callahan, SR Rheingold, Z Zheng, S Rose-John, JC White, F Nazimuddin, G Wertheim, BL Levine, CH June, DL Porter, SA Grupp. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov 2016; 6(6): 664–679
https://doi.org/10.1158/2159-8290.CD-16-0040 pmid: 27076371
17 RJ Brentjens, ML Davila, I Riviere, J Park, X Wang, LG Cowell, S Bartido, J Stefanski, C Taylor, M Olszewska, O Borquez-Ojeda, J Qu, T Wasielewska, Q He, Y Bernal, IV Rijo, C Hedvat, R Kobos, K Curran, P Steinherz, J Jurcic, T Rosenblat, P Maslak, M Frattini, M Sadelain. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013; 5(177): 177ra38
https://doi.org/10.1126/scitranslmed.3005930 pmid: 23515080
18 JL Tanyi, C Stashwick, G Plesa, MA Morgan, D Porter, MV Maus, CH June. Possible compartmental cytokine release syndrome in a patient with recurrent ovarian cancer after treatment with mesothelin-targeted CAR-T cells. J Immunother 2017; 40(3): 104–107
https://doi.org/10.1097/CJI.0000000000000160 pmid: 28234665
19 JN Brudno, I Maric, SD Hartman, JJ Rose, M Wang, N Lam, M Stetler-Stevenson, D Salem, C Yuan, S Pavletic, JA Kanakry, SA Ali, L Mikkilineni, SA Feldman, DF Stroncek, BG Hansen, J Lawrence, R Patel, F Hakim, RE Gress, JN Kochenderfer. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J Clin Oncol 2018; 36(22): 2267–2280
https://doi.org/10.1200/JCO.2018.77.8084 pmid: 29812997
20 SA Ali, V Shi, I Maric, M Wang, DF Stroncek, JJ Rose, JN Brudno, M Stetler-Stevenson, SA Feldman, BG Hansen, VS Fellowes, FT Hakim, RE Gress, JN Kochenderfer. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood 2016; 128(13): 1688–1700
https://doi.org/10.1182/blood-2016-04-711903 pmid: 27412889
21 RQ Le, L Li, W Yuan, SS Shord, L Nie, BA Habtemariam, D Przepiorka, AT Farrell, R Pazdur. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncologist 2018; 23(8): 943–947
https://doi.org/10.1634/theoncologist.2018-0028 pmid: 29622697
22 N Nishimoto, K Terao, T Mima, H Nakahara, N Takagi, T Kakehi. Mechanisms and pathologic significances in increase in serum interleukin-6 (IL-6) and soluble IL-6 receptor after administration of an anti-IL-6 receptor antibody, tocilizumab, in patients with rheumatoid arthritis and Castleman disease. Blood 2008; 112(10): 3959–3964
https://doi.org/10.1182/blood-2008-05-155846 pmid: 18784373
23 MV Maus, BL Levine. Chimeric antigen receptor T-cell therapy for the community oncologist. Oncologist 2016; 21(5): 608–617
https://doi.org/10.1634/theoncologist.2015-0421 pmid: 27009942
24 JN Brudno, RP Somerville, V Shi, JJ Rose, DC Halverson, DH Fowler, JC Gea-Banacloche, SZ Pavletic, DD Hickstein, TL Lu, SA Feldman, AT Iwamoto, R Kurlander, I Maric, A Goy, BG Hansen, JS Wilder, B Blacklock-Schuver, FT Hakim, SA Rosenberg, RE Gress, JN Kochenderfer. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J Clin Oncol 2016; 34(10): 1112–1121
https://doi.org/10.1200/JCO.2015.64.5929 pmid: 26811520
25 R Brentjens, R Yeh, Y Bernal, I Riviere, M Sadelain. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther 2010; 18(4): 666–668
https://doi.org/10.1038/mt.2010.31 pmid: 20357779
26 JN Kochenderfer, ME Dudley, SA Feldman, WH Wilson, DE Spaner, I Maric, M Stetler-Stevenson, GQ Phan, MS Hughes, RM Sherry, JC Yang, US Kammula, L Devillier, R Carpenter, DA Nathan, RA Morgan, C Laurencot, SA Rosenberg. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 2012; 119(12): 2709–2720
https://doi.org/10.1182/blood-2011-10-384388 pmid: 22160384
27 SL Maude, D Barrett, DT Teachey, SA Grupp. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J 2014; 20(2): 119–122
https://doi.org/10.1097/PPO.0000000000000035 pmid: 24667956
28 DM Barrett, DT Teachey, SA Grupp. Toxicity management for patients receiving novel T-cell engaging therapies. Curr Opin Pediatr 2014; 26(1): 43–49
https://doi.org/10.1097/MOP.0000000000000043 pmid: 24362408
29 M Casucci, RE Hawkins, G Dotti, A Bondanza. Overcoming the toxicity hurdles of genetically targeted T cells. Cancer Immunol Immunother 2015; 64(1): 123–130
https://doi.org/10.1007/s00262-014-1641-9 pmid: 25488419
[1] Ping Li, Ningxin Dong, Yu Zeng, Jie Liu, Xiaochen Tang, Junbang Wang, Wenjun Zhang, Shiguang Ye, Lili Zhou, Alex Hongsheng Chang, Aibin Liang. Chimeric antigen receptor T-cell therapy: a promising treatment modality for relapsed/refractory mantle cell lymphoma[J]. Front. Med., 2020, 14(6): 811-815.
[2] Lili Zhou, Ping Li, Shiguang Ye, Xiaochen Tang, Junbang Wang, Jie Liu, Aibin Liang. Different sites of extranodal involvement may affect the survival of patients with relapsed or refractory non-Hodgkin lymphoma after chimeric antigen receptor T cell therapy[J]. Front. Med., 2020, 14(6): 786-791.
[3] Houli Zhao, Yiyun Wang, Elaine Tan Su Yin, Kui Zhao, Yongxian Hu, He Huang. A giant step forward: chimeric antigen receptor T-cell therapy for lymphoma[J]. Front. Med., 2020, 14(6): 711-725.
[4] Qiaoshuai Lan, Shuai Xia, Qian Wang, Wei Xu, Haiyan Huang, Shibo Jiang, Lu Lu. Development of oncolytic virotherapy: from genetic modification to combination therapy[J]. Front. Med., 2020, 14(2): 160-184.
[5] Zhao Zhang, Jun Jiang, Xiaodong Wu, Mengyao Zhang, Dan Luo, Renyu Zhang, Shiyou Li, Youwen He, Huijie Bian, Zhinan Chen. Chimeric antigen receptor T cell targeting EGFRvIII for metastatic lung cancer therapy[J]. Front. Med., 2019, 13(1): 57-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed