Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2020, Vol. 14 Issue (1) : 51-59    https://doi.org/10.1007/s11684-019-0720-x
RESEARCH ARTICLE
Characteristics of compensatory mutations in the rpoC gene and their association with compensated transmission of Mycobacterium tuberculosis
Shengfen Wang1, Yang Zhou1, Bing Zhao1, Xichao Ou1, Hui Xia1, Yang Zheng1, Yuanyuan Song1, Qian Cheng1, Xinyang Wang1,2, Yanlin Zhao1()
1. National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
2. Department of Microbiology, Basic Medicine College, Harbin Medical University, Harbin 150081, China
 Download: PDF(261 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The aim of this study was to characterize rpoC gene mutations in Mycobacterium tuberculosis (MTB) and investigate the factors associated with rpoC mutations and the relation between rpoC mutations and tuberculosis (TB) transmission. A total of 245 MTB clinical isolates from patients with TB in six provinces and two municipalities in China were characterized based on gene mutations through DNA sequencing of rpoC and rpoB genes, phenotyping via standard drug susceptibility testing, and genotypic profiling by mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing. Approximately 36.4% of the rifampin-resistant isolates harbored nonsynonymous mutations in the rpoC gene. Twenty-nine nonsynonymous single mutations and three double mutations were identified. The rpoC mutations at locus 483 (11.3%) were predominant, and the mutations at V483G, W484G, I491V, L516P, L566R, N698K, and A788E accounted for 54.5% of the total detected mutations. Fifteen new mutations in the rpoC gene were identified. Rifampin resistance and rpoB mutations at locus 531 were significantly associated with rpoC mutations. MIRU-VNTR genotype results indicated that 18.4% of the studied isolates were clustered, and the rpoC mutations were not significantly associated with MIRU-VNTR clusters. A large proportion of rpoC mutation was observed in the rifampicin-resistant MTB isolates. However, the findings of this study do not support the association of rpoC mutation with compensated transmissibility.

Keywords tuberculosis      drug resistance      compensatory mutations      transmission     
Corresponding Author(s): Yanlin Zhao   
Just Accepted Date: 19 December 2019   Online First Date: 15 January 2020    Issue Date: 02 March 2020
 Cite this article:   
Shengfen Wang,Yang Zhou,Bing Zhao, et al. Characteristics of compensatory mutations in the rpoC gene and their association with compensated transmission of Mycobacterium tuberculosis[J]. Front. Med., 2020, 14(1): 51-59.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-019-0720-x
https://academic.hep.com.cn/fmd/EN/Y2020/V14/I1/51
Nonsynonymous (s) in the rpoC gene Mutation (s) at codon (s) No. (%) of strains References Mutations in RRDR of rpoB gene
E275G 275 1 (0.7) Not reported H526L
G332R 332 1 (0.7) [14, 16, 21, 22] S531L
G332S 332 1 (0.7) [23, 16] S531L
G388A 388 1 (0.7) [15] H526D
G433C 433 1 (0.7) [15, 22] S531L
M447V 447 1 (0.7) Not reported H526L
V483A 483 1 (0.7) [1416, 2224] S531L
V483G 483 16 (10.6) [1416, 2124] D516V (1 strain)
S531W (1 strain)
No mutation (1 strain)
S531L (13 strains)
W484G 484 3 (2.0) [15, 16, 19, 22] S531L
D485Y 485 1 (0.7) [14, 16, 22] L511P
I491T 491 1 (0.7) [14, 15, 19, 21, 22] S531L
I491V 491 2 (1.3) [15, 16, 22, 23] S531L
A492V 492 1 (0.7) [15] S531L
L516P 516 2 (1.3) [16, 19, 22, 23] S531L
A521D 521 1 (0.7) [15, 16, 22, 23] S531L
A521V 521 1 (0.7) Not reported S531L
S561P 561 1 (0.7) [15, 22, 24] H526R
L566R 566 2 (1.3) Not reported S522L
N698K 698 3 (2.0) [15, 16, 19, 22] S531L
A701T 701 1 (0.7) Not reported TTC insert between loci 514 and 515
A788E 788 2 (1.3) Not reported H526y
T845A 845 1 (0.7) Not reported H526R
Y921C 921 1 (0.7) Not reported H526Y
D943G 943 1 (0.7) [22] H526N
Y979C 979 1 (0.7) Not reported H526D
I991S 991 1 (0.7) Not reported D516Y
V1039A 1039 1 (0.7) Not reported S531L
S1115L 1115 1 (0.7) Not reported S531L
V1252L 1252 1 (0.7) [16, 22] L533P, F505L
Q1160P, T812I 1160 and 812 1 (0.7) Not reported S531L, L511P
A519D, I997V 519 and 997 1 (0.7) Not reported S531L
E154D, A492P 154 and 492 1 (0.7) Not reported S531L
Tab.1  Profile of nonsynonymous mutations in the rpoC and rpoB genes of rifampin-resistant strains
Fig.1  Schematic of rpoC mutations at different loci of the RRDR of the rpoB gene. rpoC mutations in red indicate that the mutations have not been reported previously, and those in black indicate that the mutations have been reported. Mutations with a blue and yellow background indicate identical mutations and double mutations at the RRDR loci of the rpoB gene, respectively.
Factors No. (%) of isolates Univariate analysis Multivariate analysis
No rpoC mutation rpoC with mutation OR (95%CI) P value for OR Adjusted OR (95% CI) P value for adjusted OR
Age
<30 years 45 (77.59) 13 (22.41) 1.0 1.0
30–60 years 102 (73.91) 36 (26.0) 1.222 (0.592–2.522) 0.5881 1.711 (0.720–4.065) 0.2238
≥60 years 38 (79.17) 10 (20.83) 0.911 (0.359–2.310) 0.8443 1.283 (0.432–3.812) 0.6537
Gender
Male 137 (74.86) 46 (25.14) 1.0 1.0
Female 48 (78.69) 13 (21.31) 0.807 (0.401–1.621) 0.5462 0.835 (0.375–1.862) 0.6600
Treatment history
New 94 (75.20) 31 (24.80) 1.0 1.0
Retreatment 90 (76.27) 28 (23.73) 0.943 (0.524–1.697) 0.8457 0.715 (0.357–1.430) 0.3428
Strain family
Non-Beijing 37 (78.72) 10 (21.28) 1.0 1.0
Beijing 149 (75.25) 49 (24.75) 1.217 (0.564–2.627) 0.6173 0.864 (0.342–2.186) 0.7581
RMP susceptibility
Susceptible 90 (95.74) 4 (4.26) 1.0 1.0
Monoresistant or MDR 64 (62.14) 39 (37.86) 13.706 (4.666–40.263) <0.0001 8.415 (2.658–26.642) 0.0003
Pre-XDR or XDR 32 (66.67) 16 (33.33) 11.246 (3.499–36.141) <0.0001 6.968 (1.901–25.540) 0.0034
rpoB mutation
No mutation or mutation(s) at loci other than locus 531 150 (86.71) 23 (13.29) 1.0 1.0
Point mutation at locus 531 only 36 (50.00) 36 (50.00) 6.522 (3.448–12.334) <0.0001 3.464 (1.700–7.058) 0.0006
Tab.2  Factors associated with nonsynonymous mutations in the rpoC gene
Factors No. (%) of isolates Univariate analysis Multivariate analysis
Not in the VNTR cluster In the VNTR cluster OR (95% CI) P value for OR Adjusted OR
(95% CI)
P value for adjusted OR
Age
<30 years 45 (77.59) 13 (22.41) 1.0 1.0
30–60 years 102 (73.91) 36 (26.09) 1.088 (0.500–2.364) 0.8322 1.528 (0.657–3.554) 0.3245
≥60years 38 (79.17) 10 (20.83) 0.610 (0.208–1.794) 0.3695 0.787 (0.254–2.442) 0.6789
Gender
Male 151 (82.51) 32 (17.49) 1.0 1.0
Female 48 (78.69) 13 (21.31) 1.278 (0.621–2.630) 0.5053 1.232 (0.576–2.636) 0.5905
Treatment history
New 97 (77.60) 28 (22.40) 1.0 1.0
Retreatment 101 (85.59) 17 (14.41) 0.583 (0.300–1.133) 0.1113 0.500 (0.245–1.023) 0.0578
Strain family
Non-Beijing 43 (91.49) 4 (8.51) 1.0 1.0
Beijing 157 (79.29) 41 (20.71) 2.807 (0.953–8.270) 0.0612 2.401 (0.787–7.323) 0.1238
RMP phenotype
RMP sensitive 82 (87.23) 12 (12.77) 1.0 1.0
Monoresistant or MDR 82 (79.61) 21 (20.39) 1.750 (0.808–3.789) 0.1556 1.457 (0.596–3.562) 0.4091
Pre-XDR or XDR 36 (75.00) 12 (25.00) 2.278 (0.934–5.552) 0.0702 2.133 (0.739–6.156) 0.1613
rpoB mutation
No mutation or mutation(s) at locus other than locus 531 145 (83.82) 28 (16.18) 1.0 1.0
Point mutation at locus 531 only 55 (76.39) 17 (23.61) 1.601 (0.813–3.153) 0.1735 1.109 (0.479–2.567) 0.8095
rpoC mutation
No rpoC mutation 156 (83.87) 30 (16.13) 1.0 1.0
rpoC mutation 44 (74.58) 15 (25.42) 1.773 (0.877–3.585) 0.1111 1.362 (0.609–3.047) 0.4519
Tab.3  Logistic regression analysis for risk factors associated with MIRU-VNTR clusters
1 C Yang, X Shen, Y Peng, R Lan, Y Zhao, B Long, T Luo, G Sun, X Li, K Qiao, X Gui, J Wu, J Xu, F Li, D Li, F Liu, M Shen, J Hong, J Mei, K DeRiemer, Q Gao. Transmission of Mycobacterium tuberculosis in China: a population-based molecular epidemiologic study. Clin Infect Dis 2015; 61(2): 219–227
https://doi.org/10.1093/cid/civ255 pmid: 25829000
2 C Yang, T Luo, X Shen, J Wu, M Gan, P Xu, Z Wu, S Lin, J Tian, Q Liu, Z Yuan, J Mei, K DeRiemer, Q Gao. Transmission of multidrug-resistant Mycobacterium tuberculosis in Shanghai, China: a retrospective observational study using whole-genome sequencing and epidemiological investigation. Lancet Infect Dis 2017; 17(3): 275–284
https://doi.org/10.1016/S1473-3099(16)30418-2 pmid: 27919643
3 S Gagneux, CD Long, PM Small, T Van, GK Schoolnik, BJ Bohannan. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 2006; 312(5782): 1944–1946
https://doi.org/10.1126/science.1124410 pmid: 16809538
4 DH Mariam, Y Mengistu, SE Hoffner, DI Andersson. Effect of rpoB mutations conferring rifampin resistance on fitness of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2004; 48(4): 1289–1294
https://doi.org/10.1128/AAC.48.4.1289-1294.2004 pmid: 15047531
5 GM Knight, C Colijn, S Shrestha, M Fofana, F Cobelens, RG White, DW Dowdy, T Cohen. The distribution of fitness costs of resistance-conferring mutations is a key determinant for the future burden of drug-resistant tuberculosis: a model-based analysis. Clin Infect Dis 2015; 61(Suppl 3): S147–S154
https://doi.org/10.1093/cid/civ579 pmid: 26409276
6 T Cohen, M Murray. Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness. Nat Med 2004; 10(10): 1117–1121
https://doi.org/10.1038/nm1110 pmid: 15378056
7 SM Blower, T Chou. Modeling the emergence of the ‘hot zones’: tuberculosis and the amplification dynamics of drug resistance. Nat Med 2004; 10(10): 1111–1116
https://doi.org/10.1038/nm1102 pmid: 15378053
8 K Tang, H Sun, Y Zhao, J Guo, C Zhang, Q Feng, Y He, M Luo, Y Li, Q Sun. Characterization of rifampin-resistant isolates of Mycobacterium tuberculosis from Sichuan in China. Tuberculosis (Edinb) 2013; 93(1): 89–95
https://doi.org/10.1016/j.tube.2012.10.009 pmid: 23149305
9 G Brandis, F Pietsch, R Alemayehu, D Hughes. Comprehensive phenotypic characterization of rifampicin resistance mutations in Salmonella provides insight into the evolution of resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 2015; 70(3): 680–685
https://doi.org/10.1093/jac/dku434 pmid: 25362573
10 D Hughes, G Brandis. Rifampicin resistance: fitness costs and the significance of compensatory evolution. Antibiotics (Basel) 2013; 2(2): 206–216
https://doi.org/10.1093/jac/dkt224 pmid: 23759506
11 G Brandis, M Wrande, L Liljas, D Hughes. Fitness-compensatory mutations in rifampicin-resistant RNA polymerase. Mol Microbiol 2012; 85(1): 142–151
https://doi.org/10.1111/j.1365-2958.2012.08099.x pmid: 22646234
12 S Maisnier-Patin, DI Andersson. Adaptation to the deleterious effects of antimicrobial drug resistance mutations by compensatory evolution. Res Microbiol 2004; 155(5): 360–369
https://doi.org/10.1016/j.resmic.2004.01.019 pmid: 15207868
13 G Brandis, D Hughes. Genetic characterization of compensatory evolution in strains carrying rpoB Ser531Leu, the rifampicin resistance mutation most frequently found in clinical isolates. J Antimicrob Chemother 2013; 68(11): 2493–2497
https://doi.org/10.1093/jac/dkt224 pmid: 23759506
14 M de Vos, B Müller, S Borrell, PA Black, PD van Helden, RM Warren, S Gagneux, TC Victor. Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob Agents Chemother 2013; 57(2): 827–832
https://doi.org/10.1128/AAC.01541-12 pmid: 23208709
15 QJ Li, WW Jiao, QQ Yin, F Xu, JQ Li, L Sun, J Xiao, YJ Li, I Mokrousov, HR Huang, AD Shen. Compensatory mutations of rifampin resistance are associated with transmission of multidrug-resistant Mycobacterium tuberculosis Beijing genotype strains in China. Antimicrob Agents Chemother 2016; 60(5): 2807–2812
https://doi.org/10.1128/AAC.02358-15 pmid: 26902762
16 Q Liu, T Zuo, P Xu, Q Jiang, J Wu, M Gan, C Yang, R Prakash, G Zhu, HE Takiff, Q Gao. Have compensatory mutations facilitated the current epidemic of multidrug-resistant tuberculosis? Emerg Microbes Infect 2018; 7(1): 98–105
https://doi.org/10.1038/s41426-018-0101-6 pmid: 29872078
17 MB Reed, VK Pichler, F McIntosh, A Mattia, A Fallow, S Masala, P Domenech, A Zwerling, L Thibert, D Menzies, K Schwartzman, MA Behr. Major Mycobacterium tuberculosis lineages associate with patient country of origin. J Clin Microbiol 2009; 47(4): 1119–1128
https://doi.org/10.1128/JCM.02142-08 pmid: 19213699
18 P Supply, C Allix, S Lesjean, M Cardoso-Oelemann, S Rüsch-Gerdes, E Willery, E Savine, P de Haas, H van Deutekom, S Roring, P Bifani, N Kurepina, B Kreiswirth, C Sola, N Rastogi, V Vatin, MC Gutierrez, M Fauville, S Niemann, R Skuce, K Kremer, C Locht, D van Soolingen. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 2006; 44(12): 4498–4510
https://doi.org/10.1128/JCM.01392-06 pmid: 17005759
19 I Comas, S Borrell, A Roetzer, G Rose, B Malla, M Kato-Maeda, J Galagan, S Niemann, S Gagneux. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 2011; 44(1): 106–110
https://doi.org/10.1038/ng.1038 pmid: 22179134
20 MR Farhat, BJ Shapiro, KJ Kieser, R Sultana, KR Jacobson, TC Victor, RM Warren, EM Streicher, A Calver, A Sloutsky, D Kaur, JE Posey, B Plikaytis, MR Oggioni, JL Gardy, JC Johnston, M Rodrigues, PK Tang, M Kato-Maeda, ML Borowsky, B Muddukrishna, BN Kreiswirth, N Kurepina, J Galagan, S Gagneux, B Birren, EJ Rubin, ES Lander, PC Sabeti, M Murray. Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat Genet 2013; 45(10): 1183–1189
https://doi.org/10.1038/ng.2747 pmid: 23995135
21 N Casali, V Nikolayevskyy, Y Balabanova, O Ignatyeva, I Kontsevaya, SR Harris, SD Bentley, J Parkhill, S Nejentsev, SE Hoffner, RD Horstmann, T Brown, F Drobniewski. Microevolution of extensively drug-resistant tuberculosis in Russia. Genome Res 2012; 22(4): 735–745
https://doi.org/10.1101/gr.128678.111 pmid: 22294518
22 N Casali, V Nikolayevskyy, Y Balabanova, SR Harris, O Ignatyeva, I Kontsevaya, J Corander, J Bryant, J Parkhill, S Nejentsev, RD Horstmann, T Brown, F Drobniewski. Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nat Genet 2014; 46(3): 279–286
https://doi.org/10.1038/ng.2878 pmid: 24464101
23 JY Feng, LG Jarlsberg, K Salcedo, J Rose, M Janes, SG Lin, DH Osmond, KC Jost, MK Soehnlen, J Flood, EA Graviss, E Desmond, PK Moonan, P Nahid, PC Hopewell, M Kato-Maeda. Clinical and bacteriological characteristics associated with clustering of multidrug-resistant tuberculosis. Int J Tuberc Lung Dis 2017; 21(7): 766–773
https://doi.org/10.5588/ijtld.16.0510 pmid: 28513421
24 YJ Yun, JS Lee, JC Yoo, E Cho, D Park, YH Kook, KH Lee. Patterns of rpoC mutations in drug-resistant Mycobacterium tuberculosis isolated from patients in South Korea. Tuberc Respir Dis (Seoul) 2018; 81(3): 222–227
https://doi.org/10.4046/trd.2017.0042 pmid: 29527837
25 BR Levin, V Perrot, N Walker. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics 2000; 154(3): 985–997
pmid: 10757748
26 J Moura de Sousa, R Balbontín, P Durão, I Gordo. Multidrug-resistant bacteria compensate for the epistasis between resistances. PLoS Biol 2017; 15(4): e2001741
https://doi.org/10.1371/journal.pbio.2001741 pmid: 28419091
27 S Gagneux, CD Long, PM Small, T Van, GK Schoolnik, BJ Bohannan. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 2006; 312(5782): 1944–1946
https://doi.org/10.1126/science.1124410 pmid: 16809538
28 S Gagneux. Fitness cost of drug resistance in Mycobacterium tuberculosis. Clin Microbiol Infect 2009; 15(Suppl 1): 66–68
https://doi.org/10.1111/j.1469-0691.2008.02685.x pmid: 19220360
29 WJ Lane, SA Darst. Molecular evolution of multisubunit RNA polymerases: structural analysis. J Mol Biol 2010; 395(4): 686–704
https://doi.org/10.1016/j.jmb.2009.10.063 pmid: 19895816
30 N Opalka, J Brown, WJ Lane, KA Twist, R Landick, FJ Asturias, SA Darst. Complete structural model of Escherichia coli RNA polymerase from a hybrid approach. PLoS Biol 2010; 8(9): e1000483
https://doi.org/10.1371/journal.pbio.1000483 pmid: 20856905
31 YY Chen, JR Chang, CD Wu, YP Yeh, SJ Yang, CH Hsu, MC Lin, CF Tsai, MS Lin, IJ Su, HY Dou. Combining molecular typing and spatial pattern analysis to identify areas of high tuberculosis transmission in a moderate-incidence county in Taiwan. Sci Rep 2017; 7(1): 5394
https://doi.org/10.1038/s41598-017-05674-6 pmid: 28710410
32 MT Zaw, NA Emran, Z Lin. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis. J Infect Public Health 2018; 11(5): 605–610
https://doi.org/10.1016/j.jiph.2018.04.005 pmid: 29706316
[1] Xiaoxu Han, Bin Zhao, Minghui An, Ping Zhong, Hong Shang. Molecular network-based intervention brings us closer to ending the HIV pandemic[J]. Front. Med., 2020, 14(2): 136-148.
[2] Wenzhan Jing, Jue Liu, Min Liu. Eliminating mother-to-child transmission of HBV: progress and challenges in China[J]. Front. Med., 2020, 14(1): 21-29.
[3] Jing Yue, Bo Zhang, Mingyue Wang, Junning Yao, Yifan Zhou, Ding Ma, Lei Jin. Effect of antitubercular treatment on the pregnancy outcomes and prognoses of patients with genital tuberculosis[J]. Front. Med., 2019, 13(1): 121-125.
[4] Liqin Wang, Rene Bernards. Taking advantage of drug resistance, a new approach in the war on cancer[J]. Front. Med., 2018, 12(4): 490-495.
[5] Xinxin Xu, Yinshi Guo, Qiuying Li, Ling Yang, Jianqiang Kang. Invasive mucinous adenocarcinoma with lepidic-predominant pattern coexisted with tuberculosis: a case report[J]. Front. Med., 2018, 12(3): 330-333.
[6] Chongguang Yang, Qian Gao. Recent transmission of Mycobacterium tuberculosis in China: the implication of molecular epidemiology for tuberculosis control[J]. Front. Med., 2018, 12(1): 76-83.
[7] Haican Liu, Yuanyuan Zhang, Zhiguang Liu, Jinghua Liu, Yolande Hauck, Jiao Liu, Haiyan Dong, Jie Liu, Xiuqin Zhao, Bing Lu, Yi Jiang, Gilles Vergnaud, Christine Pourcel, Kanglin Wan. Associations between Mycobacterium tuberculosis Beijing genotype and drug resistance to four first-line drugs: a survey in China[J]. Front. Med., 2018, 12(1): 92-97.
[8] Xiaohong Shi, Xuefei Wang, Xixi Xu, Yongliang Feng, Shuzhen Li, Shuying Feng, Bo Wang, Suping Wang. Impact of HBV replication in peripheral blood mononuclear cell on HBV intrauterine transmission[J]. Front. Med., 2017, 11(4): 548-553.
[9] Ali A. Rabaan, Ali M. Bazzi, Shamsah H. Al-Ahmed, Jaffar A. Al-Tawfiq. Molecular aspects of MERS-CoV[J]. Front. Med., 2017, 11(3): 365-377.
[10] Hainv Gao,Hangping Yao,Shigui Yang,Lanjuan Li. From SARS to MERS: evidence and speculation[J]. Front. Med., 2016, 10(4): 377-382.
[11] Peter B. Alexander,Xiao-Fan Wang. Resistance to receptor tyrosine kinase inhibition in cancer: molecular mechanisms and therapeutic strategies[J]. Front. Med., 2015, 9(2): 134-138.
[12] Hui Li,Ran Li,Jiuxin Qu,Xiaomin Yu,Zhixin Cao,Yingmei Liu,Bin Cao. Ventricular tachycardia in a disseminated MDR-TB patient: a case report and brief review of literature[J]. Front. Med., 2014, 8(2): 259-263.
[13] James S. Park,Calvin Pan. Current recommendations of managing HBV infection in preconception or pregnancy[J]. Front. Med., 2014, 8(2): 158-165.
[14] Douglas D. Fang, Joan Cao, Jitesh P. Jani, Konstantinos Tsaparikos, Alessandra Blasina, Jill Kornmann, Maruja E. Lira, Jianying Wang, Zuzana Jirout, Justin Bingham, Zhou Zhu, Yin Gu, Gerrit Los, Zdenek Hostomsky, Todd VanArsdale. Combined gemcitabine and CHK1 inhibitor treatment induces apoptosis resistance in cancer stem cell-like cells enriched with tumor spheroids from a non-small cell lung cancer cell line[J]. Front Med, 2013, 7(4): 462-476.
[15] Xiangwei Li, Yu Yang, Jianmin Liu, Feng Zhou, Wei Cui, Ling Guan, Fei Shen, Cong Gao, Mufei Li, Qi Jin, Lei Gao. Treatment outcomes of pulmonary tuberculosis in the past decade in the mainland of China: a meta-analysis[J]. Front Med, 2013, 7(3): 354-366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed