Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2020, Vol. 14 Issue (5) : 564-582    https://doi.org/10.1007/s11684-019-0724-6
REVIEW
Biological properties and clinical applications of berberine
Danyang Song1, Jianyu Hao1(), Daiming Fan1,2()
1. Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
2. State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
 Download: PDF(860 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Berberine, an isoquinoline alkaloid isolated from the Chinese herb Coptis chinensis and other Berberis plants, has a wide range of pharmacological properties. Berberine can be used to treat many diseases, such as cancer and digestive, metabolic, cardiovascular, and neurological diseases. Berberine has protective capacities in digestive diseases. It can inhibit toxins and bacteria, including Helicobacter pylori, protect the intestinal epithelial barrier from injury, and ameliorate liver injury. Berberine also inhibits the proliferation of various types of cancer cells and impedes invasion and metastasis. Recent evidence has confirmed that berberine improves the efficacy and safety of chemoradiotherapies. In addition, berberine regulates glycometabolism and lipid metabolism, improves energy expenditure, reduces body weight, and alleviates nonalcoholic fatty liver disease. Berberine also improves cardiovascular hemodynamics, suppresses ischemic arrhythmias, attenuates the development of atherosclerosis, and reduces hypertension. Berberine shows potent neuroprotective effects, including antioxidative, antiapoptotic, and anti-ischemic. Furthermore, berberine exerts protective effects against other diseases. The mechanisms of its functions have been extensively explored, but much remains to be clarified. This article summarizes the main pharmacological actions of berberine and its mechanisms in cancer and digestive, metabolic, cardiovascular, and neurological diseases.

Keywords berberine      Coptis chinensis      pharmacological properties      mechanism      clinical applications     
Corresponding Author(s): Jianyu Hao,Daiming Fan   
Just Accepted Date: 17 January 2020   Online First Date: 27 April 2020    Issue Date: 12 October 2020
 Cite this article:   
Danyang Song,Jianyu Hao,Daiming Fan. Biological properties and clinical applications of berberine[J]. Front. Med., 2020, 14(5): 564-582.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-019-0724-6
https://academic.hep.com.cn/fmd/EN/Y2020/V14/I5/564
Fig.1  Chemical structure of berberine.
Fig.2  Major diseases affected by berberine.
Fig.3  Effects of berberine on intestinal injury.
Fig.4  Effects of berberine on liver injury.
Fig.5  Effects of berberine on Helicobacter pylori.
Fig.6  Effects of berberine on cancer proliferation, invasion, and metastasis.
Origin Cell line Effect of berberine Mechanism Experiment model Year Authors
Human leukemia HL-60 Antiproliferation, induces apoptosis and cell cycle arrest Complexes with DNA In vitro 1995 Kuo et al. [42]
Human leukemia HL-60 Antiproliferation, induces apoptosis Downregulates nucleophosmin/B23 and telomerase activity In vitro 1999 Wu et al. [50]
Human leukemia U937 Antiproliferation Inhibits telomerase activity In vitro 1999 Wu et al. [50]
Oral cancer OC2, KB Antiproliferation Reduces AP-1 expression, inhibits COX-2 protein In vitro and In vitro 2004 Kuo et al. [61]
Human breast cancer MCF-7 Antiproliferation, induces apoptosis and G0/G1 arrest Upregulates interferon-β and TNF-α In vitro 2005 Kang et al. [46]
Human hepatoma HepG2 Antiproliferation, induces apoptosis Activates caspases 8, caspases 3 and PARP In vitro 2006 Hwang [54]
Human epidermoid carcinoma A431 Antiproliferation, induces G1 arrest and apoptosis Upregulates Cip/p21 and Kip/p27 protein, disrupts mitochondrial membrane potential, activates caspase 3 and PARP In vitro 2006 Mantena et al. [44]
Human oral squamous carcinoma cancer HSC-3 Antiproliferation, induces cell cycle arrest and apoptosis Induces ROS and Ca 21 production, suppresses the levels of mitochondrial membrane potential (MMP) In vitro 2007 Lin et al. [45]
Human colonic carcinoma SW620 Antiproliferation, induces apoptosis Generates reactive oxygen species
and activates JNK/p38 MAPK and FasL
In vitro 2007 Hsu et al. [59]
Non-small cell lung cancer A549 Induce autophagy, enhances radio-sensitivity Induces autophagy In vitro and In vitro 2008 Peng et al. [49]
Human leukemia Jurkat Antiproliferation, induces apoptosis Modifies cysteine 179 of IkBa kinase, suppresses nuclear factor-kB–regulated antiapoptotic gene products In vitro 2008 Pandey et al. [63]
Acute lymphoblastic leukemia EU-1,Sup-B13 Antiproliferation, induces apoptosis Downregulates DAXX expression and promotes MDM2 degradation In vitro 2010 Zhang et al. [57]
Prostate cancer LNCaP Antiproliferation Suppresses androgen receptor In vitro and In vitro 2011 Li et al. [67]
Human breast cancer MCF7,T47D Antiproliferation Suppresses TPA-induced VEGF and fibronectin In vitro 2013 Kim et al. [69]
Esophageal squamous cell carcinoma ECA109,TE13 Induces autophagy, enhances radio-sensitivity Decreases hypoxic activity In vitro and In vitro (ECA109) 2013 Yang et al. [77]
Human neuroblastoma SK-N-SH,NB-1691 Antiproliferation, induces apoptosis Inhibits the transcription of DAXX In vitro 2013 Li et al. [58]
Human lung adenocarcinoma A549 Induces apoptosis and G0/G1 arrest Induces FOXO3a and p53, activates p38a MAPK In vitro 2014 Zheng et al. [47]
Human ovarian A2780 Sensitizes the effect of cisplatin Downregulates miR-93 and inhibits the PTEN/Akt pathway In vitro 2015 Chen et al. [79]
Human glioblastoma U87, U251 Antiproliferation, induce senescence Downregulates EGFR and inhibits the EGFR–MEK–ERK signaling pathway In vitro and In vitro (U87) 2015 Liu et al. [48]
Colon cancer KM12C Antiproliferation Binds RXRa to suppress b-catenin signaling In vitro and In vitro 2017 Ruan et al. [66]
Diffuse large B cell lymphoma HEK-293T Antiproliferation, impedes mitophagy-dependent necroptosis, induces mitophagy-dependent necroptosis Accelerates PCYT1A mRNA degradation and inhibits the MYC-driven aberration of choline metabolism In vitro and In vitro 2017 Xiong et al. [60]
Ovarian cancer A2780,HO8910 Antiproliferation, increases sensitivity to PARP inhibition, homologous recombination repair Induces oxidative DNA damage and impairs homologous recombination repair In vitro and In vitro (A2780) 2017 Hou et al. [55]
Breast cancer cell MCF-7 Reverses resistance to doxorubincin Inhibits AMPK-HIF-1a In vitro and In vitro 2017 Pan et al. [78]
Colon intestinal IMCE Antitumorigenesis Block IL-6 and TNF-a, inhibits EGFR-ERK signaling In vitro and In vitro 2017 Li et al. [64]
Ovarian cancer SKOV3 Antiproliferation Suppresses the arachidonic acid metabolic pathway and phosphorylation of FAK In vitro 2017 Zhao et al. [82]
Gefitinib-resistant non-small cell lung cancer H1975 Antiproliferation, suppression of lipogenesis Induces reactive oxygen species generation and activates the AMPK pathway In vitro 2018 Fan et al. [81]
Tab.1  Antiproliferation effect of berberine
Origin Cell line Effect of berberine Mechanism Experiment model Year Authors
Lewis lung carcinoma Lewis lung carcinoma Antiproliferation, antimetastasis Represses AP-1 transcriptional activity and u-PA expression In vitro and in vivo 2001 Mitani et al. [80]
Human gastric adenocarcinoma RF-1, RF-48 Antimetastasis Decreases the expression of COX-2, MMP-2, and MMP-9 In vitro 2006 Yu et al. [71]
Human gastric cancer SNU-5 Antimetastasis Downregulates the expression of matrix metalloproteinases-1, -2, and -7 In vitro 2006 Lin et al. [73]
Nasopharyngeal carcinoma 5-8F Anti-invasion Downregulates NM23-H1 expression In vitro and in vivo 2008 Liu et al. [75]
Human tongue squamous cancer SCC-4 Antimetastasis, anti-invasion Inhibits FAK, IKK, NF-kB, u-PA and MMP-2 and MMP-9 In vitro 2009 Ho et al. [62]
Nasopharyngeal carcinoma 5-8F Antimetastasis Inhibits Ezrin phosphorylation In vitro and in vivo 2009 Tang et al. [76]
Human melanoma A375 Antimetastasis Reduces ERK activity and COX-2, induces AMPK activation In vitro 2012 Kim et al. [72]
Non-small cell lung cancer A549 Antiproliferation, antimetastasis Inhibits TGF-b1-induced epithelial-to-mesenchymal transition In vitro and in vivo 2014 Qi et al. [70]
Triple-negative breast cancer MDA-MB231 Anti-invasion Downregulates TGF-b1 In vitro and in vivo 2018 Kim et al. [74]
Tab.2  Anti-invasive and antimetastatic effects of berberine
Fig.7  Effects of berberine on glycometabolism.
Fig.8  Effects of berberine on lipid metabolism, obesity, and nonalcoholic fatty liver disease.
Fig.9  Effects of berberine on cardiovascular diseases.
1 NS Yarla, A Bishayee, G Sethi, P Reddanna, AM Kalle, BL Dhananjaya, KS Dowluru, R Chintala, GR Duddukuri. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Semin Cancer Biol 2016; 40-41: 48–81
https://doi.org/10.1016/j.semcancer.2016.02.001 pmid: 26853158
2 A Hesari, F Ghasemi, AFG Cicero, M Mohajeri, O Rezaei, SMG Hayat, A Sahebkar. Berberine: a potential adjunct for the treatment of gastrointestinal cancers? J Cell Biochem 2018; 119(12): 9655–9663
https://doi.org/10.1002/jcb.27392 pmid: 30125974
3 A Pirillo, AL Catapano. Berberine, a plant alkaloid with lipid- and glucose-lowering properties: from invitro evidence to clinical studies. Atherosclerosis 2015; 243(2): 449–461
https://doi.org/10.1016/j.atherosclerosis.2015.09.032 pmid: 26520899
4 TV Subbaiah, AH Amin. Effect of berberine sulphate on Entamoeba histolytica. Nature 1967; 215(5100): 527–528
https://doi.org/10.1038/215527a0 pmid: 4293678
5 AH Amin, TV Subbaiah, KM Abbasi. Berberine sulfate: antimicrobial activity, bioassay, and mode of action. Can J Microbiol 1969; 15(9): 1067–1076
https://doi.org/10.1139/m69-190 pmid: 4906191
6 NK Dutta, PH Marker, NR Rao. Berberine in toxin-induced experimental cholera. Br J Pharmacol 1972; 44(1): 153–159
https://doi.org/10.1111/j.1476-5381.1972.tb07247.x pmid: 5015035
7 S Wang, B Setlow, P Setlow, YQ Li. Uptake and levels of the antibiotic berberine in individual dormant and germinating Clostridium difficile and Bacillus cereus spores as measured by laser tweezers Raman spectroscopy. J Antimicrob Chemother 2016; 71(6): 1540–1546
https://doi.org/10.1093/jac/dkv504 pmid: 26861569
8 Y Li, J Huang, L Li, L Liu. Synergistic activity of berberine with azithromycin against Pseudomonas aeruginosa isolated from patients with cystic fibrosis of lung in vitro and in vivo. Cell Physiol Biochem 2017; 42(4): 1657–1669
https://doi.org/10.1159/000479411 pmid: 28738346
9 RB Sack, JL Froehlich. Berberine inhibits intestinal secretory response of Vibrio cholerae and Escherichia coli enterotoxins. Infect Immun 1982; 35(2): 471–475
pmid: 7035365
10 SQ Wen, P Jeyakkumar, SR Avula, L Zhang, CH Zhou. Discovery of novel berberine imidazoles as safe antimicrobial agents by down regulating ROS generation. Bioorg Med Chem Lett 2016; 26(12): 2768–2773
https://doi.org/10.1016/j.bmcl.2016.04.070 pmid: 27156777
11 X Liu, N Zhang, Y Liu, L Liu, Q Zeng, M Yin, Y Wang, D Song, H Deng. MPB, a novel berberine derivative, enhances lysosomal and bactericidal properties via TGF-β-activated kinase 1-dependent activating the transcription factor EB. FASEB J 2019; 33(1):1468–1481
https://doi.org/10.1096/fj.201801198R
12 EY Eaker, CA Sninsky. Effect of berberine on myoelectric activity and transit of the small intestine in rats. Gastroenterology 1989; 96(6): 1506–1513
https://doi.org/10.1016/0016-5085(89)90519-2 pmid: 2714578
13 CT Taylor, AW Baird. Berberine inhibition of electrogenic ion transport in rat colon. Br J Pharmacol 1995; 116(6): 2667–2672
https://doi.org/10.1111/j.1476-5381.1995.tb17224.x pmid: 8590987
14 GH Rabbani, T Butler, J Knight, SC Sanyal, K Alam. Randomized controlled trial of berberine sulfate therapy for diarrhea due to enterotoxigenic Escherichia coli and Vibrio cholerae. J Infect Dis 1987; 155(5): 979–984
https://doi.org/10.1093/infdis/155.5.979 pmid: 3549923
15 Y Watanabe-Fukuda, M Yamamoto, N Miura, M Fukutake, A Ishige, R Yamaguchi, M Nagasaki, A Saito, S Imoto, S Miyano, J Takeda, K Watanabe. Orengedokuto and berberine improve indomethacin-induced small intestinal injury via adenosine. J Gastroenterol 2009; 44(5): 380–389
https://doi.org/10.1007/s00535-009-0005-2 pmid: 19319464
16 Y Liu, X Liu, W Hua, Q Wei, X Fang, Z Zhao, C Ge, C Liu, C Chen, Y Tao, Y Zhu. Berberine inhibits macrophage M1 polarization via AKT1/SOCS1/NF-κB signaling pathway to protect against DSS-induced colitis. Int Immunopharmacol 2018; 57: 121–131
https://doi.org/10.1016/j.intimp.2018.01.049 pmid: 29482156
17 NA Hering, M Fromm, JD Schulzke. Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. J Physiol 2012; 590(5): 1035–1044
https://doi.org/10.1113/jphysiol.2011.224568 pmid: 22219336
18 GH Li, YP Zhang, JL Tang, ZT Chen, YD Hu, H Wei, DZ Li, P Hao, DL Wang. Effects of berberine against radiation-induced intestinal injury in mice. Int J Radiat Oncol Biol Phys 2010; 77(5): 1536–1544
https://doi.org/10.1016/j.ijrobp.2010.02.062 pmid: 20637981
19 F Yan, L Wang, Y Shi, H Cao, L Liu, MK Washington, R Chaturvedi, DA Israel, H Cao, B Wang, RM Peek Jr, KT Wilson, DB Polk. Berberine promotes recovery of colitis and inhibits inflammatory responses in colonic macrophages and epithelial cells in DSS-treated mice. Am J Physiol Gastrointest Liver Physiol 2012; 302(5): G504–G514
https://doi.org/10.1152/ajpgi.00312.2011 pmid: 22173918
20 C Li, Y Xi, S Li, Q Zhao, W Cheng, Z Wang, J Zhong, X Niu, G Chen. Berberine ameliorates TNBS induced colitis by inhibiting inflammatory responses and Th1/Th17 differentiation. Mol Immunol 2015; 67(2 Pt B): 444–454
https://doi.org/10.1016/j.molimm.2015.07.013 pmid: 26224047
21 BJ Guo, ZX Bian, HC Qiu, YT Wang, Y Wang. Biological and clinical implications of herbal medicine and natural products for the treatment of inflammatory bowel disease. Ann N Y Acad Sci 2017; 1401(1): 37–48
https://doi.org/10.1111/nyas.13414 pmid: 28891095
22 Y He, X Yuan, H Zuo, Y Sun, A Feng. Berberine exerts a protective effect on gut-vascular barrier via the modulation of the Wnt/β-catenin signaling pathway during sepsis. Cell Physiol Biochem 2018; 49(4): 1342–1351
https://doi.org/10.1159/000493412 pmid: 30205381
23 SJ Wu, TM Don, CW Lin, FL Mi. Delivery of berberine using chitosan/fucoidan-taurine conjugate nanoparticles for treatment of defective intestinal epithelial tight junction barrier. Mar Drugs 2014; 12(11): 5677–5697
https://doi.org/10.3390/md12115677 pmid: 25421323
24 CY Shan, JH Yang, Y Kong, XY Wang, MY Zheng, YG Xu, Y Wang, HZ Ren, BC Chang, LM Chen. Alteration of the intestinal barrier and GLP2 secretion in berberine-treated type 2 diabetic rats. J Endocrinol 2013; 218(3): 255–262
https://doi.org/10.1530/JOE-13-0184 pmid: 23757509
25 L Gu, N Li, J Gong, Q Li, W Zhu, J Li. Berberine ameliorates intestinal epithelial tight-junction damage and down-regulates myosin light chain kinase pathways in a mouse model of endotoxinemia. Infect Dis 2011; 203(11): 1602–1612
https://doi.org/10.1093/infdis/jir147 pmid: 21592990
26 E Vivoli, A Cappon, S Milani, B Piombanti, A Provenzano, E Novo, A Masi, N Navari, R Narducci, G Mannaioni, G Moneti, CP Oliveira, M Parola, F Marra. NLRP3 inflammasome as a target of berberine in experimental murine liver injury: interference with P2X7 signalling. Clin Sci (Lond) 2016; 130(20): 1793–1806
https://doi.org/10.1042/CS20160400 pmid: 27439970
27 T Guo, SL Woo, X Guo, H Li, J Zheng, R Botchlett, M Liu, Y Pei, H Xu, Y Cai, T Zeng, L Chen, X Li, Q Li, X Xiao, Y Huo, C Wu. Berberine ameliorates hepatic steatosis and suppresses liver and adipose tissue inflammation in mice with diet-induced obesity. Sci Rep 2016; 6(1): 22612-22622
https://doi.org/10.1038/srep22612 pmid: 26936230
28 JM Hwang, CJ Wang, FP Chou, YS Tseng, WL Lin, CY Chu. Inhibitory effect of berberine on tert-butyl hydroperoxide-induced oxidative damage in rat liver. Arch Toxicol 2002; 76(11): 664–670
https://doi.org/10.1007/s00204-002-0351-9 pmid: 12415430
29 Z Zhao, Q Wei, W Hua, Y Liu, X Liu, Y Zhu. Hepatoprotective effects of berberine on acetaminophen-induced hepatotoxicity in mice. Biomed Pharmacother 2018; 103: 1319–1326
https://doi.org/10.1016/j.biopha.2018.04.175 pmid: 29864914
30 H Rafiei, K Omidian, B Bandy. Comparison of dietary polyphenols for protection against molecular mechanisms underlying nonalcoholic fatty liver disease in a cell model of steatosis. Mol Nutr Food Res 2017; 61(9): 1600781
https://doi.org/10.1002/mnfr.201600781 pmid: 28317281
31 C Qin, H Zhang, L Zhao, M Zeng, W Huang, G Fu, W Zhou, H Wang, H Yan. Microbiota transplantation reveals beneficial impact of berberine on hepatotoxicity by improving gut homeostasis. Sci China Life Sci 2018; 61(12): 1537–1544
https://doi.org/10.1007/s11427-017-9202-0 pmid: 29270794
32 Y Sun, M Xia, H Yan, Y Han, F Zhang, Z Hu, A Cui, F Ma, Z Liu, Q Gong, X Chen, J Gao, H Bian, Y Tan, Y Li, X Gao. Berberine attenuates hepatic steatosis and enhances energy expenditure in mice by inducing autophagy and fibroblast growth factor 21. Br J Pharmacol 2018; 175(2): 374–387
https://doi.org/10.1111/bph.14079 pmid: 29065221
33 D Zhang, L Ke, Z Ni, Y Chen, LH Zhang, SH Zhu, CJ Li, L Shang, J Liang, YQ Shi. Berberine containing quadruple therapy for initial Helicobacter pylori eradication: an open-label randomized phase IV trial. Medicine (Baltimore) 2017; 96(32): e7697
https://doi.org/10.1097/MD.0000000000007697 pmid: 28796053
34 FA Bae, MJ Han, NJ Kim, DH Kim. Anti-Helicobacter pylori activity of herbal medicines. Biol Pharm Bull 1998; 21(9): 990–992
https://doi.org/10.1248/bpb.21.990 pmid: 9781854
35 JG Chung, LT Wu, SH Chang, HH Lo, S HsiehE, YC Li, CF Hung. Inhibitory actions of ellagic acid on growth and arylamine N-acetyltransferase activity in strains of Helicobacter pylori from peptic ulcer patients. Microbios 1998; 93(375): 115–127
pmid: 9697340
36 C Li, P Huang, K Wong, Y Xu, L Tan, H Chen, Q Lu, C Luo, C Tam, L Zhu, Z Su, J Xie. Coptisine-induced inhibition of Helicobacter pylori: elucidation of specific mechanisms by probing urease active site and its maturation process. J Enzyme Inhib Med Chem 2018; 33(1): 1362–1375
https://doi.org/10.1080/14756366.2018.1501044 pmid: 30191728
37 X Jiang, C Jiang, C Huang, G Chen, K Jiang, B Huang, F Liu. Berberine combined with triple therapy versus triple therapy for Helicobacter pylori eradication: a meta-analysis of randomized controlled trials. Evid Based Complement Alternat Med 2018; 2018: 8716910
https://doi.org/10.1155/2018/8716910 pmid: 30410559
38 YQ Huang, GR Huang, MH Wu, HY Tang, ZS Huang, XH Zhou, WQ Yu, JW Su, XQ Mo, BP Chen, LJ Zhao, XF Huang, HY Wei, LD Wei. Inhibitory effects of emodin, baicalin, schizandrin and berberine on hefA gene: treatment of Helicobacter pylori-induced multidrug resistance. World J Gastroenterol 2015; 21(14): 4225–4231
https://doi.org/10.3748/wjg.v21.i14.4225 pmid: 25892872
39 X Zhang, Y Yang, S Gang, C Yang, M Lu, J Zhi. Berberine-, allicin- or clarithromycin-based triple therapy for the first-line treatment of Helicobacter pylori infection: an open-label, randomizedt trial. Gastroenterology 2014; 146(5): S398
https://doi.org/10.1016/S0016-5085(14)61437-2
40 JS Lu, YQ Liu, M Li, BS Li, Y Xu. Protective effects and its mechanisms of total alkaloids from rhizoma Coptis chinensis on Helicobacter pylori LPS induced gastric lesion in rats. China J Chin Mater Med (Zhongguo Zhong Yao Za Zhi) 2007; 32(13): 1333–1336 (in Chinese)
pmid: 17879739
41 X Wu, X Li, Z Dang, Y Jia. Berberine demonstrates anti-inflammatory properties in Helicobacter pylori-infected mice with chronic gastritis by attenuating the Th17 response triggered by the B cell-activating factor. J Cell Biochem 2018; 119(7): 5373–5381
https://doi.org/10.1002/jcb.26681 pmid: 29345340
42 CL Kuo, CC Chou, BY Yung. Berberine complexes with DNA in the berberine-induced apoptosis in human leukemic HL-60 cells. Cancer Lett 1995; 93(2): 193–200
https://doi.org/10.1016/0304-3835(95)03809-B pmid: 7621428
43 L Li, X Wang, R Sharvan, J Gao, S Qu. Berberine could inhibit thyroid carcinoma cells by inducing mitochondrial apoptosis, G0/G1 cell cycle arrest and suppressing migration via PI3K-AKT and MAPK signaling pathways. Biomed Pharmacother 2017; 95: 1225–1231
https://doi.org/10.1016/j.biopha.2017.09.010 pmid: 28931215
44 SK Mantena, SD Sharma, SK Katiyar. Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol Cancer Ther 2006; 5(2): 296–308
https://doi.org/10.1158/1535-7163.MCT-05-0448 pmid: 16505103
45 CC Lin, JL Yang, CC Lu, JG Chung. Berberine induces cell cycle arrest and apoptosis in human HSC-3 oral cancer cells. FASEB J 2007, 27(5A):3371–3378
https://doi.org/10.1096/fasebj.21.6.A1189-c
46 JX Kang, J Liu, J Wang, C He, FP Li. The extract of huanglian, a medicinal herb, induces cell growth arrest and apoptosis by upregulation of interferon-β and TNF-α in human breast cancer cells. Carcinogenesis 2005; 26(11): 1934–1939
https://doi.org/10.1093/carcin/bgi154 pmid: 15958519
47 F Zheng, Q Tang, J Wu, S Zhao, Z Liang, L Li, W Wu, S Hann. p38α MAPK-mediated induction and interaction of FOXO3a and p53 contribute to the inhibited-growth and induced-apoptosis of human lung adenocarcinoma cells by berberine. J Exp Clin Cancer Res 2014; 33(1): 36
https://doi.org/10.1186/1756-9966-33-36 pmid: 24766860
48 Q Liu, X Xu, M Zhao, Z Wei, X Li, X Zhang, Z Liu, Y Gong, C Shao. Berberine induces senescence of human glioblastoma cells by downregulating the EGFR-MEK-ERK signaling pathway. Mol Cancer Ther 2015; 14(2): 355–363
https://doi.org/10.1158/1535-7163.MCT-14-0634 pmid: 25504754
49 PL Peng, WH Kuo, HC Tseng, FP Chou. Synergistic tumor-killing effect of radiation and berberine combined treatment in lung cancer: the contribution of autophagic cell death. Int J Radiat Oncol Biol Phys 2008; 70(2): 529–542
https://doi.org/10.1016/j.ijrobp.2007.08.034 pmid: 18207031
50 HL Wu, CY Hsu, WH Liu, BY Yung. Berberine-induced apoptosis of human leukemia HL-60 cells is associated with down-regulation of nucleophosmin/B23 and telomerase activity. Int J Cancer 1999; 81(6): 923–929
https://doi.org/10.1002/(SICI)1097-0215(19990611)81:6<923::AID-IJC14>3.0.CO;2-D pmid: 10362140
51 M Franceschin, L Rossetti, A D’Ambrosio, S Schirripa, A Bianco, G Ortaggi, M Savino, C Schultes, S Neidle. Natural and synthetic G-quadruplex interactive berberine derivatives. Bioorg Med Chem Lett 2006; 16(6): 1707–1711
https://doi.org/10.1016/j.bmcl.2005.12.001 pmid: 16377184
52 R Rocca, F Moraca, G Costa, S Alcaro, S Distinto, E Maccioni, F Ortuso, A Artese, L Parrotta. Structure-based virtual screening of novel natural alkaloid derivatives as potential binders of h-telo and c-myc DNA G-quadruplex conformations. Molecules 2014; 20(1): 206–223
https://doi.org/10.3390/molecules20010206 pmid: 25547724
53 F Moraca, J Amato, F Ortuso, A Artese, B Pagano, E Novellino, S Alcaro, M Parrinello, V Limongelli. Ligand binding to telomeric G-quadruplex DNA investigated by funnel-metadynamics simulations. Proc Natl Acad Sci USA 2017; 114(11): E2136–E2145
https://doi.org/10.1073/pnas.1612627114 pmid: 28232513
54 JM Hwang, HC Kuo, TH Tseng, JY Liu, CY Chu. Berberine induces apoptosis through a mitochondria/caspases pathway in human hepatoma cells. Arch Toxicol 2006; 80(2): 62–73
https://doi.org/10.1007/s00204-005-0014-8 pmid: 16189662
55 D Hou, G Xu, C Zhang, B Li, J Qin, X Hao, Q Liu, X Zhang, J Liu, J Wei, Y Gong, Z Liu, C Shao. Berberine induces oxidative DNA damage and impairs homologous recombination repair in ovarian cancer cells to confer increased sensitivity to PARP inhibition. Cell Death Dis 2017; 8(10): e3070
https://doi.org/10.1038/cddis.2017.471 pmid: 28981112
56 S Shukla, F Rizvi, S Raisuddin, P Kakkar. FoxO proteins’ nuclear retention and BH3-only protein Bim induction evoke mitochondrial dysfunction-mediated apoptosis in berberine-treated HepG2 cells. Free Radic Biol Med 2014; 76: 185–199
https://doi.org/10.1016/j.freeradbiomed.2014.07.039 pmid: 25128467
57 X Zhang, L Gu, J Li, N Shah, J He, L Yang, Q Hu, M Zhou. Degradation of MDM2 by the interaction between berberine and DAXX leads to potent apoptosis in MDM2-overexpressing cancer cells. Cancer Res 2010; 70(23): 9895–9904
https://doi.org/10.1158/0008-5472.CAN-10-1546 pmid: 20935220
58 J Li, L Gu, H Zhang, T Liu, D Tian, M Zhou, S Zhou. Berberine represses DAXX gene transcription and induces cancer cell apoptosis. Lab Invest 2013; 93(3): 354–364
https://doi.org/10.1038/labinvest.2012.172 pmid: 23295648
59 WH Hsu, YS Hsieh, HC Kuo, CY Teng, HI Huang, CJ Wang, SF Yang, YS Liou, WH Kuo. Berberine induces apoptosis in SW620 human colonic carcinoma cells through generation of reactive oxygen species and activation of JNK/p38 MAPK and FasL. Arch Toxicol 2007; 81(10): 719–728
https://doi.org/10.1007/s00204-006-0169-y pmid: 17673978
60 J Xiong, L Wang, XC Fei, XF Jiang, Z Zheng, Y Zhao, CF Wang, B Li, SJ Chen, A Janin, RP Gale, WL Zhao. MYC is a positive regulator of choline metabolism and impedes mitophagy-dependent necroptosis in diffuse large B-cell lymphoma. Blood Cancer J 2017; 7(7): e582
https://doi.org/10.1038/bcj.2017.61 pmid: 28686226
61 CL Kuo, CW Chi, TY Liu. The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett 2004; 203(2): 127–137
https://doi.org/10.1016/j.canlet.2003.09.002 pmid: 14732220
62 YT Ho, JS Yang, TC Li, JJ Lin, JG Lin, KC Lai, CY Ma, WG Wood, JG Chung. Berberine suppresses in vitro migration and invasion of human SCC-4 tongue squamous cancer cells through the inhibitions of FAK, IKK, NF-κB, u-PA and MMP-2 and -9. Cancer Lett 2009; 279(2): 155–162
https://doi.org/10.1016/j.canlet.2009.01.033 pmid: 19251361
63 MK Pandey, B Sung, AB Kunnumakkara, G Sethi, MM Chaturvedi, BB Aggarwal. Berberine modifies cysteine 179 of IκBα kinase, suppresses nuclear factor-κB-regulated antiapoptotic gene products, and potentiates apoptosis. Cancer Res 2008; 68(13): 5370–5379
https://doi.org/10.1158/0008-5472.CAN-08-0511 pmid: 18593939
64 D Li, Y Zhang, K Liu, Y Zhao, B Xu, L Xu, L Tan, Y Tian, C Li, W Zhang, H Cao, YY Zhan, T Hu. Berberine inhibits colitis-associated tumorigenesis via suppressing inflammatory responses and the consequent EGFR signaling-involved tumor cell growth. Lab Invest 2017; 97(11): 1343–1353
https://doi.org/10.1038/labinvest.2017.71 pmid: 28759012
65 X Han, H Tai, X Wang, Z Wang, J Zhou, X Wei, Y Ding, H Gong, C Mo, J Zhang, J Qin, Y Ma, N Huang, R Xiang, H Xiao. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation. Aging Cell 2016; 15(3): 416–427
https://doi.org/10.1111/acel.12446 pmid: 26890602
66 H Ruan, YY Zhan, J Hou, B Xu, B Chen, Y Tian, D Wu, Y Zhao, Y Zhang, X Chen, P Mi, L Zhang, S Zhang, X Wang, H Cao, W Zhang, H Wang, H Li, Y Su, XK Zhang, T Hu. Berberine binds RXRα to suppress β-catenin signaling in colon cancer cells. Oncogene 2017; 36(50): 6906–6918
https://doi.org/10.1038/onc.2017.296 pmid: 28846104
67 J Li, B Cao, X Liu, X Fu, Z Xiong, L Chen, O Sartor, Y Dong, H Zhang. Berberine suppresses androgen receptor signaling in prostate cancer. Mol Cancer Ther 2011; 10(8): 1346–1356
https://doi.org/10.1158/1535-7163.MCT-10-0985 pmid: 21613449
68 SH Ayati, B Fazeli, AA Momtazi-Borojeni, AFG Cicero, M Pirro, A Sahebkar. Regulatory effects of berberine on microRNome in cancer and other conditions. Crit Rev Oncol Hematol 2017; 116: 147–158
https://doi.org/10.1016/j.critrevonc.2017.05.008 pmid: 28693796
69 S Kim, SJ Oh, J Lee, J Han, M Jeon, T Jung, SK Lee, SY Bae, J Kim, WH Gil, SW Kim, JE Lee, SJ Nam. Berberine suppresses TPA-induced fibronectin expression through the inhibition of VEGF secretion in breast cancer cells. Cell Physiol Biochem 2013; 32(5): 1541–1550
https://doi.org/10.1159/000356591 pmid: 24335179
70 HW Qi, LY Xin, X Xu, XX Ji, LH Fan. Epithelial-to-mesenchymal transition markers to predict response of berberine in suppressing lung cancer invasion and metastasis. J Transl Med 2014; 12(1): 22
https://doi.org/10.1186/1479-5876-12-22 pmid: 24456611
71 CS Yu, HM Kuo, JG Chung. The role of cyclooxygenase-2 in berberine induced apoptosis and inhibited cell migration of human gastric adenocarcinoma RF-1 and RF-48 cell lines. FASEB J 2006; 20(5):A1131
https://doi.org/10.1096/fasebj.20.5.A1131-d
72 HS Kim , MJ Kim, EJ Kim, Y Yang, MS Lee, JS Lim. Berberine-induced AMPK activation inhibits the metastatic potential of melanoma cells via reduction of ERK activity and COX-2 protein expression. Biochem Pharmacol 2012; 83(3): 385–394
https://doi.org/10.1016/j.bcp.2011.11.008 pmid: 22120676
73 JP Lin, JS Yang, CC Wu, JG Chung. Berberine induced down-regulation of matrix metalloproteinases-1, -2, and -7 expressions were associated with levels of reactive oxygen species in human gastric cancer cells (SNU-5) in vitro. FASEB J 2006; 20(5): A1145
https://doi.org/10.1096/fasebj.20.5.A1145-c
74 S Kim, J Lee, D You, Y Jeong, M Jeon, J Yu, SW Kim, SJ Nam, JE Lee. Berberine suppresses cell motility through downregulation of TGF-β1 in triple negative breast cancer cells Cell. Physiol Biochem 2018; 45(2): 795–807
https://doi.org/10.1159/000487171
75 SJ Liu, YM Sun, DF Tian, YC He, L Zeng, Y He, CQ Ling, SH Sun. Downregulated NM23-H1 expression is associated with intracranial invasion of nasopharyngeal carcinoma. Br J Cancer 2008; 98(2): 363–369
https://doi.org/10.1038/sj.bjc.6604167 pmid: 18219290
76 F Tang, D Wang, C Duan, D Huang, Y Wu, Y Chen, W Wang, C Xie, J Meng, L Wang, B Wu, S Liu, D Tian, F Zhu, Z He, F Deng, Y Cao. Berberine inhibits metastasis of nasopharyngeal carcinoma 5-8F cells by targeting Rho kinase-mediated Ezrin phosphorylation at threonine 567. J Biol Chem 2009; 284(40): 27456–27466
https://doi.org/10.1074/jbc.M109.033795 pmid: 19651779
77 X Yang, B Yang, J Cai, C Zhang, Q Zhang, L Xu, Q Qin, H Zhu, J Ma, G Tao, H Cheng, X Sun. Berberine enhances radiosensitivity of esophageal squamous cancer by targeting HIF-1α in vitro and in vivo. Cancer Biol Ther 2013; 14(11): 1068–1073
https://doi.org/10.4161/cbt.26426 pmid: 24025355
78 Y Pan, D Shao, Y Zhao, F Zhang, X Zheng, Y Tan, K He, J Li, L Chen. Berberine reverses hypoxia-induced chemoresistance in breast cancer through the inhibition of AMPK-HIF-1α. Int J Biol Sci 2017; 13(6): 794–803
https://doi.org/10.7150/ijbs.18969 pmid: 28656004
79 Q Chen, R Qin, Y Fang, H Li. Berberine sensitizes human ovarian cancer cells to cisplatin through miR-93/PTEN/Akt signaling pathway. Cell Physiol Biochem 2015; 36(3): 956–965
https://doi.org/10.1159/000430270 pmid: 26087719
80 N Mitani, K Murakami, T Yamaura, T Ikeda, I Saiki. Inhibitory effect of berberine on the mediastinal lymph node metastasis produced by orthotopic implantation of Lewis lung carcinoma. Cancer Lett 2001; 165(1): 35–42
https://doi.org/10.1016/S0304-3835(00)00710-2 pmid: 11248416
81 XX Fan, EL Leung, Y Xie, ZQ Liu, YF Zheng, XJ Yao, LL Lu, JL Wu, JX He, ZW Yuan, J Fu, CL Wei, J Huang, DK Xiao, LX Luo, ZB Jiang, YL Zhou. RK Kam, L Liu. Suppression of lipogenesis via reactive oxygen species-AMPK signaling for treating malignant and proliferative diseases. Antioxid Redox Signal 2018; 28(5): 339–357
https://doi.org/10.1089/ars.2017.7090 pmid: 28665143
82 Y Zhao, L Cui, Y Pan, D Shao, X Zheng, F Zhang, H Zhang, K He, L Chen. Berberine inhibits the chemotherapy-induced repopulation by suppressing the arachidonic acid metabolic pathway and phosphorylation of FAK in ovarian cancer. Cell Prolif 2017; 50(6): e12393
https://doi.org/10.1111/cpr.12393 pmid: 28990249
83 J Yin, Z Gao, D Liu, Z Liu, J Ye. Berberine improves glucose metabolism through induction of glycolysis. Am J Physiol Endocrinol Metab 2008; 294(1): E148–E156
https://doi.org/10.1152/ajpendo.00211.2007 pmid: 17971514
84 L Zhou, Y Yang, X Wang, S Liu, W Shang, G Yuan, F Li, J Tang, M Chen, J Chen. Berberine stimulates glucose transport through a mechanism distinct from insulin. Metabolism 2007; 56(3): 405–412
https://doi.org/10.1016/j.metabol.2006.10.025 pmid: 17292731
85 X Ma, T Egawa, H Kimura, K Karaike, S Masuda, N Iwanaka, T Hayashi. Berberine-induced activation of 5′-adenosine monophosphate-activated protein kinase and glucose transport in rat skeletal muscles. Metabolism 2010; 59(11): 1619–1627
https://doi.org/10.1016/j.metabol.2010.03.009 pmid: 20423742
86 YS Lee, WS Kim, KH Kim, MJ Yoon, HJ Cho, Y Shen, JM Ye, CH Lee, WK Oh, CT Kim, C Hohnen-Behrens, A Gosby, EW Kraegen, DE James, JB Kim. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 2006; 55(8): 2256–2264
https://doi.org/10.2337/db06-0006 pmid: 16873688
87 WJ Kong, H Zhang, DQ Song, R Xue, W Zhao, J Wei, YM Wang, N Shan, ZX Zhou, P Yang, XF You, ZR Li, SY Si, LX Zhao, HN Pan, JD Jiang. Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression. Metabolism 2009; 58(1): 109–119
https://doi.org/10.1016/j.metabol.2008.08.013 pmid: 19059538
88 H Zhang, J Wei, R Xue, JD Wu, W Zhao, ZZ Wang, SK Wang, ZX Zhou, DQ Song, YM Wang, HN Pan, WJ Kong, JD Jiang. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism 2010; 59(2): 285–292
https://doi.org/10.1016/j.metabol.2009.07.029 pmid: 19800084
89 HW Jeong, KC Hsu, JW Lee, M Ham, JY Huh, HJ Shin, WS Kim, JB Kim. Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am J Physiol Endocrinol Metab 2009; 296(4): E955–E964
https://doi.org/10.1152/ajpendo.90599.2008 pmid: 19208854
90 N Turner, JY Li, A Gosby, SW To, Z Cheng, H Miyoshi, MM Taketo, GJ Cooney, EW Kraegen, DE James, LH Hu, J Li, JM Ye. Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action. Diabetes 2008; 57(5): 1414–1418
https://doi.org/10.2337/db07-1552 pmid: 18285556
91 AP Gomes, FV Duarte, P Nunes, BP Hubbard, JS Teodoro, AT Varela, JG Jones, DA Sinclair, CM Palmeira, AP Rolo. Berberine protects against high fat diet-induced dysfunction in muscle mitochondria by inducing SIRT1-dependent mitochondrial biogenesis. Biochim Biophys Acta 2012; 1822(2): 185–195
https://doi.org/10.1016/j.bbadis.2011.10.008 pmid: 22027215
92 Y Wang, JW Shou, XY Li, ZX Zhao, J Fu, CY He, R Feng, C Ma, BY Wen, F Guo, XY Yang, YX Han, LL Wang, Q Tong, XF You, Y Lin, WJ Kong, SY Si, JD Jiang. Berberine-induced bioactive metabolites of the gut microbiota improve energy metabolism. Metabolism 2017; 70: 72–84
https://doi.org/10.1016/j.metabol.2017.02.003 pmid: 28403947
93 Y Deng, J Xu, X Zhang, J Yang, D Zhang, J Huang, P Lv, W Shen, Y Yang. Berberine attenuates autophagy in adipocytes by targeting BECN1. Autophagy 2014; 10(10): 1776–1786
https://doi.org/10.4161/auto.29746 pmid: 25126729
94 Y Chen, Y Li, Y Wang, Y Wen, C Sun. Berberine improves free-fatty-acid-induced insulin resistance in L6 myotubes through inhibiting peroxisome proliferator-activated receptor gamma and fatty acid transferase expressions. Metabolism 2009; 58(12): 1694–1702
https://doi.org/10.1016/j.metabol.2009.06.009 pmid: 19767038
95 A Li, Q Liu, Q Li, B Liu, Y Yang, N Zhang. Berberine reduces pyruvate-driven hepatic glucose production by limiting mitochondrial import of pyruvate through mitochondrial pyruvate carrier 1. EBioMedicine 2018; 34: 243–255
https://doi.org/10.1016/j.ebiom.2018.07.039 pmid: 30093307
96 J Yin, R Hu, M Chen, J Tang, F Li, Y Yang, J Chen. Effects of berberine on glucose metabolism in vitro. Metabolism 2002; 51(11): 1439–1443
https://doi.org/10.1053/meta.2002.34715 pmid: 12404195
97 L Liu, J Liu, Y Gao, X Yu, G Xu, Y Huang. Uncoupling protein-2 mediates the protective action of berberine against oxidative stress in rat insulinoma INS-1E cells and in diabetic mouse islets. Br J Pharmacol 2014; 171(13): 3246–3254
https://doi.org/10.1111/bph.12666 pmid: 24588674
98 L Dong, FH Geng, Z Zhang, P Zhang, WJ Xing, MQ Dong, KK Chen, WJ Yan, J Li, F Fu, ZJ Zhao, F Gao. GW24-e2332 Berberine alleviates mesenteric artery endothelial dysfunction by improving insulin sensitivity in type 2 diabetic rats. Heart 2013; 99(Suppl 3): A100–A101
https://doi.org/10.1136/heartjnl-2013-304613.274
99 FH Geng, GH Li, X Zhang, P Zhang, MQ Dong, ZJ Zhao, Y Zhang, L Dong, F Gao. Berberine improves mesenteric artery insulin sensitivity through up-regulating insulin receptor-mediated signalling in diabetic rats. Br J Pharmacol 2016; 173(10): 1569–1579
https://doi.org/10.1111/bph.13466 pmid: 26914282
100 YG Ma, YB Zhang, YG Bai, ZJ Dai, L Liang, M Liu, MJ Xie, HT Guan. Berberine alleviates the cerebrovascular contractility in streptozotocin-induced diabetic rats through modulation of intracellular Ca2+ handling in smooth muscle cells. Cardiovasc Diabetol 2016; 15(1): 63
https://doi.org/10.1186/s12933-016-0382-9 pmid: 27067643
101 HK Moghaddam, T Baluchnejadmojarad, M Roghani, M Khaksari, P Norouzi, M Ahooie, F Mahboobi. Berberine ameliorate oxidative stress and astrogliosis in the hippocampus of STZ-induced diabetic rats. Mol Neurobiol 2014; 49(2): 820–826
https://doi.org/10.1007/s12035-013-8559-7 pmid: 24113841
102 W Kong, J Wei, P Abidi, M Lin, S Inaba, C Li, Y Wang, Z Wang, S Si, H Pan, S Wang, J Wu, Y Wang, Z Li, J Liu, JD Jiang. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med 2004; 10(12): 1344–1351
https://doi.org/10.1038/nm1135 pmid: 15531889
103 M Banach, AM Patti, RV Giglio, AFG Cicero, AG Atanasov, G Bajraktari, E Bruckert, O Descamps, DM Djuric, M Ezhov, Z Fras, S von Haehling, N Katsiki, M Langlois, G Latkovskis, GBJ Mancini, DP Mikhailidis, O Mitchenko, PM Moriarty, P Muntner, D Nikolic, DB Panagiotakos, G Paragh, B Paulweber, D Pella, C Pitsavos, Ž Reiner, GMC Rosano, RS Rosenson, J Rysz, A Sahebkar, MC Serban, D Vinereanu, M Vrablík, GF Watts, ND Wong, M Rizzo. The role of nutraceuticals in statin intolerant patients. J Am Coll Cardiol 2018; 72(1): 96–118
https://doi.org/10.1016/j.jacc.2018.04.040 pmid: 29957236
104 AB Singh, H Li, CF Kan, B Dong, MR Nicolls, J Liu. The critical role of mRNA destabilizing protein heterogeneous nuclear ribonucleoprotein D in 3′ untranslated region-mediated decay of low-density lipoprotein receptor mRNA in liver tissue. Arterioscler Thromb Vasc Biol 2014; 34(1): 8–16
https://doi.org/10.1161/ATVBAHA.112.301131 pmid: 24158514
105 WS Kim, YS Lee, SH Cha, HW Jeong, SS Choe, MR Lee, GT Oh, HS Park, KU Lee, MD Lane, JB Kim. Berberine improves lipid dysregulation in obesity by controlling central and peripheral AMPK activity. Am J Physiol Endocrinol Metab 2009; 296(4): E812–E819
https://doi.org/10.1152/ajpendo.90710.2008 pmid: 19176354
106 L Zhou, X Wang, Y Yang, L Wu, F Li, R Zhang, G Yuan, N Wang, M Chen, G Ning. Berberine attenuates cAMP-induced lipolysis via reducing the inhibition of phosphodiesterase in 3T3-L1 adipocytes. Biochim Biophys Acta 2011; 1812(4): 527–535
https://doi.org/10.1016/j.bbadis.2010.10.001 pmid: 20969954
107 Y Wang, X Yi, K Ghanam, S Zhang, T Zhao, X Zhu. Berberine decreases cholesterol levels in rats through multiple mechanisms, including inhibition of cholesterol absorption. Metabolism 2014; 63(9): 1167–1177
https://doi.org/10.1016/j.metabol.2014.05.013 pmid: 25002181
108 R Sun, N Yang, B Kong, B Cao, D Feng, X Yu, C Ge, J Huang, J Shen, P Wang, S Feng, F Fei, J Guo, J He, N Aa, Q Chen, Y Pan, JD Schumacher, CS Yang, GL Guo, J Aa, G Wang. Orally administered berberine modulates hepatic lipid metabolism by altering microbial bile acid metabolism and the intestinal FXR signaling pathway. Mol Pharmacol 2017; 91(2): 110–122
https://doi.org/10.1124/mol.116.106617 pmid: 27932556
109 BH Choi, IS Ahn, YH Kim, JW Park, SY Lee, CK Hyun, MS Do. Berberine reduces the expression of adipogenic enzymes and inflammatory molecules of 3T3-L1 adipocyte. Exp Mol Med 2006; 38(6): 599–605
https://doi.org/10.1038/emm.2006.71 pmid: 17202835
110 Z Zhang, H Zhang, B Li, X Meng, J Wang, Y Zhang, S Yao, Q Ma, L Jin, J Yang, W Wang, G Ning. Berberine activates thermogenesis in white and brown adipose tissue. Nat Commun 2014; 5(1): 5493
https://doi.org/10.1038/ncomms6493 pmid: 25423280
111 X Zhang, Y Zhao, J Xu, Z Xue, M Zhang, X Pang, X Zhang, L Zhao. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Sci Rep 2015; 5(1): 14405
https://doi.org/10.1038/srep14405 pmid: 26396057
112 H Sun, Q Liu, H Hu, Y Jiang, W Shao, Q Wang, Z Jiang, A Gu. Berberine ameliorates blockade of autophagic flux in the liver by regulating cholesterol metabolism and inhibiting COX2-prostaglandin synthesis. Cell Death Dis 2018; 9(8): 824
https://doi.org/10.1038/s41419-018-0890-5 pmid: 30068904
113 JA Marin-Neto, BC Maciel, AL Secches, L Gallo Júnior. Cardiovascular effects of berberine in patients with severe congestive heart failure. Clin Cardiol 1988; 11(4): 253–260
https://doi.org/10.1002/clc.4960110411 pmid: 3365876
114 H Tsui, M Zi, S Wang, SK Chowdhury, S Prehar, Q Liang, EJ Cartwright, M Lei, W Liu, X Wang. Smad3 couples Pak1 with the antihypertrophic pathway through the E3 ubiquitin ligase, Fbxo32. Hypertension 2015; 66(6): 1176–1183
https://doi.org/10.1161/HYPERTENSIONAHA.115.06068 pmid: 26483344
115 S Salehi, TM Filtz. Berberine possesses muscarinic agonist-like properties in cultured rodent cardiomyocytes. Pharmacol Res 2011; 63(4): 335–340
https://doi.org/10.1016/j.phrs.2010.12.004 pmid: 21168503
116 WM Huang, ZD Wu, YQ Gan. Effects of berberine on ischemic ventricular arrhythmia. Chin J Cardiovasc Med (Zhonghua Xin Xue Guan Bing Za Zhi) 1989; 17(5): 300–319 (in Chinses)
pmid: 2483987
117 J Sánchez-Chapula. Increase in action potential duration and inhibition of the delayed rectifier outward current IK by berberine in cat ventricular myocytes. Br J Pharmacol 1996; 117(7): 1427–1434
https://doi.org/10.1111/j.1476-5381.1996.tb15302.x pmid: 8730735
118 BX Li, BF Yang, J Zhou, CQ Xu, YR Li. Inhibitory effects of berberine on IK1, IK, and HERG channels of cardiac myocytes. Acta Pharmacol Sin 2001; 22(2): 125–131
pmid: 11741516
119 LH Wang, CH Yu, Y Fu, Q Li, YQ Sun. Berberine elicits anti-arrhythmic effects via IK1/Kir2.1 in the rat type 2 diabetic myocardial infarction model. Phytother Res 2011; 25(1): 33–37
https://doi.org/10.1002/ptr.3097 pmid: 20623609
120 LH Wang, XL Li, Q Li, Y Fu, HJ Yu, YQ Sun, L Zhang, HL Shan. Berberine alleviates ischemic arrhythmias via recovering depressed Ito and ICa currents in diabetic rats. Phytomedicine 2012; 19(3-4): 206–210
https://doi.org/10.1016/j.phymed.2011.11.002 pmid: 22188769
121 G Derosa, A D’Angelo, A Bonaventura, L Bianchi, D Romano, P Maffioli. Effects of berberine on lipid profile in subjects with low cardiovascular risk. Expert Opin Biol Ther 2013; 13(4): 475–482
https://doi.org/10.1517/14712598.2013.776037 pmid: 23441841
122 M Ruscica, M Gomaraschi, G Mombelli, C Macchi, R Bosisio, F Pazzucconi, C Pavanello, L Calabresi, A Arnoldi, CR Sirtori, P Magni. Nutraceutical approach to moderate cardiometabolic risk: results of a randomized, double-blind and crossover study with Armolipid Plus. J Clin Lipidol 2014; 8(1): 61–68
https://doi.org/10.1016/j.jacl.2013.11.003 pmid: 24528686
123 F Fogacci, D Grassi, M Rizzo, AFG Cicero. Metabolic effect of berberine-silymarin association: a meta-analysis of randomized, double-blind, placebo-controlled clinical trials. Phytother Res 2019; 33(4): 862–870
https://doi.org/10.1002/ptr.6282 pmid: 30632209
124 Y Wang, Y Huang, KS Lam, Y Li, W Wong, H Ye, CW Lau, PM Vanhoutte, A Xu. Berberine prevents hyperglycemia-induced endothelial injury and enhances vasodilatation via adenosine monophosphate-activated protein kinase and endothelial nitric oxide synthase. Cardiovasc Res 2009; 82(3): 484–492
https://doi.org/10.1093/cvr/cvp078 pmid: 19251722
125 AFG Cicero, F Fogacci, A Colletti. Food and plant bioactives for reducing cardiometabolic disease risk: an evidence based approach. Food Funct 2017; 8(6): 2076–2088
https://doi.org/10.1039/C7FO00178A pmid: 28541356
126 AF Cicero, A Baggioni. Berberine and its role in chronic disease. Adv Exp Med Biol 2016; 928: 27–45
https://doi.org/10.1007/978-3-319-41334-1_2 pmid: 27671811
127 C Caliceti, P Franco, S Spinozzi, A Roda, AF Cicero. Berberine: new insights from pharmacological aspects to clinical evidences in the management of metabolic disorders. Curr Med Chem 2016; 23(14): 1460–1476
https://doi.org/10.2174/0929867323666160411143314 pmid: 27063256
128 C Caliceti, P Rizzo, AF Cicero. Potential benefits of berberine in the management of perimenopausal syndrome. Oxid Med Cell Longev 2015; 2015: 723093
https://doi.org/10.1155/2015/723093 pmid: 25785174
129 L Yu, Q Li, B Yu, Y Yang, Z Jin, W Duan, G Zhao, M Zhai, L Liu, D Yi, M Chen, S Yu. Berberine attenuates myocardial ischemia/reperfusion injury by reducing oxidative stress and inflammation response: role of silent information regulator 1. Oxid Med Cell Longev 2016; 2016: 1689602
https://doi.org/10.1155/2016/1689602 pmid: 26788242
130 ZQ Huang, BZ Ye, WJ Huang. GW24-e1352 Berberine mitigated cardiac hypoxiareoxygenation injury by suppressed autophagy and reduced cell death via inhibition of the activation of AMPK-mTOR signalling pathway in rat H9c2 cells. Heart 2013; 99(Suppl 3): A93
https://doi.org/10.1136/heartjnl-2013-304613.253
131 DGA Kang, EJA Sohn, EKA Kwon, JHA Han, H Oh, HSAR Lee. Effects of berberine on angiotensin-converting enzyme and NO/cGMP system in vessels. Vascul Pharmacol 2002; 39(6): 281–286
https://doi.org/10.1016/S1537-1891(03)00005-3 pmid: 14567065
132 DG Kang, EJ Sohn, EK Kwon, JH Han, H Oh, HS Lee. Effects of berberine on angiotensin-converting enzyme and NO/cGMP system in vessels. Vascul Pharmacol 2002; 39(6): 281–286
https://doi.org/10.1016/s1537-1891(03)00005-3 pmid: 14567065
133 C Caliceti, P Rizzo, R Ferrari, F Fortini, G Aquila, E Leoncini, L Zambonin, B Rizzo, D Calabria, P Simoni, M Mirasoli, M Guardigli, S Hrelia, A Roda, AFG Cicero. Novel role of the nutraceutical bioactive compound berberine in lectin-like OxLDL receptor 1-mediated endothelial dysfunction in comparison to lovastatin. Nutr Metab Cardiovasc Dis 2017; 27(6): 552–563
https://doi.org/10.1016/j.numecd.2017.04.002 pmid: 28511903
134 A Mazza, S Lenti, L Schiavon, M Zuin, M D’Avino, E Ramazzina, E Casiglia. Nutraceuticals for serum lipid and blood pressure control in hypertensive and hypercholesterolemic subjects at low cardiovascular risk. Adv Ther 2015; 32(7): 680–690
https://doi.org/10.1007/s12325-015-0229-x pmid: 26202829
135 J Wang, T Guo, QS Peng, SW Yue, SX Wang. Berberine via suppression of transient receptor potential vanilloid 4 channel improves vascular stiffness in mice. J Cell Mol Med 2015; 19(11): 2607–2616
https://doi.org/10.1111/jcmm.12645 pmid: 26177349
136 J Luo, Y Gu, P Liu, X Jiang, W Yu, P Ye, Y Chao, H Yang, L Zhu, L Zhou, S Chen. Berberine attenuates pulmonary arterial hypertension via protein phosphatase 2A signaling pathway both in vivo and in vitro. J Cell Physiol 2018; 233(12): 9750–9762
https://doi.org/10.1002/jcp.26940 pmid: 30078229
137 X Liu, X Zhang, L Ye, H Yuan. Protective mechanisms of berberine against experimental autoimmune myocarditis in a rat model. Biomed Pharmacother 2016; 79: 222–230
https://doi.org/10.1016/j.biopha.2016.02.015 pmid: 27044832
138 AR Coelho, TR Martins, R Couto, C Deus, CV Pereira, RF Simões, AA Rizvanov, F Silva, T Cunha-Oliveira, PJ Oliveira, TL Serafim. Berberine-induced cardioprotection and Sirt3 modulation in doxorubicin-treated H9c2 cardiomyoblasts. Biochim Biophys Acta Mol Basis Dis 2017; 1863(11): 2904–2923
https://doi.org/10.1016/j.bbadis.2017.07.030 pmid: 28760703
139 C Zhang, C Li, S Chen, Z Li, X Jia, K Wang, J Bao, Y Liang, X Wang, M Chen, P Li, H Su, JB Wan, SMY Lee, K Liu, C He. Berberine protects against 6-OHDA-induced neurotoxicity in PC12 cells and zebrafish through hormetic mechanisms involving PI3K/AKT/Bcl-2 and Nrf2/HO-1 pathways. Redox Biol 2017; 11: 1–11
https://doi.org/10.1016/j.redox.2016.10.019 pmid: 27835779
140 W Zhuang, T Li, C Wang, X Shi, Y Li, S Zhang, Z Zhao, H Dong, Y Qiao. Berberine exerts antioxidant effects via protection of spiral ganglion cells against cytomegalovirus-induced apoptosis. Free Radic Biol Med 2018; 121: 127–135
https://doi.org/10.1016/j.freeradbiomed.2018.04.575 pmid: 29715550
141 JR Zhu, HD Lu, C Guo, WR Fang, HD Zhao, JS Zhou, F Wang, YL Zhao, YM Li, YD Zhang, CQ Yang, JG Sun. Berberine attenuates ischemia-reperfusion injury through inhibiting HMGB1 release and NF-kB nuclear translocation. Acta Pharmacol Sin 2018; 39(11): 1706–1715
https://doi.org/10.1038/s41401-018-0160-1 pmid: 30266998
142 F Wang, G Zhao, L Cheng, HY Zhou, LY Fu, WX Yao. Effects of berberine on potassium currents in acutely isolated CA1 pyramidal neurons of rat hippocampus. Brain Res 2004; 999(1): 91–97
https://doi.org/10.1016/j.brainres.2003.11.036 pmid: 14746925
143 S Sun K Wang, H Lei, L Li, M Tu, S Zeng, H Zhou, H Jiang. Inhibition of organic cation transporter 2 and 3 may be involved in the mechanism of the antidepressant-like action of berberine. Prog Neuropsychopharmacol Biol Psychiatry 2014; 49: 1–6
https://doi.org/10.1016/j.pnpbp.2013.11.005 pmid: 24246570
144 J Fan, B Li, T Ge, Z Zhang, J Lv, J Zhao, P Wang, W Liu, X Wang, K Mlyniec, R Cui. Berberine produces antidepressant-like effects in ovariectomized mice. Sci Rep 2017; 7(1): 1310
https://doi.org/10.1038/s41598-017-01035-5 pmid: 28465511
145 YM Liu, L Niu, LL Wang, L Bai, XY Fang, YC Li, LT Yi. Berberine attenuates depressive-like behaviors by suppressing neuro-inflammation in stressed mice. Brain Res Bull 2017; 134: 220–227
https://doi.org/10.1016/j.brainresbull.2017.08.008 pmid: 28842306
146 B Wang, X Xu, X He, Z Wang, M Yang. Berberine improved aldo-induced podocyte injury via inhibiting oxidative stress and endoplasmic reticulum stress pathways both in vivo and in vitro. Cell Physiol Biochem 2016; 39(1): 217–228
https://doi.org/10.1159/000445618 pmid: 27336740
147 BH Kim, M Kim, CH Yin, JG Jee, C Sandoval, H Lee, EA Bach, DH Hahm, GH Baeg. Inhibition of the signalling kinase JAK3 alleviates inflammation in monoarthritic rats. Br J Pharmacol 2011; 164(1): 106–118
https://doi.org/10.1111/j.1476-5381.2011.01353.x pmid: 21434883
148 HW Lee, JH Suh, HN Kim, AY Kim, SY Park, CS Shin, JY Choi, JB Kim. Berberine promotes osteoblast differentiation by Runx2 activation with p38 MAPK. J Bone Miner Res 2008; 23(8): 1227–1237
https://doi.org/10.1359/jbmr.080325 pmid: 18410224
149 CL Robinson, ACN Chong, AW Ashbrook, G Jeng, J Jin, H Chen, EI Tang, LA Martin, RS Kim, RM Kenyon, E Do, JM Luna, M Saeed, L Zeltser, H Ralph, VL Dudley, M Goldstein, CM Rice, CY Cheng, M Seandel, S Chen. Male germ cells support long-term propagation of Zika virus. Nat Commun 2018; 9(1): 2090
https://doi.org/10.1038/s41467-018-04444-w pmid: 29844387
[1] Yang Liao, Qu Xing, Qianqian Li, Jing Zhang, Ruiyuan Pan, Zengqiang Yuan. Astrocytes in depression and Alzheimer’s disease[J]. Front. Med., 2021, 15(6): 829-841.
[2] Awanish Kumar, Anil Kumar. Antibiotic resistome of Salmonella typhi: molecular determinants for the emergence of drug resistance[J]. Front. Med., 2021, 15(5): 693-703.
[3] Zhaoshi Bao, Yongzhi Wang, Qiangwei Wang, Shengyu Fang, Xia Shan, Jiguang Wang, Tao Jiang. Intratumor heterogeneity, microenvironment, and mechanisms of drug resistance in glioma recurrence and evolution[J]. Front. Med., 2021, 15(4): 551-561.
[4] Hudan Pan, Yanfang Zheng, Zhongqiu Liu, Zhongwen Yuan, Rutong Ren, Hua Zhou, Ying Xie, Liang Liu. Deciphering the pharmacological mechanism of Guan-Jie-Kang in treating rat adjuvant-induced arthritis using omics analysis[J]. Front. Med., 2019, 13(5): 564-574.
[5] Xiaoyi Li, Hong Kang, Wensheng Liu, Sarita Singhal, Na Jiao, Yong Wang, Lixin Zhu, Ruixin Zhu. In silico design of novel proton-pump inhibitors with reduced adverse effects[J]. Front. Med., 2019, 13(2): 277-284.
[6] Dahai Zhao, Zhiruo Zhang. Qualitative analysis of direction of public hospital reforms in China[J]. Front. Med., 2018, 12(2): 218-223.
[7] Isabel Andia, Michele Abate. Platelet-rich plasma: combinational treatment modalities for musculoskeletal conditions[J]. Front. Med., 2018, 12(2): 139-152.
[8] Luqi Huang, Lanping Guo, Chaoyi Ma, Wei Gao, Qingjun Yuan. Top-geoherbs of traditional Chinese medicine: common trait, quality characteristics and formation[J]. Front Med, 2011, 5(2): 185-194.
[9] Li LI, Jianxin JIANG. Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms[J]. Front Med, 2011, 5(1): 33-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed