Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2020, Vol. 14 Issue (5) : 542-563    https://doi.org/10.1007/s11684-019-0734-4
REVIEW
The function and regulation of OTU deubiquitinases
Jiansen Du1, Lin Fu1, Yingli Sui1, Lingqiang Zhang2,3()
1. Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
2. State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
3. Peixian People’s Hospital, Xuzhou 221600, China
 Download: PDF(4429 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including cell division, immune responses, and apoptosis. Ubiquitin-mediated control over these processes can be reversed by deubiquitinases (DUBs), which remove ubiquitin from target proteins and depolymerize polyubiquitin chains. Recently, much progress has been made in the DUBs. In humans, the ovarian tumor protease (OTU) subfamily of DUBs includes 16 members, most of which mediate cell signaling cascades. These OTUs show great variation in structure and function, which display a series of mechanistic features. In this review, we provide a comprehensive analysis of current progress in character, structure and function of OTUs, such as the substrate specificity and catalytic activity regulation. Then we discuss the relationship between some diseases and OTUs. Finally, we summarize the structure of viral OTUs and their function in immune escape and viral survival. Despite the challenges, OTUs might provide new therapeutic targets, due to their involvement in key regulatory processes.

Keywords ubiquitin      OTU deubiquitinases      structure      function      regulation     
Corresponding Author(s): Lingqiang Zhang   
Just Accepted Date: 15 November 2019   Online First Date: 25 December 2019    Issue Date: 12 October 2020
 Cite this article:   
Jiansen Du,Lin Fu,Yingli Sui, et al. The function and regulation of OTU deubiquitinases[J]. Front. Med., 2020, 14(5): 542-563.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-019-0734-4
https://academic.hep.com.cn/fmd/EN/Y2020/V14/I5/542
Fig.1  Ubiquitin and UPS pathway. (A) The structure of ubiquitin (PDB: 1UBQ). The seven lysine, N-terminal methionine, and C-terminal diglycine are labeled. (B) The complexity of ubiquitin modifications. Monoubiquitin including seven lysines and one N-terminal methionine gives eight homotypic polyubiquitin chains. Heterotypic types contain mixed or branched linkage type. Also, the cross talk with other PTMs, such as SUMOylation, Neddylation, acetylation (Ac) and phosphorylation (P) enhances the complexity of ubiquitination. (C) A schematic model of UPS (Ub-proteasome system) pathway. Ubiquitin modification is an ATP-dependent process carried out by three classes of enzymes: E1, E2, and E3. The reversible process of ubiquitination is countered by DUBs action.
Fig.2  Structures of the catalytic domain of DUBs. (A) Structure of seven classes of DUBs. The active site cysteine or zinc is shown in magentas. OTUs (OTUB1, PDB: 2ZFG), USPs (USP7, PDB: 1NB8), UCHs (UCH-L3, PDB: 1UCH), MJDs (Ataxin-3, PDB: 3O65), MINDYs (MINDY1, PDB: 5JKN), ZUP1 (ZUP1, PDB: 6FGE), JAMMs (AfJAMM, PDB: 1R5X). (B) Basic nomenclature of OTU catalytic domain. The distal ubiquitin occupies the S1 site, and the proximal to the S1′ site. Sometimes, additional Ub binding sites, such as S2, S3, and S2′ are needed.
OTUs Cleavage specificity Substrates Biological functions PDB code References
OTUB1 K48 RNF128; USP8 (isoform 1); TRAF3; TRAF6; P53; UBE2N Regulate adaptive immunity, DNA damage repair, histone ubiquitination 2ZFY, 3VON, 4DDG, 4DDI, 4DHZ, 4I6L, 4LDT [3,4952]
OTUB2 K11/K48/K63 TRAF3; TRAF6; TRIM54 Regulate DNA damage repair, cancer metastasis 1TFF; 4FJV [39,49,50]
OTUD1 K63 SMAD7; YAP1; IRF3 Regulate interferon production; tumor suppressor 4BOP [5355]
OTUD2 (YOD1) K27/K29/K33 VCP; TRAF6 Regulate VCP/P97 and NF-kB signaling, Hippo pathway, and TGF-b pathway 4BOQ, 4BOS, 4BOZ [3,5658]
OTUD3 K6/K11/K48 PTEN; GRP78; TOP2A Regulate PTEN stability and suppress tumorigenesis; promotes lung tumorigenesis 4BOU [3,6,59]
OTUD4 K48/K63 MyD88; USP7; ALKBH2/3 Regulate inflammatory and innate immune response; DNA repair NA [60,61]
OTUD5 K48/K63, K11(in vitro) p53; TRAF3; PDCD5; Ku80 Regulate the innate immune system and stabilize p53 3PFY, 3TMO, 3TMP [7,62,63]
OTUD6A K11/K27/K29/K33 NA NA NA [3,64]
OTUD6B NA TIF4F Regulate cell growth and proliferation; proteasome assembly NA [3,65]
OTUD7A (Cezanne2) K11 TRAF6 Regulate HCC malignancy; regulate neurodevelopment NA [66,67]
OTUD7B (Cezanne1) K11/K48/K63 TRAF3; ZAP70; EGFR; Sox2 Regulate NF-kB signaling and TCR signaling; regulate T cell homeostasis; regulate cancer progression; stem cell differentiation 5LRU, 5LRV, 5LRW [6870]
A20 K11/K48/K63 TRAF6; FIP3; TNF; YWHAD Regulate NF-kB signaling, apoptosis and immunity 2VFJ, 3OJ3, 3OJ4, 3JZD, 3ZJF, 3ZJG, 5DQ6, 5LRX, 5V3B, 5V3P [8,40,7173]
Trabid (Zranb1) K29/K33/K63 APC; EZH2; Twist1 Regulate Wnt signaling; regulate cell morphology, cytoskeletal organization, cell migration 3ZRH, 5AF6, 4S1Z [44,74,75]
OTULIN (Fam105B) M1 RIPK2; RNF31; SHARPIN; DVL2 Regulate Wnt, NF-kB, TNF signaling, immunity response, inflammatory; sprouting angiogenesis 3ZNV, 3ZNX, 3ZNZ, 4KSJ, 4KSK, 4KSL, 4OYK, 4P0B, 5OE7, 6DRM, 6I9C [45,7678]
VCPIP (VCIP135) K11/K48 BoNT/A; P97 Regulate Golgi reassembly, mitotic cell cycle and endoplasmic reticulum membrane fusion; enhance duration of botulinum neurotoxin NA [79,80]
ALG13 NA NA Bifunctional enzyme with both glycosyltransferase and deubiquitinase activities NA [81]
Tab.1  Functional and structural information of OTUs
Fig.3  Catalytic reaction of OTUs. OTUs generally contain a catalytic triad composed of cysteine, histidine and an acidic residue. Upon diubiquitin binding, the deprotonated catalytic cysteine residue attacks the isopeptide linkage, forming a negatively charged tetrahedral intermediate. The proximal Ub releases from the catalytic center, and an acyl intermediate form. A water molecule triggers a deacylation reaction and then the distal Ub releases.
Fig.4  Phylogenetic tree and domain composition of human OTUs. (A) Phylogenetic tree of human OTUs. (B) Domain composition of human OTUs.
Fig.5  Structure of OTUs catalytic domain and diubiquitin/ubiquitin binding state. (A) OTUB subfamily (PDB: 2ZFY, 4DHZ, 4FJV); (B) OTUD subfamily (PDB: 4BOQ, 4BOZ, 4BOS); (C) A20 subfamily (PDB: 5LRU, 5LRV, 5LRW); (D) OTULIN subfamily (PDB: 3ZNV, 3ZNZ, 4KSK).
Fig.6  Structural insights into regulation mechanisms of OTUs activity. (A) Phosphoactivation modification of OTUD5 Ser177 residue (PDB: 3TMP). (B) Acetylation modification of A20 Cys103 residue (PDB: 5V3P). (C) Oxidation regulation of A20 Cys103 in reduced or oxidized station (PDB: 3ZJD, 3ZJE, 3ZJG). (D) Allosteric regulation of OTU7B and OTUB1. Allosteric regulation of OTUD7B by di-Ub binding and OTUB1 by di-Ub and UBC13 binding, the conformation changed remarkably are labeled in yellow cycle (PDB: 5LRW, 5LRV, 2ZFY, 4DHZ).
Fig.7  Structures of viral OTU domains and ISG15. (A−D) Crystal structures of (A) CCHFV viral OTU domain (PDB: 3PT2), (B) DUGV OTU domain (PDB: 4HXD), (C) EAV PLP2 (PDB: 4IUM), (D) TYMV OTU domain (PDB: 4A5U). (E) Crystal structure of ISG15 (PDB: 1Z2M), the N- and C-terminal UBL domain are labeled. (F) Crystal structure of CCHFV OTU-ISG15 complex (PDB: 3PHX).
1 D Komander, M Rape. The ubiquitin code. Annu Rev Biochem 2012; 81(1): 203–229
https://doi.org/10.1146/annurev-biochem-060310-170328 pmid: 22524316
2 J Heideker, IE Wertz. DUBs, the regulation of cell identity and disease. Biochem J 2015; 467(1): 191
https://doi.org/10.1042/bj4670191 pmid: 25793419
3 TE Mevissen, MK Hospenthal, PP Geurink, PR Elliott, M Akutsu, N Arnaudo, R Ekkebus, Y Kulathu, T Wauer, F El Oualid, SM Freund, H Ovaa, D Komander. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell 2013; 154(1): 169–184
https://doi.org/10.1016/j.cell.2013.05.046 pmid: 23827681
4 KN Swatek, D Komander. Ubiquitin modifications. Cell Res 2016; 26(4): 399–422
https://doi.org/10.1038/cr.2016.39 pmid: 27012465
5 S Nakada, I Tai, S Panier, A Al-Hakim, S Iemura, YC Juang, L O’Donnell, A Kumakubo, M Munro, F Sicheri, AC Gingras, T Natsume, T Suda, D Durocher. Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature 2010; 466(7309): 941–946
https://doi.org/10.1038/nature09297 pmid: 20725033
6 L Yuan, Y Lv, H Li, H Gao, S Song, Y Zhang, G Xing, X Kong, L Wang, Y Li, T Zhou, D Gao, ZX Xiao, Y Yin, W Wei, F He, L Zhang. Deubiquitylase OTUD3 regulates PTEN stability and suppresses tumorigenesis. Nat Cell Biol 2015; 17(9): 1169–1181
https://doi.org/10.1038/ncb3218 pmid: 26280536
7 OW Huang, X Ma, J Yin, J Flinders, T Maurer, N Kayagaki, Q Phung, I Bosanac, D Arnott, VM Dixit, SG Hymowitz, MA Starovasnik, AG Cochran. Phosphorylation-dependent activity of the deubiquitinase DUBA. Nat Struct Mol Biol 2012; 19(2): 171–175
https://doi.org/10.1038/nsmb.2206 pmid: 22245969
8 PN Duy, NT Thuy, BK Trang, NH Giang, NTH Van, NT Xuan. Regulation of NF-kB- and STAT1-mediated plasmacytoid dendritic cell functions by A20. PLoS One 2019; 14(9): e0222697
https://doi.org/10.1371/journal.pone.0222697 pmid: 31545817
9 H Hu, GC Brittain, JH Chang, N Puebla-Osorio, J Jin, A Zal, Y Xiao, X Cheng, M Chang, YX Fu, T Zal, C Zhu, SC Sun. OTUD7B controls non-canonical NF-kB activation through deubiquitination of TRAF3. Nature 2013; 494(7437): 371–374
https://doi.org/10.1038/nature11831 pmid: 23334419
10 RB Damgaard, JA Walker, P Marco-Casanova, NV Morgan, HL Titheradge, PR Elliott, D McHale, ER Maher, ANJ McKenzie, D Komander. The deubiquitinase OTULIN is an essential negative regulator of inflammation and autoimmunity. Cell 2016; 166(5): 1215–1230e20
11 S Vijay-Kumar, CE Bugg, WJ Cook. Structure of ubiquitin refined at 1.8 Å resolution. J Mol Biol 1987; 194(3): 531–544
https://doi.org/10.1016/0022-2836(87)90679-6 pmid: 3041007
12 C Kiel, L Serrano. The ubiquitin domain superfold: structure-based sequence alignments and characterization of binding epitopes. J Mol Biol 2006; 355(4): 821–844
https://doi.org/10.1016/j.jmb.2005.10.010 pmid: 16310215
13 H Walden, MS Podgorski, BA Schulman. Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8. Nature 2003; 422(6929): 330–334
https://doi.org/10.1038/nature01456 pmid: 12646924
14 M Hu, P Li, M Li, W Li, T Yao, JW Wu, W Gu, RE Cohen, Y Shi. Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 2002; 111(7): 1041–1054
https://doi.org/10.1016/S0092-8674(02)01199-6 pmid: 12507430
15 FE Reyes-Turcu, JR Horton, JE Mullally, A Heroux, X Cheng, KD Wilkinson. The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell 2006; 124(6): 1197–1208
https://doi.org/10.1016/j.cell.2006.02.038 pmid: 16564012
16 R Yau, M Rape. The increasing complexity of the ubiquitin code. Nat Cell Biol 2016; 18(6): 579–586
https://doi.org/10.1038/ncb3358 pmid: 27230526
17 J Peng, D Schwartz, JE Elias, CC Thoreen, D Cheng, G Marsischky, J Roelofs, D Finley, SP Gygi. A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 2003; 21(8): 921–926
https://doi.org/10.1038/nbt849 pmid: 12872131
18 P Xu, DM Duong, NT Seyfried, D Cheng, Y Xie, J Robert, J Rush, M Hochstrasser, D Finley, J Peng. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 2009; 137(1): 133–145
https://doi.org/10.1016/j.cell.2009.01.041 pmid: 19345192
19 DL Swaney, P Beltrao, L Starita, A Guo, J Rush, S Fields, NJ Krogan, J Villén. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 2013; 10(7): 676–682
https://doi.org/10.1038/nmeth.2519 pmid: 23749301
20 F Ohtake, Y Saeki, K Sakamoto, K Ohtake, H Nishikawa, H Tsuchiya, T Ohta, K Tanaka, J Kanno. Ubiquitin acetylation inhibits polyubiquitin chain elongation. EMBO Rep 2015; 16(2): 192–201
https://doi.org/10.15252/embr.201439152 pmid: 25527407
21 J Cui, Q Yao, S Li, X Ding, Q Lu, H Mao, L Liu, N Zheng, S Chen, F Shao. Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family. Science 2010; 329(5996): 1215–1218
https://doi.org/10.1126/science.1193844 pmid: 20688984
22 TET Mevissen, D Komander. Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem 2017; 86(1): 159–192
https://doi.org/10.1146/annurev-biochem-061516-044916 pmid: 28498721
23 BA Schulman, JW Harper. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol 2009; 10(5): 319–331
https://doi.org/10.1038/nrm2673 pmid: 19352404
24 Y Ye, M Rape. Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 2009; 10(11): 755–764
https://doi.org/10.1038/nrm2780 pmid: 19851334
25 L Buetow, DT Huang. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat Rev Mol Cell Biol 2016; 17(10): 626–642
https://doi.org/10.1038/nrm.2016.91 pmid: 27485899
26 MJ Clague, I Barsukov, JM Coulson, H Liu, DJ Rigden, S Urbé. Deubiquitylases from genes to organism. Physiol Rev 2013; 93(3): 1289–1315
https://doi.org/10.1152/physrev.00002.2013 pmid: 23899565
27 D Komander, MJ Clague, S Urbé. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 2009; 10(8): 550–563
https://doi.org/10.1038/nrm2731 pmid: 19626045
28 FE Reyes-Turcu, KH Ventii, KD Wilkinson. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 2009; 78(1): 363–397
https://doi.org/10.1146/annurev.biochem.78.082307.091526 pmid: 19489724
29 AY Amerik, M Hochstrasser. Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 2004; 1695(1–3): 189–207
https://doi.org/10.1016/j.bbamcr.2004.10.003 pmid: 15571815
30 MJ Clague, S Urbé, D Komander. Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol 2019; 20(6): 338–352
https://doi.org/10.1038/s41580-019-0099-1 pmid: 30733604
31 Y Ye, G Blaser, MH Horrocks, MJ Ruedas-Rama, S Ibrahim, AA Zhukov, A Orte, D Klenerman, SE Jackson, D Komander. Ubiquitin chain conformation regulates recognition and activity of interacting proteins. Nature 2012; 492(7428): 266–270
https://doi.org/10.1038/nature11722 pmid: 23201676
32 M Renatus, SG Parrado, A D’Arcy, U Eidhoff, B Gerhartz, U Hassiepen, B Pierrat, R Riedl, D Vinzenz, S Worpenberg, M Kroemer. Structural basis of ubiquitin recognition by the deubiquitinating protease USP2. Structure 2006; 14(8): 1293–1302
https://doi.org/10.1016/j.str.2006.06.012 pmid: 16905103
33 JB Schaefer, DO Morgan. Protein-linked ubiquitin chain structure restricts activity of deubiquitinating enzymes. J Biol Chem 2011; 286(52): 45186–45196
https://doi.org/10.1074/jbc.M111.310094 pmid: 22072716
34 MJ Clague, JM Coulson, S Urbé. Cellular functions of the DUBs. J Cell Sci 2012; 125(Pt 2): 277–286
https://doi.org/10.1242/jcs.090985 pmid: 22357969
35 KS Makarova, L Aravind, EV Koonin. A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae. Trends Biochem Sci 2000; 25(2): 50–52
https://doi.org/10.1016/S0968-0004(99)01530-3 pmid: 10664582
36 C Rodesch, PK Geyer, JS Patton, E Bae, RN Nagoshi. Developmental analysis of the ovarian tumor gene during Drosophila oogenesis. Genetics 1995; 141(1): 191–202
pmid: 8536967
37 GL Sass, AR Comer, LL Searles. The ovarian tumor protein isoforms of Drosophila melanogaster exhibit differences in function, expression, and localization. Dev Biol 1995; 167(1): 201–212
https://doi.org/10.1006/dbio.1995.1017 pmid: 7851643
38 MY Balakirev, SO Tcherniuk, M Jaquinod, J Chroboczek. Otubains: a new family of cysteine proteases in the ubiquitin pathway. EMBO Rep 2003; 4(5): 517–522
https://doi.org/10.1038/sj.embor.embor824 pmid: 12704427
39 MH Nanao, SO Tcherniuk, J Chroboczek, O Dideberg, A Dessen, MY Balakirev. Crystal structure of human otubain 2. EMBO Rep 2004; 5(8): 783–788
https://doi.org/10.1038/sj.embor.7400201 pmid: 15258613
40 SC Lin, JY Chung, B Lamothe, K Rajashankar, M Lu, YC Lo, AY Lam, BG Darnay, H Wu. Molecular basis for the unique deubiquitinating activity of the NF-κB inhibitor A20. J Mol Biol 2008; 376(2): 526–540
https://doi.org/10.1016/j.jmb.2007.11.092 pmid: 18164316
41 Y Kulathu. Novel diubiquitin probes expand the chemical toolkit to study DUBs. Cell Chem Biol 2016; 23(4): 432–434
https://doi.org/10.1016/j.chembiol.2016.04.001 pmid: 27105279
42 MJ Edelmann, A Iphöfer, M Akutsu, M Altun, K di Gleria, HB Kramer, E Fiebiger, S Dhe-Paganon, BM Kessler. Structural basis and specificity of human otubain 1-mediated deubiquitination. Biochem J 2009; 418(2): 379–390
https://doi.org/10.1042/BJ20081318 pmid: 18954305
43 T Wang, L Yin, EM Cooper, MY Lai, S Dickey, CM Pickart, D Fushman, KD Wilkinson, RE Cohen, C Wolberger. Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1. J Mol Biol 2009; 386(4): 1011–1023
https://doi.org/10.1016/j.jmb.2008.12.085 pmid: 19211026
44 JD Licchesi, J Mieszczanek, TE Mevissen, TJ Rutherford, M Akutsu, S Virdee, F El Oualid, JW Chin, H Ovaa, M Bienz, D Komander. An ankyrin-repeat ubiquitin-binding domain determines TRABID’s specificity for atypical ubiquitin chains. Nat Struct Mol Biol 2012; 19(1): 62–71
https://doi.org/10.1038/nsmb.2169 pmid: 22157957
45 K Keusekotten, PR Elliott, L Glockner, BK Fiil, RB Damgaard, Y Kulathu, T Wauer, MK Hospenthal, M Gyrd-Hansen, D Krappmann, K Hofmann, D Komander. OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 2013; 153(6): 1312–1326
https://doi.org/10.1016/j.cell.2013.05.014 pmid: 23746843
46 D Komander, D Barford. Structure of the A20 OTU domain and mechanistic insights into deubiquitination. Biochem J 2008; 409(1): 77–85
https://doi.org/10.1042/BJ20071399 pmid: 17961127
47 DA Boudreaux, J Chaney, TK Maiti, C Das. Contribution of active site glutamine to rate enhancement in ubiquitin C-terminal hydrolases. FEBS J 2012; 279(6): 1106–1118
https://doi.org/10.1111/j.1742-4658.2012.08507.x pmid: 22284438
48 AC Storer, R Ménard. Catalytic mechanism in papain family of cysteine peptidases. Methods Enzymol 1994; 244: 486–500
https://doi.org/10.1016/0076-6879(94)44035-2 pmid: 7845227
49 Z Zhang, J Du, S Wang, L Shao, K Jin, F Li, B Wei, W Ding, P Fu, H van Dam, A Wang, J Jin, C Ding, B Yang, M Zheng, XH Feng, KL Guan, L Zhang. OTUB2 promotes cancer metastasis via Hippo-independent activation of YAP and TAZ. Mol Cell 2019; 73(1): 7–21.e7
50 K Kato, K Nakajima, A Ui, Y Muto-Terao, H Ogiwara, S Nakada. Fine-tuning of DNA damage-dependent ubiquitination by OTUB2 supports the DNA repair pathway choice. Mol Cell 2014; 53(4): 617–630
https://doi.org/10.1016/j.molcel.2014.01.030 pmid: 24560272
51 Y Li, JY Yang, X Xie, Z Jie, L Zhang, J Shi, D Lin, M Gu, X Zhou, HS Li, SS Watowich, A Jain, S Yun Jung, J Qin, X Cheng, SC Sun. Preventing abnormal NF-kB activation and autoimmunity by Otub1-mediated p100 stabilization. Cell Res 2019; 29(6): 474–485
https://doi.org/10.1038/s41422-019-0174-3 pmid: 31086255
52 X Zhou, J Yu, X Cheng, B Zhao, GC Manyam, L Zhang, K Schluns, P Li, J Wang, SC Sun. The deubiquitinase Otub1 controls the activation of CD8+ T cells and NK cells by regulating IL-15-mediated priming. Nat Immunol 2019; 20(7): 879–889
https://doi.org/10.1038/s41590-019-0405-2 pmid: 31182807
53 R Wiener, X Zhang, T Wang, C Wolberger. The mechanism of OTUB1-mediated inhibition of ubiquitination. Nature 2012; 483(7391): 618–622
https://doi.org/10.1038/nature10911 pmid: 22367539
54 Z Zhang, Y Fan, F Xie, H Zhou, K Jin, L Shao, W Shi, P Fang, B Yang, H van Dam, P Ten Dijke, X Zheng, X Yan, J Jia, M Zheng, J Jin, C Ding, S Ye, F Zhou, L Zhang. Breast cancer metastasis suppressor OTUD1 deubiquitinates SMAD7. Nat Commun 2017; 8(1): 2116
https://doi.org/10.1038/s41467-017-02029-7 pmid: 29235476
55 F Yao, Z Xiao, Y Sun, L Ma. SKP2 and OTUD1 govern non-proteolytic ubiquitination of YAP that promotes YAP nuclear localization and activity. Cell Stress 2018; 2(9): 233–235
https://doi.org/10.15698/cst2018.09.153 pmid: 31225491
56 Y Kim, W Kim, Y Song, JR Kim, K Cho, H Moon, SW Ro, E Seo, YM Ryu, SJ Myung, EH Jho. Deubiquitinase YOD1 potentiates YAP/TAZ activities through enhancing ITCH stability. Proc Natl Acad Sci USA 2017; 114(18): 4691–4696
https://doi.org/10.1073/pnas.1620306114 pmid: 28416659
57 G Schimmack, K Schorpp, K Kutzner, T Gehring, JK Brenke, K Hadian, D Krappmann. YOD1/TRAF6 association balances p62-dependent IL-1 signaling to NF-kB. eLife 2017; 6: e22416. doi:10.7554/eLife.22416
pmid: 28244869
58 J Zou, W Ma, J Li, R Littlejohn, H Zhou, IM Kim, DJR Fulton, W Chen, NL Weintraub, J Zhou, H Su. Neddylation mediates ventricular chamber maturation through repression of Hippo signaling. Proc Natl Acad Sci USA 2018; 115(17): E4101–E4110
https://doi.org/10.1073/pnas.1719309115 pmid: 29632206
59 T Du, H Li, Y Fan, L Yuan, X Guo, Q Zhu, Y Yao, X Li, C Liu, X Yu, Z Liu, CP Cui, C Han, L Zhang. The deubiquitylase OTUD3 stabilizes GRP78 and promotes lung tumorigenesis. Nat Commun 2019; 10(1): 2914
https://doi.org/10.1038/s41467-019-10824-7 pmid: 31266968
60 Y Zhao, MC Majid, JM Soll, JR Brickner, S Dango, N Mosammaparast. Noncanonical regulation of alkylation damage resistance by the OTUD4 deubiquitinase. EMBO J 2015; 34(12): 1687–1703
https://doi.org/10.15252/embj.201490497 pmid: 25944111
61 Y Zhao, MC Mudge, JM Soll, RB Rodrigues, AK Byrum, EA Schwarzkopf, TR Bradstreet, SP Gygi, BT Edelson, N Mosammaparast. OTUD4 is a phospho-activated K63 deubiquitinase that regulates MyD88-dependent signaling. Mol Cell 2018; 69(3): 505–516.e5
62 SY Park, HK Choi, Y Choi, S Kwak, KC Choi, HG Yoon. Deubiquitinase OTUD5 mediates the sequential activation of PDCD5 and p53 in response to genotoxic stress. Cancer Lett 2015; 357(1): 419–427
https://doi.org/10.1016/j.canlet.2014.12.005 pmid: 25499082
63 F Li, Q Sun, K Liu, H Han, N Lin, Z Cheng, Y Cai, F Tian, Z Mao, T Tong, W Zhao. The deubiquitinase OTUD5 regulates Ku80 stability and non-homologous end joining. Cell Mol Life Sci 2019; 76(19): 3861–3873
https://doi.org/10.1007/s00018-019-03094-5 pmid: 30980112
64 SY Kim, SK Kwon, SY Lee, KH Baek. Ubiquitin-specific peptidase 5 and ovarian tumor deubiquitinase 6A are differentially expressed in p53+/+ and p53−/− HCT116 cells. Int J Oncol 2018 Mar 5. [Epub ahead of print] doi: 10.3892/ijo.2018.4302
pmid: 29512757
65 A Sobol, C Askonas, S Alani, MJ Weber, V Ananthanarayanan, C Osipo, M Bocchetta. Deubiquitinase OTUD6B isoforms are important regulators of growth and proliferation. Mol Cancer Res 2017; 15(2): 117–127
https://doi.org/10.1158/1541-7786.MCR-16-0281-T pmid: 27864334
66 Z Xu, L Pei, L Wang, F Zhang, X Hu, Y Gui. Snail1-dependent transcriptional repression of Cezanne2 in hepatocellular carcinoma. Oncogene 2014; 33(22): 2836–2845
https://doi.org/10.1038/onc.2013.243 pmid: 23792447
67 M Uddin, BK Unda, V Kwan, NT Holzapfel, SH White, L Chalil, M Woodbury-Smith, KS Ho, E Harward, N Murtaza, B Dave, G Pellecchia, L D’Abate, T Nalpathamkalam, S Lamoureux, J Wei, M Speevak, J Stavropoulos, KJ Hope, BW Doble, J Nielsen, ER Wassman, SW Scherer, KK Singh. OTUD7A regulates neurodevelopmental phenotypes in the 15q13.3 microdeletion syndrome. Am J Hum Genet 2018; 102(2): 278–295
https://doi.org/10.1016/j.ajhg.2018.01.006 pmid: 29395074
68 TET Mevissen, Y Kulathu, MPC Mulder, PP Geurink, SL Maslen, M Gersch, PR Elliott, JE Burke, BDM van Tol, M Akutsu, FE Oualid, M Kawasaki, SMV Freund, H Ovaa, D Komander. Molecular basis of Lys11-polyubiquitin specificity in the deubiquitinase Cezanne. Nature 2016; 538(7625): 402–405
https://doi.org/10.1038/nature19836 pmid: 27732584
69 CP Cui, Y Zhang, C Wang, F Yuan, H Li, Y Yao, Y Chen, C Li, W Wei, CH Liu, F He, Y Liu, L Zhang. Dynamic ubiquitylation of Sox2 regulates proteostasis and governs neural progenitor cell differentiation. Nat Commun 2018; 9(1): 4648
https://doi.org/10.1038/s41467-018-07025-z pmid: 30405104
70 DD Lin, Y Shen, S Qiao, WW Liu, L Zheng, YN Wang, N Cui, YF Wang, S Zhao, JH Shi. Upregulation of OTUD7B (Cezanne) promotes tumor progression via AKT/VEGF pathway in lung squamous carcinoma and adenocarcinoma. Front Oncol 2019; 9: 862
https://doi.org/10.3389/fonc.2019.00862 pmid: 31572671
71 Y Kulathu, FJ Garcia, TE Mevissen, M Busch, N Arnaudo, KS Carroll, D Barford, D Komander. Regulation of A20 and other OTU deubiquitinases by reversible oxidation. Nat Commun 2013; 4(1): 1569
https://doi.org/10.1038/ncomms2567 pmid: 23463012
72 F Tokunaga, H Nishimasu, R Ishitani, E Goto, T Noguchi, K Mio, K Kamei, A Ma, K Iwai, O Nureki. Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-kB regulation. EMBO J 2012; 31(19): 3856–3870
https://doi.org/10.1038/emboj.2012.241 pmid: 23032187
73 I Bosanac, IE Wertz, B Pan, C Yu, S Kusam, C Lam, L Phu, Q Phung, B Maurer, D Arnott, DS Kirkpatrick, VM Dixit, SG Hymowitz. Ubiquitin binding to A20 ZnF4 is required for modulation of NF-kB signaling. Mol Cell 2010; 40(4): 548–557
https://doi.org/10.1016/j.molcel.2010.10.009 pmid: 21095585
74 MA Michel, PR Elliott, KN Swatek, M Simicek, JN Pruneda, JL Wagstaff, SM Freund, D Komander. Assembly and specific recognition of k29- and k33-linked polyubiquitin. Mol Cell 2015; 58(1): 95–109
https://doi.org/10.1016/j.molcel.2015.01.042 pmid: 25752577
75 Y Zhu, C Qu, X Hong, Y Jia, M Lin, Y Luo, F Lin, X Xie, X Xie, J Huang, Q Wu, X Qiu, D Piao, Y Xing, T Yu, Y Lu, Q Huang, C Yu, J Jin, Z Zhang. Trabid inhibits hepatocellular carcinoma growth and metastasis by cleaving RNF8-induced K63 ubiquitination of Twist1. Cell Death Differ 2019; 26(2): 306–320
https://doi.org/10.1038/s41418-018-0119-2 pmid: 29748601
76 PR Elliott, SV Nielsen, P Marco-Casanova, BK Fiil, K Keusekotten, N Mailand, SM Freund, M Gyrd-Hansen, D Komander. Molecular basis and regulation of OTULIN-LUBAC interaction. Mol Cell 2014; 54(3): 335–348
https://doi.org/10.1016/j.molcel.2014.03.018 pmid: 24726323
77 A Weber, PR Elliott, A Pinto-Fernandez, S Bonham, BM Kessler, D Komander, F El Oualid, D Krappmann. A linear diubiquitin-based probe for efficient and selective detection of the deubiquitinating enzyme OTULIN. Cell Chem Biol 2017; 24(10): 1299–1313.e7
78 M Zhao, K Song, W Hao, L Wang, G Patil, Q Li, L Xu, F Hua, B Fu, JC Schwamborn, ME Dorf, S Li. Non-proteolytic ubiquitination of OTULIN regulates NF-kB signaling pathway. J Mol Cell Biol 2019; mjz081
https://doi.org/10.1093/jmcb/mjz081 pmid: 31504727
79 YC Tsai, A Kotiya, E Kiris, M Yang, S Bavari, L Tessarollo, GA Oyler, AM Weissman. Deubiquitinating enzyme VCIP135 dictates the duration of botulinum neurotoxin type A intoxication. Proc Natl Acad Sci USA 2017; 114(26): E5158–E5166
https://doi.org/10.1073/pnas.1621076114 pmid: 28584101
80 X Zhang, H Zhang, Y Wang. Phosphorylation regulates VCIP135 function in Golgi membrane fusion during the cell cycle. J Cell Sci 2014; 127(Pt 1): 172–181
https://doi.org/10.1242/jcs.134668 pmid: 24163436
81 P Gao, F Wang, J Huo, D Wan, J Zhang, J Niu, J Wu, B Yu, T Sun. ALG13 deficiency associated with increased seizure susceptibility and severity. Neuroscience 2019; 409: 204–221
https://doi.org/10.1016/j.neuroscience.2019.03.009 pmid: 30872163
82 SC Lin, JY Chung, B Lamothe, K Rajashankar, M Lu, YC Lo, AY Lam, BG Darnay, H Wu. Molecular basis for the unique deubiquitinating activity of the NF-κB inhibitor A20. J Mol Biol 2008; 376(2): 526–540
https://doi.org/10.1016/j.jmb.2007.11.092 pmid: 18164316
83 L Zhao, X Wang, Y Yu, L Deng, L Chen, X Peng, C Jiao, G Gao, X Tan, W Pan, X Ge, P Wang. OTUB1 protein suppresses mTOR complex 1 (mTORC1) activity by deubiquitinating the mTORC1 inhibitor DEPTOR. J Biol Chem 2018; 293(13): 4883–4892
https://doi.org/10.1074/jbc.M117.809533 pmid: 29382726
84 S Piao, HZ Pei, B Huang, SH Baek. Ovarian tumor domain-containing protein 1 deubiquitinates and stabilizes p53. Cell Signal 2017; 33: 22–29
https://doi.org/10.1016/j.cellsig.2017.02.011 pmid: 28216291
85 L Zhang, J Liu, L Qian, Q Feng, X Wang, Y Yuan, Y Zuo, Q Cheng, Y Miao, T Guo, X Zheng, H Zheng. Induction of OTUD1 by RNA viruses potently inhibits innate immune responses by promoting degradation of the MAVS/TRAF3/TRAF6 signalosome. PLoS Pathog 2018; 14(5): e1007067
https://doi.org/10.1371/journal.ppat.1007067 pmid: 29734366
86 R Ernst, B Mueller, HL Ploegh, C Schlieker. The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER. Mol Cell 2009; 36(1): 28–38
https://doi.org/10.1016/j.molcel.2009.09.016 pmid: 19818707
87 C Papadopoulos, P Kirchner, M Bug, D Grum, L Koerver, N Schulze, R Poehler, A Dressler, S Fengler, K Arhzaouy, V Lux, M Ehrmann, CC Weihl, H Meyer. VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. EMBO J 2017; 36(2): 135–150
https://doi.org/10.15252/embj.201695148 pmid: 27753622
88 R Das, L Schwintzer, S Vinopal, E Aguado Roca, M Sylvester, AM Oprisoreanu, S Schoch, F Bradke, M Broemer. New roles for the de-ubiquitylating enzyme OTUD4 in an RNA-protein network and RNA granules. J Cell Sci 2019; 132(12): jcs229252
https://doi.org/10.1242/jcs.229252 pmid: 31138677
89 N Kayagaki, Q Phung, S Chan, R Chaudhari, C Quan, KM O’Rourke, M Eby, E Pietras, G Cheng, JF Bazan, Z Zhang, D Arnott, VM Dixit. DUBA: a deubiquitinase that regulates type I interferon production. Science 2007; 318(5856): 1628–1632
https://doi.org/10.1126/science.1145918 pmid: 17991829
90 A de Vivo, A Sanchez, J Yegres, J Kim, S Emly, Y Kee. The OTUD5-UBR5 complex regulates FACT-mediated transcription at damaged chromatin. Nucleic Acids Res 2019; 47(2): 729–746
https://doi.org/10.1093/nar/gky1219 pmid: 30508113
91 T Santiago-Sim, LC Burrage, F Ebstein, MJ Tokita, M Miller, W Bi, AA Braxton, JA Rosenfeld, M Shahrour, A Lehmann, B Cogné, S Küry, T Besnard, B Isidor, S Bézieau, I Hazart, H Nagakura, LL Immken, RO Littlejohn, E Roeder; EuroEPINOMICS RES Consortium Autosomal Recessive working group, S. Hande Caglayan, B Kara, K Hardies, S Weckhuysen, P May, JR Lemke, O Elpeleg, B Abu-Libdeh, KN James, JL Silhavy, MY Issa, MS Zaki, JG Gleeson, JR Seavitt, ME Dickinson, MC Ljungberg, S Wells, SJ Johnson, L Teboul, CM Eng, Y Yang, PM Kloetzel, JD Heaney, MA Walkiewicz, Z Afawi, R Balling, N Barisic, S Baulac, D Craiu, P De Jonghe, R Guerrero-Lopez, R Guerrini, I Helbig, H Hjalgrim, J Jähn, KM Klein, E Leguern, H Lerche, C Marini, H Muhle, F Rosenow, J Serratosa, K Sterbová, A Suls, RS Moller, P Striano, Y Weber, F Zara. Biallelic variants in OTUD6B cause an intellectual disability syndrome associated with seizures and dysmorphic features. Am J Hum Genet 2017; 100(4): 676–688
https://doi.org/10.1016/j.ajhg.2017.03.001 pmid: 28343629
92 M Takata, E Pachera, M Frank-Bertoncelj, A Kozlova, A Jüngel, ML Whitfield, S Assassi, M Calcagni, J de Vries-Bouwstra, TW Huizinga, F Kurreeman, G Kania, O Distler. OTUD6B-AS1 might be a novel regulator of apoptosis in systemic sclerosis. Front Immunol 2019; 10: 1100
https://doi.org/10.3389/fimmu.2019.01100 pmid: 31156645
93 G Wang, ZJ Zhang, WG Jian, PH Liu, W Xue, TD Wang, YY Meng, C Yuan, HM Li, YP Yu, ZX Liu, Q Wu, DM Zhang, C Zhang. Novel long noncoding RNA OTUD6B-AS1 indicates poor prognosis and inhibits clear cell renal cell carcinoma proliferation via the Wnt/b-catenin signaling pathway. Mol Cancer 2019; 18(1): 15
https://doi.org/10.1186/s12943-019-0942-1 pmid: 30670025
94 IE Wertz, KM O’Rourke, H Zhou, M Eby, L Aravind, S Seshagiri, P Wu, C Wiesmann, R Baker, DL Boone, A Ma, EV Koonin, VM Dixit. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 2004; 430(7000): 694–699
https://doi.org/10.1038/nature02794 pmid: 15258597
95 C Mauro, F Pacifico, A Lavorgna, S Mellone, A Iannetti, R Acquaviva, S Formisano, P Vito, A Leonardi. ABIN-1 binds to NEMO/IKKγ and co-operates with A20 in inhibiting NF-κB. J Biol Chem 2006; 281(27): 18482–18488
https://doi.org/10.1074/jbc.M601502200 pmid: 16684768
96 B Skaug, J Chen, F Du, J He, A Ma, ZJ Chen. Direct, noncatalytic mechanism of IKK inhibition by A20. Mol Cell 2011; 44(4): 559–571
https://doi.org/10.1016/j.molcel.2011.09.015 pmid: 22099304
97 M Düwel, V Welteke, A Oeckinghaus, M Baens, B Kloo, U Ferch, BG Darnay, J Ruland, P Marynen, D Krappmann. A20 negatively regulates T cell receptor signaling to NF-κB by cleaving Malt1 ubiquitin chains. J Immunol 2009; 182(12): 7718–7728
https://doi.org/10.4049/jimmunol.0803313 pmid: 19494296
98 L Li, N Soetandyo, Q Wang, Y Ye. The zinc finger protein A20 targets TRAF2 to the lysosomes for degradation. Biochim Biophys Acta 2009; 1793(2): 346–353
https://doi.org/10.1016/j.bbamcr.2008.09.013 pmid: 18952128
99 C Yang, W Zang, Z Tang, Y Ji, R Xu, Y Yang, A Luo, B Hu, Z Zhang, Z Liu, X Zheng. A20/TNFAIP3 regulates the DNA damage response and mediates tumor cell resistance to DNA-damaging therapy. Cancer Res 2018; 78(4): 1069–1082
https://doi.org/10.1158/0008-5472.CAN-17-2143 pmid: 29233925
100 J Yin, W Chen, ES Chao, S Soriano, L Wang, W Wang, SE Cummock, H Tao, K Pang, Z Liu, FA Pereira, RC Samaco, HY Zoghbi, M Xue, CP Schaaf. Otud7a knockout mice recapitulate many neurological features of 15q13.3 microdeletion syndrome. Am J Hum Genet 2018; 102(2): 296–308
https://doi.org/10.1016/j.ajhg.2018.01.005 pmid: 29395075
101 A Bremm, S Moniz, J Mader, S Rocha, D Komander. Cezanne (OTUD7B) regulates HIF-1a homeostasis in a proteasome-independent manner. EMBO Rep 2014; 15(12): 1268–1277
https://doi.org/10.15252/embr.201438850 pmid: 25355043
102 B Wang, Z Jie, D Joo, A Ordureau, P Liu, W Gan, J Guo, J Zhang, BJ North, X Dai, X Cheng, X Bian, L Zhang, JW Harper, SC Sun, W Wei. TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature 2017; 545(7654): 365–369
https://doi.org/10.1038/nature22344 pmid: 28489822
103 A Luong, M Fragiadaki, J Smith, J Boyle, J Lutz, JL Dean, S Harten, M Ashcroft, SR Walmsley, DO Haskard, PH Maxwell, H Walczak, C Pusey, PC Evans. Cezanne regulates inflammatory responses to hypoxia in endothelial cells by targeting TRAF6 for deubiquitination. Circ Res 2013; 112(12): 1583–1591
https://doi.org/10.1161/CIRCRESAHA.111.300119 pmid: 23564640
104 H Tran, F Hamada, T Schwarz-Romond, M Bienz. Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains. Genes Dev 2008; 22(4): 528–542
https://doi.org/10.1101/gad.463208 pmid: 18281465
105 SW Bai, MT Herrera-Abreu, JL Rohn, V Racine, V Tajadura, N Suryavanshi, S Bechtel, S Wiemann, B Baum, AJ Ridley. Identification and characterization of a set of conserved and new regulators of cytoskeletal organization, cell morphology and migration. BMC Biol 2011; 9(1): 54
https://doi.org/10.1186/1741-7007-9-54 pmid: 21834987
106 J Jin, X Xie, Y Xiao, H Hu, Q Zou, X Cheng, SC Sun. Epigenetic regulation of the expression of Il12 and Il23 and autoimmune inflammation by the deubiquitinase Trabid. Nat Immunol 2016; 17(3): 259–268
https://doi.org/10.1038/ni.3347 pmid: 26808229
107 IS Afonina, R Beyaert. Trabid epigenetically drives expression of IL-12 and IL-23. Nat Immunol 2016; 17(3): 227–228
https://doi.org/10.1038/ni.3388 pmid: 26882254
108 E Rivkin, SM Almeida, DF Ceccarelli, YC Juang, TA MacLean, T Srikumar, H Huang, WH Dunham, R Fukumura, G Xie, Y Gondo, B Raught, AC Gingras, F Sicheri, SP Cordes. The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature 2013; 498(7454): 318–324
https://doi.org/10.1038/nature12296 pmid: 23708998
109 Q Zhou, X Yu, E Demirkaya, N Deuitch, D Stone, WL Tsai, HS Kuehn, H Wang, D Yang, YH Park, AK Ombrello, M Blake, T Romeo, EF Remmers, JJ Chae, JC Mullikin, F Güzel, JD Milner, M Boehm, SD Rosenzweig, M Gadina, SB Welch, S Özen, R Topaloglu, M Abinun, DL Kastner, I Aksentijevich. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc Natl Acad Sci USA 2016; 113(36): 10127–10132
https://doi.org/10.1073/pnas.1612594113 pmid: 27559085
110 M Hrdinka, M Gyrd-Hansen. The Met1-linked ubiquitin machinery: emerging themes of (de)regulation. Mol Cell 2017; 68(2): 265–280
https://doi.org/10.1016/j.molcel.2017.09.001 pmid: 29053955
111 K Heger, KE Wickliffe, A Ndoja, J Zhang, A Murthy, DL Dugger, A Maltzman, F de Sousa E Melo, J Hung, Y Zeng, E Verschueren, DS Kirkpatrick, D Vucic, WP Lee, M Roose-Girma, RJ Newman, S Warming, YC Hsiao, LG Kőműves, JD Webster, K Newton, VM Dixit. OTULIN limits cell death and inflammation by deubiquitinating LUBAC. Nature 2018; 559(7712): 120–124
https://doi.org/10.1038/s41586-018-0256-2 pmid: 29950720
112 S Rutz, N Kayagaki, QT Phung, C Eidenschenk, R Noubade, X Wang, J Lesch, R Lu, K Newton, OW Huang, AG Cochran, M Vasser, BP Fauber, J DeVoss, J Webster, L Diehl, Z Modrusan, DS Kirkpatrick, JR Lill, W Ouyang, VM Dixit. Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature 2015; 518(7539): 417–421
https://doi.org/10.1038/nature13979 pmid: 25470037
113 IE Wertz, K Newton, D Seshasayee, S Kusam, C Lam, J Zhang, N Popovych, E Helgason, A Schoeffler, S Jeet, N Ramamoorthi, L Kategaya, RJ Newman, K Horikawa, D Dugger, W Sandoval, S Mukund, A Zindal, F Martin, C Quan, J Tom, WJ Fairbrother, M Townsend, S Warming, J DeVoss, J Liu, E Dueber, P Caplazi, WP Lee, CC Goodnow, M Balazs, K Yu, G Kolumam, VM Dixit. Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation. Nature 2015; 528(7582): 370–375
https://doi.org/10.1038/nature16165 pmid: 26649818
114 JE Hutti, BE Turk, JM Asara, A Ma, LC Cantley, DW Abbott. IκB kinase β phosphorylates the K63 deubiquitinase A20 to cause feedback inhibition of the NF-κB pathway. Mol Cell Biol 2007; 27(21): 7451–7461
https://doi.org/10.1128/MCB.01101-07 pmid: 17709380
115 L Herhaus, AB Perez-Oliva, G Cozza, R Gourlay, S Weidlich, DG Campbell, LA Pinna, GP Sapkota. Casein kinase 2 (CK2) phosphorylates the deubiquitylase OTUB1 at Ser16 to trigger its nuclear localization. Sci Signal 2015; 8(372): ra35
https://doi.org/10.1126/scisignal.aaa0441 pmid: 25872870
116 P Leznicki, Y Kulathu. Mechanisms of regulation and diversification of deubiquitylating enzyme function. J Cell Sci 2017; 130(12): 1997–2006
https://doi.org/10.1242/jcs.201855 pmid: 28476940
117 XM Cotto-Rios, M Békés, J Chapman, B Ueberheide, TT Huang. Deubiquitinases as a signaling target of oxidative stress. Cell Reports 2012; 2(6): 1475–1484
https://doi.org/10.1016/j.celrep.2012.11.011 pmid: 23219552
118 JG Lee, K Baek, N Soetandyo, Y Ye. Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells. Nat Commun 2013; 4(1): 1568
https://doi.org/10.1038/ncomms2532 pmid: 23463011
119 SH Ross, Y Lindsay, ST Safrany, O Lorenzo, F Villa, R Toth, MJ Clague, CP Downes, NR Leslie. Differential redox regulation within the PTP superfamily. Cell Signal 2007; 19(7): 1521–1530
https://doi.org/10.1016/j.cellsig.2007.01.026 pmid: 17346927
120 K Enesa, K Ito, A Luong, I Thorbjornsen, C Phua, Y To, J Dean, DO Haskard, J Boyle, I Adcock, PC Evans. Hydrogen peroxide prolongs nuclear localization of NF-κB in activated cells by suppressing negative regulatory mechanisms. J Biol Chem 2008; 283(27): 18582–18590
https://doi.org/10.1074/jbc.M801312200 pmid: 18474597
121 R Wiener, AT DiBello, PM Lombardi, CM Guzzo, X Zhang, MJ Matunis, C Wolberger. E2 ubiquitin-conjugating enzymes regulate the deubiquitinating activity of OTUB1. Nat Struct Mol Biol 2013; 20(9): 1033–1039
https://doi.org/10.1038/nsmb.2655 pmid: 23955022
122 YC Juang, MC Landry, M Sanches, V Vittal, CC Leung, DF Ceccarelli, AR Mateo, JN Pruneda, DY Mao, RK Szilard, S Orlicky, M Munro, PS Brzovic, RE Klevit, F Sicheri, D Durocher. OTUB1 co-opts Lys48-linked ubiquitin recognition to suppress E2 enzyme function. Mol Cell 2012; 45(3): 384–397
https://doi.org/10.1016/j.molcel.2012.01.011 pmid: 22325355
123 Y Sato, A Yamagata, S Goto-Ito, K Kubota, R Miyamoto, S Nakada, S Fukai. Molecular basis of Lys-63-linked polyubiquitination inhibition by the interaction between human deubiquitinating enzyme OTUB1 and ubiquitin-conjugating enzyme UBC13. J Biol Chem 2012; 287(31): 25860–25868
https://doi.org/10.1074/jbc.M112.364752 pmid: 22679021
124 H Iha, JM Peloponese, L Verstrepen, G Zapart, F Ikeda, CD Smith, MF Starost, V Yedavalli, K Heyninck, I Dikic, R Beyaert, KT Jeang. Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-κB activation. EMBO J 2008; 27(4): 629–641
https://doi.org/10.1038/emboj.2008.5 pmid: 18239685
125 SG Hymowitz, IE Wertz. A20: from ubiquitin editing to tumour suppression. Nat Rev Cancer 2010; 10(5): 332–341
https://doi.org/10.1038/nrc2775 pmid: 20383180
126 B Coornaert, M Baens, K Heyninck, T Bekaert, M Haegman, J Staal, L Sun, ZJ Chen, P Marynen, R Beyaert. T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-κB inhibitor A20. Nat Immunol 2008; 9(3): 263–271
https://doi.org/10.1038/ni1561 pmid: 18223652
127 T Goncharov, K Niessen, MC de Almagro, A Izrael-Tomasevic, AV Fedorova, E Varfolomeev, D Arnott, K Deshayes, DS Kirkpatrick, D Vucic. OTUB1 modulates c-IAP1 stability to regulate signalling pathways. EMBO J 2013; 32(8): 1103–1114
https://doi.org/10.1038/emboj.2013.62 pmid: 23524849
128 S Urbé, H Liu, SD Hayes, C Heride, DJ Rigden, MJ Clague. Systematic survey of deubiquitinase localization identifies USP21 as a regulator of centrosome- and microtubule-associated functions. Mol Biol Cell 2012; 23(6): 1095–1103
https://doi.org/10.1091/mbc.e11-08-0668 pmid: 22298430
129 T Mueller, P Breuer, I Schmitt, J Walter, BO Evert, U Wüllner. CK2-dependent phosphorylation determines cellular localization and stability of ataxin-3. Hum Mol Genet 2009; 18(17): 3334–3343
https://doi.org/10.1093/hmg/ddp274 pmid: 19542537
130 CC Scholz, J Rodriguez, C Pickel, S Burr, JA Fabrizio, KA Nolan, P Spielmann, MA Cavadas, B Crifo, DN Halligan, JA Nathan, DJ Peet, RH Wenger, A Von Kriegsheim, EP Cummins, CT Taylor. FIH regulates cellular metabolism through hydroxylation of the deubiquitinase OTUB1. PLoS Biol 2016; 14(1): e1002347
https://doi.org/10.1371/journal.pbio.1002347 pmid: 26752685
131 L Soares, C Seroogy, H Skrenta, N Anandasabapathy, P Lovelace, CD Chung, E Engleman, CG Fathman. Two isoforms of otubain 1 regulate T cell anergy via GRAIL. Nat Immunol 2004; 5(1): 45–54
https://doi.org/10.1038/ni1017 pmid: 14661020
132 J Heideker, IE Wertz. DUBs, the regulation of cell identity and disease. Biochem J 2015; 465(1): 1–26
https://doi.org/10.1042/BJ20140496 pmid: 25631680
133 XX Sun, MS Dai. Deubiquitinating enzyme regulation of the p53 pathway: a lesson from Otub1. World J Biol Chem 2014; 5(2): 75–84
pmid: 24920999
134 J Luo, Z Lu, X Lu, L Chen, J Cao, S Zhang, Y Ling, X Zhou. OTUD5 regulates p53 stability by deubiquitinating p53. PLoS One 2013; 8(10): e77682
https://doi.org/10.1371/journal.pone.0077682 pmid: 24143256
135 M Notarbartolo, P Poma, D Perri, L Dusonchet, M Cervello, N D’Alessandro. Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-κB activation levels and in IAP gene expression. Cancer Lett 2005; 224(1): 53–65
https://doi.org/10.1016/j.canlet.2004.10.051 pmid: 15911101
136 EW Harhaj, VM Dixit. Regulation of NF-kB by deubiquitinases. Immunol Rev 2012; 246(1): 107–124
https://doi.org/10.1111/j.1600-065X.2012.01100.x pmid: 22435550
137 EW Harhaj, VM Dixit. Deubiquitinases in the regulation of NF-kB signaling. Cell Res 2011; 21(1): 22–39
https://doi.org/10.1038/cr.2010.166 pmid: 21119682
138 W Wei, M Li, J Wang, F Nie, L Li. The E3 ubiquitin ligase ITCH negatively regulates canonical Wnt signaling by targeting dishevelled protein. Mol Cell Biol 2012; 32(19): 3903–3912
https://doi.org/10.1128/MCB.00251-12 pmid: 22826439
139 T Takiuchi, T Nakagawa, H Tamiya, H Fujita, Y Sasaki, Y Saeki, H Takeda, T Sawasaki, A Buchberger, T Kimura, K Iwai. Suppression of LUBAC-mediated linear ubiquitination by a specific interaction between LUBAC and the deubiquitinases CYLD and OTULIN. Genes Cells 2014; 19(3): 254–272
https://doi.org/10.1111/gtc.12128 pmid: 24461064
140 JM González-Navajas, J Law, KP Nguyen, M Bhargava, MP Corr, N Varki, L Eckmann, HM Hoffman, J Lee, E Raz. Interleukin 1 receptor signaling regulates DUBA expression and facilitates Toll-like receptor 9-driven antiinflammatory cytokine production. J Exp Med 2010; 207(13): 2799–2807
https://doi.org/10.1084/jem.20101326 pmid: 21115691
141 K Enesa, M Zakkar, H Chaudhury, A Luong, L Rawlinson, JC Mason, DO Haskard, JL Dean, PC Evans. NF-κB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J Biol Chem 2008; 283(11): 7036–7045
https://doi.org/10.1074/jbc.M708690200 pmid: 18178551
142 RS McNally, BK Davis, CM Clements, MA Accavitti-Loper, TW Mak, JP Ting. DJ-1 enhances cell survival through the binding of Cezanne, a negative regulator of NF-κB. J Biol Chem 2011; 286(6): 4098–4106
https://doi.org/10.1074/jbc.M110.147371 pmid: 21097510
143 Y Zhu, C Qu, X Hong, Y Jia, M Lin, Y Luo, F Lin, X Xie, X Xie, J Huang, Q Wu, X Qiu, D Piao, Y Xing, T Yu, Y Lu, Q Huang, C Yu, J Jin, Z Zhang. Trabid inhibits hepatocellular carcinoma growth and metastasis by cleaving RNF8-induced K63 ubiquitination of Twist1. Cell Death Differ 2019; 26(2): 306–320
https://doi.org/10.1038/s41418-018-0119-2 pmid: 29748601
144 J Choi, KH Baek. Cellular functions of stem cell factors mediated by the ubiquitin-proteasome system. Cell Mol Life Sci 2018; 75(11): 1947–1957
https://doi.org/10.1007/s00018-018-2770-7 pmid: 29423528
145 AP Chandrasekaran, B Suresh, HH Kim, KS Kim, S Ramakrishna. Concise review: fate determination of stem cells by deubiquitinating enzymes. Stem Cells 2017; 35(1): 9–16
https://doi.org/10.1002/stem.2446 pmid: 27341175
146 S Ramakrishna, KS Kim, KH Baek. Posttranslational modifications of defined embryonic reprogramming transcription factors. Cell Reprogram 2014; 16(2): 108–120
https://doi.org/10.1089/cell.2013.0077 pmid: 24568610
147 C Naujokat, T Sarić. Concise review: role and function of the ubiquitin-proteasome system in mammalian stem and progenitor cells. Stem Cells 2007; 25(10): 2408–2418
https://doi.org/10.1634/stemcells.2007-0255 pmid: 17641241
148 S Schubbert, J Jiao, M Ruscetti, J Nakashima, S Wu, H Lei, Q Xu, W Yi, H Zhu, H Wu. Methods for PTEN in stem cells and cancer stem cells. Methods Mol Biol 2016; 1388: 233–285
https://doi.org/10.1007/978-1-4939-3299-3_15 pmid: 27033080
149 S Duan, G Yuan, X Liu, R Ren, J Li, W Zhang, J Wu, X Xu, L Fu, Y Li, J Yang, W Zhang, R Bai, F Yi, K Suzuki, H Gao, CR Esteban, C Zhang, JC Izpisua Belmonte, Z Chen, X Wang, T Jiang, J Qu, F Tang, GH Liu. PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nat Commun 2015; 6(1): 10068
https://doi.org/10.1038/ncomms10068 pmid: 26632666
150 C Natarajan, K Takeda. Regulation of various DNA repair pathways by E3 ubiquitin ligases. J Cancer Res Ther 2017; 13(2): 157–169
https://doi.org/10.4103/0973-1482.204879 pmid: 28643728
151 P Schwertman, S Bekker-Jensen, N Mailand. Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers. Nat Rev Mol Cell Biol 2016; 17(6): 379–394
https://doi.org/10.1038/nrm.2016.58 pmid: 27211488
152 PJ Vlachostergios, A Patrikidou, DD Daliani, CN Papandreou. The ubiquitin-proteasome system in cancer, a major player in DNA repair. Part 1: post-translational regulation. J Cell Mol Med 2009; 13(9b 9B): 3006–3018
https://doi.org/10.1111/j.1582-4934.2009.00824.x pmid: 19522845
153 Y Kee, TT Huang. Role of deubiquitinating enzymes in DNA repair. Mol Cell Biol 2016; 36(4): 524–544
https://doi.org/10.1128/MCB.00847-15 pmid: 26644404
154 MS Huen, R Grant, I Manke, K Minn, X Yu, MB Yaffe, J Chen. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 2007; 131(5): 901–914
https://doi.org/10.1016/j.cell.2007.09.041 pmid: 18001825
155 NK Kolas, JR Chapman, S Nakada, J Ylanko, R Chahwan, FD Sweeney, S Panier, M Mendez, J Wildenhain, TM Thomson, L Pelletier, SP Jackson, D Durocher. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science 2007; 318(5856): 1637–1640
https://doi.org/10.1126/science.1150034 pmid: 18006705
156 N Mailand, S Bekker-Jensen, H Faustrup, F Melander, J Bartek, C Lukas, J Lukas. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 2007; 131(5): 887–900
https://doi.org/10.1016/j.cell.2007.09.040 pmid: 18001824
157 AC Jacomin, E Taillebourg, MO Fauvarque. Deubiquitinating enzymes related to autophagy: new therapeutic opportunities? Cells 2018; 7(8): E112
https://doi.org/10.3390/cells7080112 pmid: 30126257
158 FE Magraoui, C Reidick, HE Meyer, HW Platta. Autophagy-related deubiquitinating enzymes involved in health and disease. Cells 2015; 4(4): 596–621
https://doi.org/10.3390/cells4040596 pmid: 26445063
159 J Zinngrebe, A Montinaro, N Peltzer, H Walczak. Ubiquitin in the immune system. EMBO Rep 2014; 15(1): 28–45
https://doi.org/10.1002/embr.201338025 pmid: 24375678
160 BA Bailey-Elkin, PB van Kasteren, EJ Snijder, M Kikkert, BL Mark. Viral OTU deubiquitinases: a structural and functional comparison. PLoS Pathog 2014; 10(3): e1003894
https://doi.org/10.1371/journal.ppat.1003894 pmid: 24676359
161 PB van Kasteren, C Beugeling, DK Ninaber, N Frias-Staheli, S van Boheemen, A García-Sastre, EJ Snijder, M Kikkert. Arterivirus and nairovirus ovarian tumor domain-containing deubiquitinases target activated RIG-I to control innate immune signaling. J Virol 2012; 86(2): 773–785
https://doi.org/10.1128/JVI.06277-11 pmid: 22072774
162 N Frias-Staheli, NV Giannakopoulos, M Kikkert, SL Taylor, A Bridgen, J Paragas, JA Richt, RR Rowland, CS Schmaljohn, DJ Lenschow, EJ Snijder, A García-Sastre, HW Virgin 4th. Ovarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses. Cell Host Microbe 2007; 2(6): 404–416
https://doi.org/10.1016/j.chom.2007.09.014 pmid: 18078692
163 EJ Snijder, AL Wassenaar, WJ Spaan, AE Gorbalenya. The arterivirus Nsp2 protease. An unusual cysteine protease with primary structure similarities to both papain-like and chymotrypsin-like proteases. J Biol Chem 1995; 270(28): 16671–16676
https://doi.org/10.1074/jbc.270.28.16671 pmid: 7622476
164 BA Bailey-Elkin, RCM Knaap, M Kikkert, BL Mark. Structure and function of viral deubiquitinating enzymes. J Mol Biol 2017; 429(22): 3441–3470
https://doi.org/10.1016/j.jmb.2017.06.010 pmid: 28625850
165 W Feng, X Sun, N Shi, M Zhang, Z Guan, M Duan. Influenza a virus NS1 protein induced A20 contributes to viral replication by suppressing interferon-induced antiviral response. Biochem Biophys Res Commun 2017; 482(4): 1107–1113
https://doi.org/10.1016/j.bbrc.2016.11.166 pmid: 27914808
166 S Yokota, T Okabayashi, N Yokosawa, N Fujii. Measles virus P protein suppresses Toll-like receptor signal through up-regulation of ubiquitin-modifying enzyme A20. FASEB J 2008; 22(1): 74–83
https://doi.org/10.1096/fj.07-8976com pmid: 17720800
167 S Li, H Zheng, AP Mao, B Zhong, Y Li, Y Liu, Y Gao, Y Ran, P Tien, HB Shu. Regulation of virus-triggered signaling by OTUB1- and OTUB2-mediated deubiquitination of TRAF3 and TRAF6. J Biol Chem 2010; 285(7): 4291–4297
https://doi.org/10.1074/jbc.M109.074971 pmid: 19996094
168 S Ning, JS Pagano. The A20 deubiquitinase activity negatively regulates LMP1 activation of IRF7. J Virol 2010; 84(12): 6130–6138
https://doi.org/10.1128/JVI.00364-10 pmid: 20392859
169 P Kumari, H Kumar. Viral deubiquitinases: role in evasion of anti-viral innate immunity. Crit Rev Microbiol 2018; 44(3): 304–317
https://doi.org/10.1080/1040841X.2017.1368999 pmid: 28885059
170 YC Guo, SW Zhang, Q Yuan. Deubiquitinating enzymes and bone remodeling. Stem Cells Int 2018; 2018: 3712083
https://doi.org/10.1155/2018/3712083 pmid: 30123285
171 G Mabilleau, D Chappard, A Sabokbar. Role of the A20-TRAF6 axis in lipopolysaccharide-mediated osteoclastogenesis. J Biol Chem 2011; 286(5): 3242–3249
https://doi.org/10.1074/jbc.M110.150300 pmid: 21127049
172 MJ Lee, E Lim, S Mun, S Bae, K Murata, LB Ivashkiv, KH Park-Min. Intravenous immunoglobulin (IVIG) attenuates TNF-induced pathologic bone resorption and suppresses osteoclastogenesis by inducing A20 expression. J Cell Physiol 2016; 231(2): 449–458
https://doi.org/10.1002/jcp.25091 pmid: 26189496
173 N Kumari, PW Jaynes, A Saei, PV Iyengar, JLC Richard, PJA Eichhorn. The roles of ubiquitin modifying enzymes in neoplastic disease. Biochim Biophys Acta Rev Cancer 2017; 1868(2): 456–483
https://doi.org/10.1016/j.bbcan.2017.09.002 pmid: 28923280
174 MS Ritorto, R Ewan, AB Perez-Oliva, A Knebel, SJ Buhrlage, M Wightman, SM Kelly, NT Wood, S Virdee, NS Gray, NA Morrice, DR Alessi, M Trost. Screening of DUB activity and specificity by MALDI-TOF mass spectrometry. Nat Commun 2014; 5(1): 4763
https://doi.org/10.1038/ncomms5763 pmid: 25159004
175 JA Harrigan, X Jacq, NM Martin, SP Jackson. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov 2018; 17(1): 57–78
https://doi.org/10.1038/nrd.2017.152 pmid: 28959952
176 S Ji, Y Luo, Q Cai, Z Cao, Y Zhao, J Mei, C Li, P Xia, Z Xie, Z Xia, J Zhang, Q Sun, D Chen. LC domain-mediated coalescence is essential for Otu enzymatic activity to extend Drosophila lifespan. Mol Cell 2019; 74(2): 363–377.e5
https://doi.org/10.1016/j.molcel.2019.02.004
[1] Siyi Li, Peilin Lv, Min He, Wenjing Zhang, Jieke Liu, Yao Gong, Ting Wang, Qiyong Gong, Yulin Ji, Su Lui. Cerebral regional and network characteristics in asthma patients: a resting-state fMRI study[J]. Front. Med., 2020, 14(6): 792-801.
[2] Baiwan Zhou, Dongmei An, Fenglai Xiao, Running Niu, Wenbin Li, Wei Li, Xin Tong, Graham J Kemp, Dong Zhou, Qiyong Gong, Du Lei. Machine learning for detecting mesial temporal lobe epilepsy by structural and functional neuroimaging[J]. Front. Med., 2020, 14(5): 630-641.
[3] Houjuan Zuo, Rui Li, Fei Ma, Jiangang Jiang, Kun Miao, Haojie Li, Eike Nagel, Marijana Tadic, Hong Wang, Dao Wen Wang. Temporal echocardiography findings in patients with fulminant myocarditis: beyond ejection fraction decline[J]. Front. Med., 2020, 14(3): 284-292.
[4] Yong Li, Fan He, Ning Zhou, Jia Wei, Zeyang Ding, Luyun Wang, Peng Chen, Shuiming Guo, Binhao Zhang, Xiaoning Wan, Wei Zhu, on behalf of Multidisciplinary Team for COVID-19, Optical Valley Branch of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Organ function support in patients with coronavirus disease 2019: Tongji experience[J]. Front. Med., 2020, 14(2): 232-248.
[5] Dan Luo, Zhengyun Zuo, Hongyan Zhao, Yong Tan, Cheng Xiao. Immunoregulatory effects of Tripterygium wilfordii Hook F and its extracts in clinical practice[J]. Front. Med., 2019, 13(5): 556-563.
[6] Xiuxiu Wu, Wenshuai Xu, Jun Wang, Xinlun Tian, Zhuang Tian, Kaifeng Xu. Clinical characteristics in lymphangioleiomyomatosis-related pulmonary hypertension: an observation on 50 patients[J]. Front. Med., 2019, 13(2): 259-266.
[7] Kohei Miyazono, Yoko Katsuno, Daizo Koinuma, Shogo Ehata, Masato Morikawa. Intracellular and extracellular TGF-β signaling in cancer: some recent topics[J]. Front. Med., 2018, 12(4): 387-411.
[8] Xiao-Dong Yang, Shao-Cong Sun. Deubiquitinases as pivotal regulators of T cell functions[J]. Front. Med., 2018, 12(4): 451-462.
[9] Yao Feng, Hong Zhou, Yan Zhang, Anthony Perkins, Yan Wang, Jing Sun. Comparison in executive function in Chinese preterm and full-term infants at eight months[J]. Front. Med., 2018, 12(2): 164-173.
[10] Jingjing Yan, Shuye Zhang, Jun Sun, Jianqing Xu, Xiaoyang Zhang. Irreversible phenotypic perturbation and functional impairment of B cells during HIV-1 infection[J]. Front. Med., 2017, 11(4): 536-547.
[11] Fengmin Lu, Jie Wang, Xiangmei Chen, Dongping Xu, Ningshao Xia. Potential use of serum HBV RNA in antiviral therapy for chronic hepatitis B in the era of nucleos(t)ide analogs[J]. Front. Med., 2017, 11(4): 502-508.
[12] Shuye Zhang, Fusheng Wang, Zheng Zhang. Current advances in the elimination of hepatitis B in China by 2030[J]. Front. Med., 2017, 11(4): 490-501.
[13] Douglas Sipp. The unregulated commercialization of stem cell treatments: a global perspective[J]. Front Med, 2011, 5(4): 348-355.
[14] Zhikun ZHENG MM, Jinsong LI MD, Ke JIANG MD, . Relationship between Th17 cells and allograft rejection[J]. Front. Med., 2009, 3(4): 491-494.
[15] Ke SONG, Nianjing RAO, Meiling CHEN, Yingguang CAO. Regulation of exogenous bFGF gene mediated by recombinant adeno-associated virus in vitro[J]. Front Med Chin, 2009, 3(2): 158-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed