Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2020, Vol. 14 Issue (4) : 404-416    https://doi.org/10.1007/s11684-020-0743-3
REVIEW
State-of-the-art of intelligent minimally invasive surgical robots
Masakatsu G. Fujie, Bo Zhang()
Future Robotics Organization, Waseda University, Tokyo 1620044, Japan; Beijing Advanced Innovation Centre for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
 Download: PDF(2823 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A number of developed countries are rapidly turning into super-aged societies. Consequently, the demand for reduced surgical invasiveness and enhanced efficiency in the medical field has increased due to the need to reduce the physical burden on older patients and shorten their recovery period. Intelligent surgical robot systems offer high precision, high safety, and reduced invasiveness. This paper presents a review of current intelligent surgical robot systems. The history of robots and three types of intelligent surgical robots are discussed. The problems with current surgical robot systems are then analyzed. Several aspects that should be considered in designing new surgical systems are discussed in detail. The paper ends with a summary of the work and a discussion of future prospects for surgical robot development.

Keywords robot history      medical robot      surgical robot      radiofrequency ablation      organ model     
Corresponding Author(s): Bo Zhang   
Just Accepted Date: 31 March 2020   Online First Date: 03 July 2020    Issue Date: 26 August 2020
 Cite this article:   
Masakatsu G. Fujie,Bo Zhang. State-of-the-art of intelligent minimally invasive surgical robots[J]. Front. Med., 2020, 14(4): 404-416.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-020-0743-3
https://academic.hep.com.cn/fmd/EN/Y2020/V14/I4/404
Fig.1  History of robot development.
Systems Advantages Disadvantages Time Scientist/Institution Achievement
MPLRs Minimally invasive
High accuracy
Short recovery period
Force feedback
High immersion
Multiple wound openings
Large operation space
Limited field of view
Complex control system
Collide with organ
2000 Intuitive Surgical, Inc., USA Da Vinci
2001 Computer Motion, USA ZEUS
2005 Tianjin University, China Microhand
2018 Deakin University, Australia HeroSurg
SPLRs Minimally invasive
High accuracy
Short recovery period
Force feedback
High immersion
Smaller operation space
Limited field of view
Limited operation space
Complex structural design
Complex control system
Collide with organ
2010 Waseda University, Japan Dynamic vision field control
2013 Korea Advanced Institute of Science and Technology, Korea Novel joint mechanism
2016 Intuitive Surgical, Inc., USA Da Vinci SP
2016 Waseda University, Japan Dexterous manipulator
RNISs Minimally invasive
High accuracy
Short recovery period
Precise navigation
Needle deformation
Human tissue deformation
Complex control system
Complex thermodynamic model
2001 The University of Tokyo, Japan CT compatible
2006 Waseda University, Japan Liver insertion
2012 Waseda University, Japan Breast insertion
2019 Beijing Institute of Technology, China CVC insertion
Tab.1  Advantages and disadvantages of the three main types of intelligent surgical robots
Fig.2  Several major types of surgical robots.
Fig.3  Deformation model and heating cautery model of liver tissue. (A) Deformation of liver during needle insertion. (B) Temperature distribution of liver during tumor ablation.
Fig.4  Breast cancer diagnosis technology.
Fig.5  Control method to handle individual differences. The difference between preoperative planed value calculated by the model and the actual value measured by the diagnostic device during surgery is repeatedly zeroed by convergence calculation (e.g., with a Karman filter).
1 JW Rowe, RL Kahn. Successful aging. Gerontologist 1997; 37(4): 433–440
https://doi.org/10.1093/geront/37.4.433 pmid: 9279031
2 P Uhlenberg. International Handbook of Population Aging. Springer 2009
3 JC Cavanaugh, F Blanchard-Fields. Adult Development and Aging. Cengage Learning 2017
4 MB Woods, M Woods. Ancient Transportation Technology: From Oars to Elephants. Twenty-First Century Books 2010: 48
5 Y Yokota. A historical overview of Japanese clocks and karakuri. In: Yan HS, Ceccarelli M. International Symposium on History of Machines and Mechanisms. Springer, Dordrecht. 2009: 175–188
6 RH Weston, JD Gascoigne, CM Sumpter. Intelligent interfaces for robots. Control Theory A 1985; 132(4): 168–173
7 A Gasparetto, L Scalera. A brief history of industrial robotics in the 20th century. Advances in Historical Studies 2019; 8: 24–35
8 K Koganezawa, H Fujimoto, I Kato. Multifunctional above-knee prosthesis for stairs’ walking. Prosthet Orthot Int 1987; 11(3): 139–145
pmid: 3438160
9 I Kato. Trends in powered upper limb prostheses. Prosthet Orthot Int 1978; 2(2): 64–68
https://doi.org/10.3109/03093647809177769 pmid: 214752
10 D Tesar. Where Is The Field of Robotics Going. Springer 1999: 1–12
11 C Yang, J Zhang, Y Chen, Y Dong, Y Zhang. A review of exoskeleton-type systems and their key technologies. Proc Inst Mech Eng, C J Mech Eng Sci 2008; 222(8): 1599–1612
https://doi.org/10.1243/09544062JMES936
12 J Hartley. New robot designs give increased production. Ind Rob 1980; 7(3): 186–188
https://doi.org/10.1108/eb004775
13 A Visioli, G Legnani. On the trajectory tracking control of industrial SCARA robot manipulators. IEEE Trans Ind Electron 2002; 49(1): 224–232
https://doi.org/10.1109/41.982266
14 B Sprenger, L Kucera, S Mourad. Balancing of an inverted pendulum with a SCARA robot. IEEE/ASME Trans Mechatron 1998; 3(2): 91–97
https://doi.org/10.1109/3516.686676
15 T Tarn, A Bejczy, X Yun. Coordinated control of two robot arms. IEEE Int Conf Robot Autom 1986: 468–473
16 P Chimes. Multiple-arm Robot Control Systems. Robotics Age 1985: 5–10
17 W Taggart, S Turkle, C Kidd. An interactive robot in a nursing home: preliminary remarks. CogSci Android Science Workshop 2005
18 S Sugano, I Kato. WABOT-2: Autonomous robot with dexterous finger-arm—finger-arm coordination control in keyboard performance. IEEE Int Conf Robot Autom 1987: 90–97
https://doi.org/10.1109/ROBOT.1987.1088025
19 B Abdulrazak, M Mokhtari. Assistive robotics for independent living. The Engineering Handbook of Smart Technology for Aging, Disability, and Independence. 2008: 355–374
20 A Takanishi. In memoriam: Professor Ichiro Kato. Auton Robots 1995; 2(1): 7–10
https://doi.org/10.1007/BF00735435
21 K Ichiryu, H Watanabe, T Nogami, I Nakamura, M Fujie. Realization of biped robot by hydraulic drive. Proc JFPS Int Symp Fluid Power 1989: 421–428
22 S Sugano. Limb control of the robot musician ‘WABOT-2’. Int Conf Adv Robotics 1985
23 S Sugano. Keyboard playing by an anthropomorphic robot. Theory and Practice of Robots and Manipulators (Fifth CISM-IFToMM Symp) 1985
24 Y Sakakibara, K Kan, Y Hosoda, M Hattori, M Fujie. Low impact foot trajectory for a quadruped walking machine. JRSJ 1990: 662–671
25 D Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Adv Neural Inf Process Syst 1989: 305–313
26 KJ Waldron, RB McGhee. The mechanics of mobile robots. Robotics 1986; 2(2): 113–121
https://doi.org/10.1016/0167-8493(86)90048-3
27 SR Payne, TF Ford, JEA Wickham. Endoscopic management of upper urinary tract stones. Br J Surg 1985; 72(10): 822–824
https://doi.org/10.1002/bjs.1800721016 pmid: 4041714
28 R Hurteau, S DeSantis, E Begin, M Gagner. Laparoscopic surgery assisted by a robotic cameraman: concept and experimental results. Proc IEEE Int Conf Robot Autom 1997: 2286–2289
29 MG Munro. Automated laparoscope positioner: preliminary experience. J Am Assoc Gynecol Laparosc 1993; 1(1): 67–70
https://doi.org/10.1016/S1074-3804(05)80763-7 pmid: 9050465
30 R Taylor. J Funda, D LaRose, M Trea. A telerobotic system for augmentation of endoscopic surgery. IEEE Engineering in Medicine and Biology Society 1992: 1054–1056
31 R Taylor, C Cutting, Y Kim, A Kalvin, D Larose, B Haddad, D Khoramabadi, M Noz, R Olyha, N Bruun, D Grimm. A model-based optimal planning and execution system with active sensing and passive manipulation for augmentation of human precision in computer-integrated surgery. Int Symp on Experimental Robotics 1991
32 A Tewari, J Peabody, R Sarle, G Balakrishnan, A Hemal, A Shrivastava, M Menon. Technique of da Vinci robot-assisted anatomic radical prostatectomy. Urology 2002; 60(4): 569–572
https://doi.org/10.1016/S0090-4295(02)01852-6 pmid: 12385908
33 E Masatoshi, N Seiji. Robotic surgery assisted by the ZEUS system. Recent Advances in Endourology Endourooncology 2005: 39–48
https://doi.org/DOI: 10.1007/4-431-27173-2_4
34 J Forlizzi, C DiSalvo. Service robots in the domestic environment: a study of the Roomba vacuum in the home. Proc 1st ACM SIGCHI/SIGART Conf on Human-Robot Interaction 2006: 258–265
35 CW Lee, SG Kim, SS Na. The effects of hippotherapy and a horse riding simulator on the balance of children with cerebral palsy. J Phys Ther Sci 2014; 26(3): 423–425
https://doi.org/10.1589/jpts.26.423 pmid: 24707098
36 DJ Seo, SW Jun, YO Kim, NY Ko. Motion analysis for control of a 2-DOF horse riding robot. J Korea Robot Soc 2011; 6(3): 263–273
https://doi.org/10.7746/jkros.2011.6.3.263
37 T Hirabayashi, J Akizono, T Yamamoto, H Sakai, H Yano. Teleoperation of construction machines with haptic information for underwater applications. Autom Construct 2006; 15(5): 563–570
https://doi.org/10.1016/j.autcon.2005.07.008
38 M Raibert, K Blankespoor, G Nelson, R Playter. BigDog, the rough-terrain quadruped robot. IFAC Proc 2008; 41(2): 10822–108525
39 C Becker-Asano, K Ogawa, S Nishio, H Ishiguro. Exploring the uncanny valley with Geminoid HI-1 in a real-world application. IADIS Int Conf Interfaces and Human Computer Interaction 2010: 121–128
40 MJ Mack. Minimally invasive and robotic surgery. JAMA 2001; 285(5): 568–572
https://doi.org/10.1001/jama.285.5.568 pmid: 11176860
41 D Hu, Y Gong, B Hannaford, EJ Seibel. Semi-autonomous simulated brain tumor ablation with RAVENII surgical robot using behavior tree. IEEE Int Conf Robot Autom 2015; 2015: 3868–3875
https://doi.org/10.1109/ICRA.2015.7139738 pmid: 26405563
42 M Remacle, V M N Prasad, G Lawson, L Plisson, V Bachy, S Van der Vorst. Transoral robotic surgery (TORS) with the Medrobotics Flex™ System: first surgical application on humans. Eur Arch Otorhinolaryngol 2015; 272(6): 1451–1455
https://doi.org/10.1007/s00405-015-3532-x pmid: 25663191
43 M Havlena, KK Maninis, D Bouget, EV Poorten, LV Gool. 3D reconstruction of the retinal surface for robot-assisted eye surgery. Computer Assisted Radiology and Surgery 2016: 112–113
44 P Berthet-Rayne, K Leibrandt, G Gras, P Fraisse, GZ Yang. Inverse kinematics control methods for redundant snakelike robot teleoperation during minimally invasive surgery. IEEE Robot Autom Lett 2018; 3(3): 2501–2508
https://doi.org/10.1109/LRA.2018.2812907
45 T Haidegger. Autonomy for surgical robots: concepts and paradigms. IEEE Trans Med Robot Bionics 2019; 1(2): 65–76
46 S Butner, M Ghodoussi. Transforming a surgical robot for human telesurgery. IEEE Trans Robot Autom 2003; 19(5): 818–824
47 SX Wang, JN Ding, JT Yun, QZ Li, BP Han. A robotic system with force feedback for micro-surgery. IEEE Int Conf Robot Autom 2005: 200–205
48 MM Dalvand, S Nahavandi, F Fielding, J, Mullins Z Najdovski, R. Howe Modular instrument for a haptically-enabled robotic surgical system (HeroSurg). IEEE Access 2018; 6:2169–3536
49 V Vitiello, SL Lee, TP Cundy, GZ Yang. Emerging robotic platforms for minimally invasive surgery. IEEE Rev Biomed Eng 2013; 6: 111–126
https://doi.org/10.1109/RBME.2012.2236311 pmid: 23288354
50 W Philip, S Simon, K Samuel. Transcervical minimally invasive esophagectomy using da Vinci® SPTM Surgical System: a feasibility study in cadaveric model. Surg Endosc 2019; 33: 1683–1686
51 WH Shin, DS Kwon. Surgical robot system for single-port surgery with novel joint mechanism. IEEE Trans Biomed Eng 2013; 60(4): 937–944
https://doi.org/10.1109/TBME.2013.2242070 pmid: 23358948
52 JH Kaouk, RK Goel, GP Haber, S Crouzet, RJ Stein. Robotic single-port transumbilical surgery in humans: initial report. BJU Int 2009; 103(3): 366–369
https://doi.org/10.1111/j.1464-410X.2008.07949.x pmid: 18778353
53 QQ Liu, Y Kobayashi, B Zhang, J Ye, E Inko Y Cao, Y Sekiguchi, Q Cao, M Hashizume, MG Fujie. Design of an Insertable Surgical Robot with multi-level endoscopic control for Single Port Access Surgery. 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO). Shenzhen. 2013: 750–755
54 Y Sekiguchi, Y Kobayashi, H Watanabe, Y Tomono, T Noguchi, Y Takahashi, K Toyoda, M Uemura, S Ieiri, T Ohdaira, M Tomikawa, M Hashizume, MG Fujie. In vivo experiments of a surgical robot with vision field control for single port endoscopic surgery. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Boston, MA. 2011: 7045–7048
55 Y Sekiguchi, Y Kobayashi, Y Tomono, H Watanabe, K Toyada, K Konishi, M Tomikawa, S Ieiri, K Tanoue, M Hashizume, MG Fujie. Development of a tool manipulator driven by a flexible shaft for single port endoscopic surgery. Int Conf Biomed Robotics and Biomechatronics, 2010: 120–125
56 J Won Lee, FR Arkoncel, KH Rha, KH Choi, HS Yu, Y Chae, WK Han. Urologic robot-assisted laparoendoscopic single-site surgery using a homemade single-port device: a single-center experience of 68 cases. J Endourol 2011; 25(9): 1481–1485
https://doi.org/10.1089/end.2010.0656 pmid: 21902517
57 WK Han, DS Kim, HG Jeon, W Jeong, CK Oh, KH Choi, EI Lorenzo, KH Rha. Robot-assisted laparoendoscopic single-site surgery: partial nephrectomy for renal malignancy. Urology 2011; 77(3): 612–616
https://doi.org/10.1016/j.urology.2010.06.067 pmid: 21067802
58 M Piccigallo, U Scarfogliero, C Quaglia, G Petroni, P Valdastri, A Menciassi, P Dario. Design of a novel bimanual robotic system for single-port laparoscopy. IEEE/ASME Trans Mech 2010; 15(6): 871–878
59 K Xu, RE Goldman, J Ding, PK Allen, DL Fowler, N Simaan. System design of an insertable robotic effector platform for single port access (SPA) surgery. IEEE/RSJ Int Conf Intelligent Robots and Systems 2009: 5546–5552
60 I Botezatu, R Marinescu, D Laptoiu. Minimally invasive-percutaneous surgery—recent developments of the foot surgery techniques. J Med Life 2015; 8(Spec Issue): 87–93
pmid: 26361518
61 Y Kobayashi, R Hamano, H Watanabe, T Koike, J Hong, K Toyoda, M Uemura, S Ieiri, M Tomikawa, T Ohdaira, M Hashizume, MG Fujie. Preliminary in vivo evaluation of a needle insertion manipulator for central venous catheterization. Robomech J 2014; 1(18): 1–7
62 N Hungr, J Troccaz, N Zemiti, N Tripodi. Design of an ultrasound-guided robotic brachytherapy needle-insertion system. Proc 31st Ann Int Conf IEEE Eng Med Biol Soc 2009: 250–253
63 C Simone, AM Okamura. Modeling of needle insertion forces for robot-assisted percutaneous therapy. Proc Int Conf Robotics and Automation 2002: 2085–2091
64 AB Lumsden, JE Anaya-Ayala, I Birnbaum, MG Davies, J Bismuth, ZF Cheema, HF El Sayed, H Seethamraju, M Loebe, M Valderrabano. Robot-assisted stenting of a high-grade anastomotic pulmonary artery stenosis following single lung transplantation. J Endovasc Ther 2010; 17(5): 612–616
https://doi.org/10.1583/10-3208R.1 pmid: 20939718
65 Y Yang, UX Tan, A McMillan, R Gullapalli, JP Desai. Design and implementation of a pneumatically-actuated robot for breast biopsy under continuous MRI. Proc IEEE Int Conf Robot Autom 2011: 674–679
66 E Taillant, J Avila-Vilchis, C Allegrini, I Bricault, P. Cinquin CT and MR compatible light puncture robot: architectural design and first experiments. Proc Mid Image Comput Comput-Assisted Interv 2004; 3217: 145–152
67 N Abolhassani, R Patel, M Moallem. Needle insertion into soft tissue: a survey. Med Eng Phys 2007; 29(4): 413–431
https://doi.org/10.1016/j.medengphy.2006.07.003 pmid: 16938481
68 N Zemiti, I Bricault, C Fouard, B Sanchez, P. CinquinLPR: a CT and MR-compatible puncture robot to enhance accuracy and safety of image-guided interventions. IEEE/ASME Trans Mech 2008; 13(3): 306–315
69 K Masamune, G Fichtinger, A Patriciu, RC Susil, RH Taylor, LR Kavoussi, JH Anderson, I Sakuma, T Dohi, D Stoianovici. System for robotically assisted percutaneous procedures with computed tomography guidance. Comput Aided Surg 2001; 6(6): 370–383
https://doi.org/10.3109/10929080109146306 pmid: 11954068
70 NV Tsekos, A Khanicheh, E Christoforou, C Mavroidis. Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study. Annu Rev Biomed Eng 2007; 9(1): 351–387
https://doi.org/10.1146/annurev.bioeng.9.121806.160642 pmid: 17439358
71 WA Kaiser, H Fischer, J Vagner, M Selig. Robotic system for biopsy and therapy of breast lesions in a high-field whole-body magnetic resonance tomography unit. Invest Radiol 2000; 35(8): 513–519
https://doi.org/10.1097/00004424-200008000-00008 pmid: 10946979
72 K Masamune, E Kobayashi, Y Masutani, M Suzuki, T Dohi, H Iseki, K Takakura. Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. J Image Guid Surg 1995; 1(4): 242–248
https://doi.org/10.1002/(SICI)1522-712X(1995)1:4<242::AID-IGS7>3.0.CO;2-A pmid: 9079451
73 G Jiang, M Luo, K Bai, S Chen. A precise positioning method for a puncture robot based on a PSO-optimized BP neural network algorithm. Appl Sci (Basel) 2017; 7(10): 969
https://doi.org/10.3390/app7100969
74 Y Chen, IS Godage, S Sengupta, CL Liu, KD Weaver, EJ Barth, RJ Webster. An MRI-compatible robot for intracerebral hemorrhage removal. Proc Design of Medical Devices Conf 2017: 1–2
75 K Willekens, A Gijbels, L Schoevaerdts, L Esteveny, T Janssens, B Jonckx, JH Feyen, C Meers, D Reynaerts, E Vander Poorten, P Stalmans. Robot-assisted retinal vein cannulation in an invivo porcine retinal vein occlusion model. Acta Ophthalmol 2017; 95(3): 270–275
https://doi.org/10.1111/aos.13358 pmid: 28084059
76 N Shahriari, W Heerink, T van Katwijk, E Hekman, M Oudkerk, S Misra. Computed tomography (CT)-compatible remote center of motion needle steering robot: fusing CT images and electromagnetic sensor data. Med Eng Phys 2017; 45: 71–77
https://doi.org/10.1016/j.medengphy.2017.04.009 pmid: 28512000
77 C Yang, Y Xie, S Liu, D Sun. Force modeling, identification, and feedback control of robot-assisted needle insertion: a survey of the literature. Sensors (Basel) 2018; 18(2): 561
https://doi.org/10.3390/s18020561 pmid: 29439539
78 A Kaalep, T Sera, W Oyen, BJ Krause, A Chiti, Y Liu, R Boellaard. EANM/EARL FDG-PET/CT accreditation—summary results from the first 200 accredited imaging systems. Eur J Nucl Med Mol Imaging 2018; 45(3): 412–422
https://doi.org/10.1007/s00259-017-3853-7 pmid: 29192365
79 E Ben-David, M Shochat, I Roth, I Nissenbaum, J Sosna, SN Goldberg. Evaluation of a CT-guided robotic system for precise percutaneous needle insertion. J Vasc Interv Radiol 2018; 29(10): 1440–1446
https://doi.org/10.1016/j.jvir.2018.01.002 pmid: 29628297
80 P Moreira, G van de Steeg, T Krabben, J Zandman, EEG Heckman, F van der Heijden, R Borra, S Misra. The MIRIAM robot: a novel robotic system for MR-guided needle insertion in the prostate. J Med Robot Res 2017; 2(4): 1750006
https://doi.org/10.1142/S2424905X17500064
81 D Kim, E Kobayashi, T Dohi, I Sakuma. A new, compact MR-compatible surgical manipulator for minimally invasive liver surgery. Proc Med Image Comput Comput-Assisted Intervention 2002; 2488: 164–169
https://doi.org/10.1007/3-540-45786-0_13
82 R Moser, R Gassert, E Burdet, L Sache, HR Woodtli, J Erni, W Maeder, H Bleuler. An MR-compatible robot technology. Proc IEEE Int Conf Robotics Automation 2003: 670–75
83 Y Koseki, R Kikinis, F Jolesz, K Chinzei. Precise evaluation of positioning repeatability of MR-compatible manipulator inside MRI. Proc Med Image Comput Comput-Assisted Intervention 2004: 192–99
84 N Takahashi, M Tada, J Ueda, Y Matsumoto, T Ogasawara. An optical 6-axis force sensor for brain function analysis using fMRI. Proc IEEE Int Conf Sensors 2003: 253–58
85 H Kataoka, T Washio, M Audette, K Mizuhara. A model for relations between needle deflection, force, and thickness on needle penetration. Proc Med Image Comput Comput Assist Interv 2001: 966–74
86 H Kataoka, T Washio, K Chinzei, K Mizuhara, C Simone, AM Okamura. Measurement of the tip and friction force acting on a needle during penetration. Proc Med Image Comput Comput Assist Interv 2002: 216–23
87 N Abolhassani, R Patel, M Moallem. Trajectory generation for robotic needle insertion in soft issue. IEEE Int Conf of the EMBS 2004: 2730–2733
88 R Seifabadi, I Iordachita, G Fichtinger. Design of a teleoperated needle steering system for MRI-guided prostate interventions. Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron 2012: 793–798
89 RJ Webster, J Memisevic, AM Okamura. Design considerations for robotic needle steering. IEEE Int Conf Robot Autom 2005: 3599–3605
90 Y Kobayashi, J Okamoto, MG Fujie. Position control of needle tip based on physical properties of liver and force sensor. J Robot Mechatron 2006; 18(2): 167–176
https://doi.org/10.20965/jrm.2006.p0167
91 H Watanabe, Y Kobayashi, T Hoshi, K Kawamura, MG Fujie, M Hashizume. Integrated system for RFA therapy with biomechanical simulation and needle insertion robot. 2009 IEEE/SICE International Symposium on System Integration (SII). Tokyo. 2009: 54–59
92 Y Kobayashi, A Kato, H Watanabe, T Hoshi, K Kawamura, MG Fujie. Modeling of viscoelastic and nonlinear material properties of liver tissue using fractional calculations. J Biomech Sci Eng 2012; 7(2): 177–187
https://doi.org/10.1299/jbse.7.177
93 Y Kobayashi, M Suzuki, A Kato, M Hatano, K Konishi, M Hashizume, MG Fujie. Enhanced targeting in breast tissue using a robotic tissue preloading-based needle insertion system. IEEE Trans Robot 2012; 28(3): 710–722
94 Y Kobayashi, J Hong, R Hamano, K Okada, MG Fujie, M Hashizume. Development of a needle insertion manipulator for central venous catheterization. Int J Med Robot 2012; 8(1): 34–44
https://doi.org/10.1002/rcs.420 pmid: 22021231
95 KH Ten Tusscher, D Noble, PJ Noble, AV Panfilov. A model for human ventricular tissue. Am J Physiol Heart Circ Physiol 2004; 286(4): H1573–H1589
https://doi.org/10.1152/ajpheart.00794.2003 pmid: 14656705
96 T O’Hara, L Virág, A Varró, Y Rudy. Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLOS Comput Biol 2011; 7(5): e1002061
https://doi.org/10.1371/journal.pcbi.1002061 pmid: 21637795
97 MD O’Leary, C Simone, T Washio, K Yoshinaka, AM Okamura. Robotic needle insertion: effect of friction and needle geometry. Proc IEEE Int Conf Robot Autom 2003: 1774–1779
98 CM Schneider, A Okamura, G Fichtinger. A robotic system for transrectal needle insertion into prostate with integrated ultrasound. Proc IEEE Int Conf Robot Autom 2004: 365–370
99 SP DiMaio, SE Salcudean. Needle insertion modeling and simulation. IEEE Trans Robot Autom 2003; 19(5): 864–875
https://doi.org/10.1109/TRA.2003.817044
100 R Ebrahimi, S Okazawa, R Rohling, EE Salcudean. Hand-held steerable needle device. MICCAI 2003; 2879: 223–229
101 L Hiemenz, A Lisky, P Schmalbrock. Puncture mechanics for the insertion of an epidural needle. 21st Annual Meeting of the American Society of Biomechanics 1997
102 EK Abdalla, JN Vauthey, LM Ellis, V Ellis, R Pollock, KR Broglio, K Hess, SA Curley. Recurrence and outcomes following hepatic resection, radiofrequency ablation, and combined resection/ablation for colorectal liver metastases. Ann Surg 2004; 239(6): 818–827
https://doi.org/10.1097/01.sla.0000128305.90650.71 pmid: 15166961
103 M Tsukune, Y Kobayashi, T Miyashita, MG Fujie. Breast tumor phantom utilizing heat coagulation to mimic nonlinear elasticity. 27th Int Congr and Exhib on Computer Assisted Radiology and Surgery 2013: PO12–00050
104 SG Yuen, PM Novotny, RD Howe. Quasiperiodic predictive filtering for robot-assisted beating heart surgery. IEEE Int Conf Robot Autom 2008: 3875–3880
https://doi.org/10.1109/ROBOT.2008.4543806
105 OS Aaronson, NB Tulipan, R Cywes, HW Sundell. Robot-assisted endoscopic intrauterine myelomeningocele repair: a feasibility study. Pediatr Neurosurg 2002; 36(2): 85–89
106 T Hoshi, Y Kobayashi, K Kawamura, MG Fujie. Developing an intraoperative methodology using the finite element method and the extended Kalman filter to identify the material parameters of an organ model. Proc 29th Annual Int Conf of IEEE Eng in Med Biol Soc 2007: 469–474
107 H Lu, Y Yang, X Lin, P Shi, Y Shen. Low-invasive cell injection based on rotational microrobot. J Advanced Biosystems 2019: 1800274
108 H Lu, M Zhang, Y Yang, Q Huang, T Fukuda, Z Wang, Y Shen. A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nat Commun 2018; 9(1): 3944
https://doi.org/10.1038/s41467-018-06491-9 pmid: 30258072
109 A Miriyev, K Stack, H Lipson. Soft material for soft actuators. Nat Commun 2017; 8(1): 596
https://doi.org/10.1038/s41467-017-00685-3 pmid: 28928384
110 NW Bartlett, MT Tolley, JTB Overvelde, JC Weaver, B Mosadegh, K Bertoldi, GM Whitesides, RJ Wood. SOFT ROBOTICS. A 3D-printed, functionally graded soft robot powered by combustion. Science 2015; 349(6244): 161–165
https://doi.org/10.1126/science.aab0129 pmid: 26160940
[1] Xiao-Yun Zhou, Yao Guo, Mali Shen, Guang-Zhong Yang. Application of artificial intelligence in surgery[J]. Front. Med., 2020, 14(4): 417-430.
[2] Yuyang Chen, Shu’an Zhang, Zhonghao Wu, Bo Yang, Qingquan Luo, Kai Xu. Review of surgical robotic systems for keyhole and endoscopic procedures: state of the art and perspectives[J]. Front. Med., 2020, 14(4): 382-403.
[3] Marielle Reataza,David K. Imagawa. Advances in managing hepatocellular carcinoma[J]. Front. Med., 2014, 8(2): 175-189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed