Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2020, Vol. 14 Issue (2) : 160-184    https://doi.org/10.1007/s11684-020-0750-4
REVIEW
Development of oncolytic virotherapy: from genetic modification to combination therapy
Qiaoshuai Lan1, Shuai Xia1, Qian Wang1, Wei Xu1, Haiyan Huang2, Shibo Jiang1,3(), Lu Lu1()
1. Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
2. Yantai Yuhuangding Hospital, Qingdao University, Yantai 264000, China
3. Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
 Download: PDF(1258 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Oncolytic virotherapy (OVT) is a novel form of immunotherapy using natural or genetically modified viruses to selectively replicate in and kill malignant cells. Many genetically modified oncolytic viruses (OVs) with enhanced tumor targeting, antitumor efficacy, and safety have been generated, and some of which have been assessed in clinical trials. Combining OVT with other immunotherapies can remarkably enhance the antitumor efficacy. In this work, we review the use of wild-type viruses in OVT and the strategies for OV genetic modification. We also review and discuss the combinations of OVT with other immunotherapies.

Keywords immunotherapy      oncolytic virus      genetic modification      immune checkpoint blockade      chimeric antigen receptor T cell     
Corresponding Author(s): Shibo Jiang,Lu Lu   
Just Accepted Date: 11 February 2020   Online First Date: 09 March 2020    Issue Date: 09 May 2020
 Cite this article:   
Qiaoshuai Lan,Shuai Xia,Qian Wang, et al. Development of oncolytic virotherapy: from genetic modification to combination therapy[J]. Front. Med., 2020, 14(2): 160-184.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-020-0750-4
https://academic.hep.com.cn/fmd/EN/Y2020/V14/I2/160
Fig.1  Schematic of some oncolytic viruses for cancer treatment. Many viruses, including double-stranded DNA viruses, such as AdV, herpes simplex virus (HSV), and VACV; single-stranded DNA viruses, such as parvovirus; negative-sense single-stranded RNA viruses, such as Newcastle disease virus (NDV), measles virus (MV), and vesicular stomatitis virus (VSV); positive-sense single-stranded RNA viruses, such as poliovirus and coxsackievirus; and double-stranded RNA viruses, such as reovirus, have been used in cancer treatment. The terms naked/enveloped are used to describe types of virus; high/moderate/low describes the genomic capacities of OVs.
Virus type Virus Family Natural host Receptor Replication site Common used virus strain or type References
DNA virus Adenovirus Adenoviridae Human CAR, integrin Nucleus, cytoplasm Ad5 [22]
Vaccinia virus Poxviridae Human Unknown Cytoplasm Lister, Wyeth, WR [23]
Herpesvirus Herpesviridae Human HVEM, nectin Nucleus, cytoplasm HSV-1 [24]
Parvovirus Parvoviridae Rat SARs Nucleus, cytoplasm H1-PV [25]
RNA virus Measles virus Paramyxoviridae Human CD46, SLAM Cytoplasm Edmonston vaccine strain [26]
Newcastle disease virus Paramyxoviridae Chicken Unknown Cytoplasm HUJ, MTH-68/H [27]
Vesicular stomatitis virus Rhabdoviridae Pigs, cattle, horses LDLR Cytoplasm Recombinant Indiana strain [28]
Poliovirus Picornaviridae Human CD155 Cytoplasm Sabin vaccine strain [29]
Coxsackievirus Picornaviridae Human ICAM-1, DAF Cytoplasm CVA21, CVB3 [30]
Reovirus Reoviridae Human Unknown Cytoplasm Reovirus-serotype 3 [31]
Tab.1  Characteristics of DNA virus- and RNA virus-derived OVs
Fig.2  Genetic modifications of OVs. (A) Genetic modifications for improving tumor targeting of OVs. Entry targeting: serotype switching and insertion of a tumor-targeting peptide, glycoproteins from other viruses, and single-chain antibodies (scAb) targeting tumor-associated antigens can allow OVs to target tumor surface molecules and enter tumor cells. Post-entry targeting: insertion of tumor-specific promotors can promote virus replication in tumor cells, while insertion of miRNA target sequences can restrict virus replication in normal cells. (B) Genetic modifications that enhance OV safety. Deletion of virulence genes can reduce the risk of OV infections of normal cells and enhance safety. (C) Genetic modifications to augment the antitumor efficacy of OVs. Antitumor efficacy can be augmented by inserting foreign genes, such as genes encoding immunostimulatory molecules/cytokines, suicide genes (pro-apoptotic proteins and prodrug-activating enzymes), extracellular matrix (ECM)-degrading enzymes, and anti-vasculature molecules. (D) Genetic modifications to monitor OV replication. Reporter genes, such as green fluorescent protein (GFP), Renilla luciferase (Rluc), sodium–iodide symporter (NIS), and human norepinephrine transporter (NET), can be inserted to monitor OV replication.
Virus Name of OVs Genetic modification Conditions Phase NCT Number Status References
HSV T-VEC ICP34.5 and ICP47 deletion; GM-CSF insertion Advanced melanoma Phase 1 NCT03747744 Recruiting [170172]
Breast cancer Phase 1/2 NCT02779855 Recruiting
Melanoma Phase 2 NCT00289016 Completed
Melanoma Phase 3 NCT01368276 Completed
Melanoma Phase 3 NCT00769704 Completed; DRR: 36.1% (T-VEC-treated patients) versus 3.8% (GM-CSF treated patients)
HSV-1716 ICP34.5 deletion Glioma Phase 1 NCT02031965 Terminated
Rhabdomyosarcoma
Osteosarcoma
Phase 1 NCT00931931 Completed
G207 ICP34.5 deletion; UL39 disruption Glioma Phase 1/2 NCT00028158 Completed
Brain tumors Phase 1 NCT03911388 Not yet recruiting
Malignant glioma Phase 1 NCT02457845 Recruiting
M032 ICP34.5 deletion; IL12 insertion Glioblastoma multiforme Phase 1 NCT02062827 Recruiting
HF10 HSV-HF strain Melanoma Phase 2 NCT03259425 Active, not recruiting [173]
Solid tumors with superficial lesions Phase 1 NCT02428036 Completed
Pancreatic cancer Phase 1 NCT03252808 Active, not recruiting
Melanoma Phase 2 NCT03153085 Completed
AdV LOAd703 CD40L and 4-1BBL insertion; ?24 in E1A Pancreatic adenocarcinoma Phase 1/2 NCT03225989 Recruiting [11,156,174]
Pancreatic cancer Phase 1/2 NCT02705196 Recruiting
VCN-01 Hyaluronidase and RGD insertion; ?24 in E1A Metastatic solid tumor Phase 1 NCT02045602 Active, not recruiting
Pancreatic adenocarcinoma Phase 1 NCT02045589 Completed
Retinoblastoma Phase 1 NCT03284268 Recruiting
DNX-2401
(Delta-24-RGD)
RGD insertion; ?24 in E1A Glioblastoma Phase 1 NCT03896568 Recruiting
Brain stem glioma Phase 1 NCT03178032 Recruiting
Brain cancer Phase 1 NCT00805376 Completed; 20% of patients survived>3 years
CG0070 GM-CSF insertion; E3 deletion Bladder cancer Phase 2 NCT02143804 Withdrawn
Bladder cancer Phase 2 NCT02365818 Completed; overall 47% CR rate at 6 months for all patients and 50% for patients with CIS
ONCOS-102 (CGTG-102) Type 3 knob and GM-CSF insertion; ?24 in E1A Malignant solid tumor Phase 1 NCT01598129 Completed
Advanced or unresectable melanoma progressing after PD1 blockade Phase 1 NCT03003676 Recruiting
OBP-301 hTERT promoter insertion Hepatocellular carcinoma Phase 1 NCT02293850 Recruiting [175]
Melanoma Phase 2 NCT03190824 Active, not recruiting
Esophagogastric adenocarcinoma Phase 2 NCT03921021 Recruiting
Esophageal cancer Phase 1 NCT03213054 Recruiting
VACV JX-594
(Pexa-Vec)
TK deletion; GM-CSF insertion Melanoma Phase 1/2 NCT00429312 Completed [111,148,176,177]
Ovarian cancer Phase 2 NCT02017678 Withdrawn
Melanoma Phase 1 NCT00625456 Completed
Renal cell carcinoma Phase 1 NCT03294083 Recruiting
Colorectal cancer Phase 1/2 NCT03206073 Recruiting
Hepatocellular carcinoma Phase 2 NCT00554372 Completed; intrahepatic mRECIST
Disease control rate at week 8 was 46% overall
GL-ONC1 Ruc-GFP, b-glucuronidase, and b-galactosidase insertion
TK and haemagglutinin disruption
Solid organ cancers Phase 1 NCT02714374 Active, not recruiting
Peritoneal carcinomatosis Phase 1/2 NCT01443260 Completed; efficient intraperitoneal infection in eight patients (8/9)
Cancer of head and neck Phase 1 NCT01584284 Completed; combinations of GL-ONC1 with radiotherapy and chemotherapy: 1-year (2-year) PFS and OS were 74.4% (64.1%) and 84.6% (69.2%), respectively
Advanced cancers (solid tumors) Phase 1 NCT00794131 Completed
TG6002 FCU1 insertion; J2R and I4L deletion Glioblastoma Phase 1/2 NCT03294486 Recruiting
Colon cancer Phase 1/2 NCT03724071 Recruiting
MV MV-NIS NIS insertion Multiple myeloma Phase 2 NCT02192775 Recruiting [169]
Malignant ovarian tumor Phase 2 NCT02364713 Recruiting
MV-CEA CEA insertion Glioblastoma Phase 1 NCT00390299 Active, not recruiting
Ovarian epithelial cancer or primary peritoneal cancer Phase 1 NCT00408590 Completed
VSV VSV-IFNb-NIS IFNb and NIS insertion Malignant solid tumor Phase 1 NCT02923466 Recruiting [178]
Hepatocellular carcinoma Phase 1 NCT03647163 Recruiting
Poliovirus PVSRIPO Replace IRES of poliovirus with IRES from HRV2 Malignant glioma Phase 1 NCT03043391 Recruiting [179,180]
Glioblastoma Phase 1 NCT01491893 Active, not recruiting; OS among the patients who received PVSRIPO reached a plateau of 21% (95% confidence interval, 11 to 33) at 24 months
Malignant glioma Phase 2 NCT02986178 Recruiting
Melanoma Phase 1 NCT03712358 Recruiting
Maraba virus MG1- MAGEA3 MAGEA3 insertion Metastatic melanoma Phase 1 NCT03773744 Not yet recruiting [181]
Non-small cell lung cancer Phase 1/2 NCT02879760 Active, not recruiting
MG1-E6E7 E6, E7 antigens insertion HPV-associated cancers Phase 1 NCT03618953 Active, not recruiting
Coxsackievirus CAVATAK® None (wild type) Uveal melanoma with liver metastases Phase 1 NCT03408587 Completed [30]
Malignant melanoma Phase 2 NCT01227551 Completed
Reovirus Pelareorep (Reolysin®) None (Wild type) Malignant glioma Phase 1 NCT00528684 Completed [182]
Osteosarcoma Phase 2 NCT00503295 Completed
Bladder carcinoma Phase 1 NCT02723838 Withdrawn
Pancreatic adenocarcinoma Phase 1 NCT02620423 Completed
Pancreatic adenocarcinoma Phase 2 NCT01280058 Completed; PFS: 4.9 months (paclitaxel/carboplatin+ pelareorep) versus 5.2 months (paclitaxel/carboplatin)
Head and neck cancers Phase 3 NCT01166542 Completed
Parvovirus H-1 ParvOryx None (Wild type) Glioblastoma multiforme Phase 1/2 NCT01301430 Completed; H-1PV treatment was safe and can extend median survival [183,184]
Pancreatic cancer Phase 1/2 NCT02653313 Completed
NDV NDV None (Wild type) Glioblastoma Phase 1/2 NCT01174537 Withdrawn [20,185]
Metastatic cancer Phase 2 NCT00348842 Withdrawn
Tab.2  Oncolytic viruses in clinical trials
Fig.3  Combinations of oncolytic viruses with immune checkpoint inhibitors and CAR-T cell therapy. (A) Mechanisms of OVs combined with ICIs targeting the programmed cell death protein 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) pathway. OVs can attract CD8 T cells and NK cells into the TME. The expression of PD-L1 on tumor cells is upregulated by OV infection. Anti-PD-1/PD-L1 antibodies block the PD-1/PD-L1 pathway and stop the immune inhibitory signal. (B) OVs in combination with CAR-T cells in the treatment of solid tumors. Modified OVs can express cytokines that attract CAR-T cells into the TME and enhance their antitumor activities; BiTE-armed OVs express BiTEs that bridge CAR-T cells with tumor cells to prevent the immune evasion of tumor cells; OVs armed with anti-PD1/PD-L1 mini-antibody (mini-body) express anti-PD-1/PD-L1 mini-body blocking the immune inhibitory signal and enhancing the antitumor efficacy of CAR-T cells.
Oncolytic virus Transgene ICB/ CAR-T cell Tumors/tumor cells Therapeutic outcomes References
Combinations with ICB in preclinical studies
vvDD-CXCL11 (VACV) CXCL11 Anti-PD-L1 MC38 colon and ID8 ovarian tumor models Combination therapy: more than 40% cures in models of colon and ovarian cancers [194]
HSV1716 (HSV-1) None Anti-PD-1 RMS model Combination therapy significantly prolongs survival of mice bearing M3-9-M tumors [195]
MV-EGFR, MV-NIS (MV) EGFR-scAb Anti-PD-1 GL261 glioma cell Combination therapy: 60% of mice remained alive for at least 120 days [196]
Reolysin® (Reovirus) None Anti-PD-1 Brain tumor
GL261 glioma cell
Combination therapy improves survival [7]
VSV-mIFNb-NIS (VSV) mIFNb, NIS Anti-PD-L1 AML Combination therapy significantly improves the survival of mice with AML [197]
MG1 (Maraba virus) None Anti-PD-1 Human TNBC cell lines, murine mammary carcinoma Combination therapy significantly slows tumor growth in the 4T1 model [10]
NDV-Fluc (NDV) Fluc Anti-CTLA-4 MC38 colon carcinoma B16-F10 melanoma More than 80% protection against tumor re-challenge (combination therapy) vs. 40% (anti-CTLA-4 alone) [9]
G47?-mIL12 (HSV-1) IL-12 Anti-CTLA-4 and anti-PD-1 Glioma model (CT-2A, 005 GSCs) Median survival: 66.5 days (triple combination therapy) versus 20 days (mock-treated group) [198]
WR (VACV) None Anti-PD1 or anti-CTLA4 MCA205 tumor Combination therapy increased survival in MCA205 sarcoma model [199]
Combinations with ICB in clinical trials
T-VEC (HSV-1) GM-CSF Pembrolizumab Advanced melanoma Overall response rate 62%, complete response rate 33% [200]
T-VEC (HSV-1) GM-CSF Pembrolizumab, ipilimumab/nivolumab, or nivolumab Unresectable stage III–IV melanoma Overall response rate for on-target lesions: 90% (9/10) [201]
T-VEC (HSV-1) GM-CSF Ipilimumab Unresectable stage IIIB–IV melanoma Objective response rate: 50% [202]
T-VEC (HSV-1) GM-CSF Ipilimumab Advanced melanoma Objective response rate: 39% (combination therapy) versus 18% (ipilimumab alone) [203]
Combinations with CAR T cell therapies
OAd-BiTE (Adenovirus) EGFR-targeting-BiTE CAR-T cell targeting the FR-a Solid tumors (SKOV3, HCT116, and Panc-1 cell) Median survival: all animals survived until the experimental endpoint of 41 days (CAR-T cells and OAd-BiTE) versus 20 days (OAd-BiTE alone) or 38 days (CAR-T cells alone) [204]
OAd-TNFa-IL2 (Adenovirus) TNF-a and IL-2 Mesothelin-redirected CAR-T cell Pancreatic cancer (BxPC-3, Capan-2, and AsPC-1 cell line, AsPC-1 tumor xenograft model) Combination therapy efficiently inhibits tumor growth [205]
Ad5D24/Ad5D24.RANTES.IL15 (Adenovirus) RANTES and IL-15 GD2.CAR-T cell Neuroblastoma cell tumor model Survival rate: 73% (GD2.CAR-T cells and Ad5D24.RANTES.IL15) vs. 44% (GD2.CAR-T cells and Ad5D24) at day 45 [206]
CAd12_PDL1 (Adenovirus) PD-L1-antibody, IL-12p70 HER2.CAR-T cell HNSCC xenograft model Median survival: more than 100 days (CAd12_PDL-1+ CAR-T) vs. 21 or 24 days (control group) [207]
CAd-VECPDL1 (Adenovirus) PD-L1mini-body HER2.CAR-T cell Solid tumor cell lines (PC-3, A549, HepG2) Median survival: 110 days (twofold longer than mice treated with a single agent) [208]
Tab.3  Oncolytic viruses combined with immune checkpoint inhibitors and CAR-T cell therapies
1 DN Khalil, EL Smith, RJ Brentjens, JD Wolchok. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 2016; 13(5): 273–290
https://doi.org/10.1038/nrclinonc.2016.25 pmid: 26977780
2 Y Yang. Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest 2015; 125(9): 3335–3337
https://doi.org/10.1172/JCI83871 pmid: 26325031
3 HL Kaufman, FJ Kohlhapp, A Zloza. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov 2015; 14(9): 642–662
https://doi.org/10.1038/nrd4663 pmid: 26323545
4 EA Chiocca, SD Rabkin. Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol Res 2014; 2(4): 295–300
https://doi.org/10.1158/2326-6066.CIR-14-0015 pmid: 24764576
5 F Yu, X Wang, ZS Guo, DL Bartlett, SM Gottschalk, XT Song. T-cell engager-armed oncolytic vaccinia virus significantly enhances antitumor therapy. Mol Ther 2014; 22(1): 102–111
https://doi.org/10.1038/mt.2013.240 pmid: 24135899
6 P Wang, X Li, J Wang, D Gao, Y Li, H Li, Y Chu, Z Zhang, H Liu, G Jiang, Z Cheng, S Wang, J Dong, B Feng, LS Chard, NR Lemoine, Y Wang. Re-designing interleukin-12 to enhance its safety and potential as an anti-tumor immunotherapeutic agent. Nat Commun 2017; 8(1): 1395
https://doi.org/10.1038/s41467-017-01385-8 pmid: 29123084
7 A Samson, KJ Scott, D Taggart, EJ West, E Wilson, GJ Nuovo, S Thomson, R Corns, RK Mathew, MJ Fuller, TJ Kottke, JM Thompson, EJ Ilett, JV Cockle, P van Hille, G Sivakumar, ES Polson, SJ Turnbull, ES Appleton, G Migneco, AS Rose, MC Coffey, DA Beirne, FJ Collinson, C Ralph, D Alan Anthoney, CJ Twelves, AJ Furness, SA Quezada, H Wurdak, F Errington-Mais, H Pandha, KJ Harrington, PJ Selby, RG Vile, SD Griffin, LF Stead, SC Short, AA Melcher. Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade. Sci Transl Med 2018; 10(422): eaam7577
https://doi.org/10.1126/scitranslmed.aam7577 pmid: 29298869
8 K Geletneky, J Hajda, AL Angelova, B Leuchs, D Capper, AJ Bartsch, J-O Neumann, T Schöning, J Hüsing, B Beelte, I Kiprianova, M Roscher, R Bhat, A von Deimling, W Brück, A Just, V Frehtman, S Löbhard, E Terletskaia-Ladwig, J Fry, K Jochims, V Daniel, O Krebs, M Dahm, B Huber, A Unterberg, J Rommelaere. Oncolytic H-1 parvovirus shows safety and signs of immunogenic activity in a first phase I/IIa glioblastoma trial. Mol Ther 2017; 25(12): 2620–2634
https://doi.org/10.1016/j.ymthe.2017.08.016
9 D Zamarin, RB Holmgaard, SK Subudhi, JS Park, M Mansour, P Palese, T Merghoub, JD Wolchok, JP Allison. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med 2014; 6(226): 226ra32
https://doi.org/10.1126/scitranslmed.3008095 pmid: 24598590
10 MC Bourgeois-Daigneault, DG Roy, AS Aitken, N El Sayes, NT Martin, O Varette, T Falls, LE St-Germain, A Pelin, BD Lichty, DF Stojdl, G Ungerechts, JS Diallo, JC Bell. Neoadjuvant oncolytic virotherapy before surgery sensitizes triple-negative breast cancer to immune checkpoint therapy. Sci Transl Med 2018; 10(422): eaao1641
https://doi.org/10.1126/scitranslmed.aao1641 pmid: 29298865
11 FF Lang, C Conrad, C Gomez-Manzano, WKA Yung, R Sawaya, JS Weinberg, SS Prabhu, G Rao, GN Fuller, KD Aldape, J Gumin, LM Vence, I Wistuba, J Rodriguez-Canales, PA Villalobos, CMF Dirven, S Tejada, RD Valle, MM Alonso, B Ewald, JJ Peterkin, F Tufaro, J Fueyo. Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol 2018; 36(14): 1419–1427
https://doi.org/10.1200/JCO.2017.75.8219 pmid: 29432077
12 VT Packiam, DL Lamm, DA Barocas, A Trainer, B Fand, RL Davis 3rd, W Clark, M Kroeger, I Dumbadze, K Chamie, AK Kader, D Curran, J Gutheil, A Kuan, AW Yeung, GD Steinberg. An open label, single-arm, phase II multicenter study of the safety and efficacy of CG0070 oncolytic vector regimen in patients with BCG-unresponsive non-muscle-invasive bladder cancer: interim results. Urol Oncol 2018; 36(10): 440–447
https://doi.org/10.1016/j.urolonc.2017.07.005 pmid: 28755959
13 LK Mell, KT Brumund, GA Daniels, SJ Advani, K Zakeri, ME Wright, SJ Onyeama, RA Weisman, PR Sanghvi, PJ Martin, AA Szalay. Phase I trial of intravenous oncolytic vaccinia virus (GL-ONC1) with cisplatin and radiotherapy in patients with locoregionally advanced head and neck carcinoma. Clin Cancer Res 2017; 23(19): 5696–5702
https://doi.org/10.1158/1078-0432.CCR-16-3232 pmid: 28679776
14 J Heo, T Reid, L Ruo, CJ Breitbach, S Rose, M Bloomston, M Cho, HY Lim, HC Chung, CW Kim, J Burke, R Lencioni, T Hickman, A Moon, YS Lee, MK Kim, M Daneshmand, K Dubois, L Longpre, M Ngo, C Rooney, JC Bell, BG Rhee, R Patt, TH Hwang, DH Kirn. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med 2013; 19(3): 329–336
https://doi.org/10.1038/nm.3089 pmid: 23396206
15 HL Kaufman, SD Bines. OPTIM trial: a phase III trial of an oncolytic herpes virus encoding GM-CSF for unresectable stage III or IV melanoma. Future Oncol 2010; 6(6): 941–949
https://doi.org/10.2217/fon.10.66 pmid: 20528232
16 H Kasuya, Y Kodera, A Nakao, K Yamamura, T Gewen, W Zhiwen, Y Hotta, S Yamada, T Fujii, S Fukuda, N Tsurumaru, T Kuwahara, T Kikumori, Y Koide, Y Fujimoto, T Nakashima, Y Hirooka, H Shiku, M Tanaka, K Takesako, T Kondo, B Aleksic, H Kawashima, H Goto, Y Nishiyama. Phase I dose-escalation clinical trial of HF10 oncolytic herpes virus in 17 Japanese patients with advanced cancer. Hepatogastroenterology 2014; 61(131): 599–605
pmid: 26176043
17 JP Nüesch, J Lacroix, A Marchini, J Rommelaere. Molecular pathways: rodent parvoviruses--mechanisms of oncolysis and prospects for clinical cancer treatment. Clin Cancer Res 2012; 18(13): 3516–3523
https://doi.org/10.1158/1078-0432.CCR-11-2325 pmid: 22566376
18 AM Noonan, MR Farren, SM Geyer, Y Huang, S Tahiri, D Ahn, S Mikhail, KK Ciombor, S Pant, S Aparo, J Sexton, JL Marshall, TA Mace, CS Wu, B El-Rayes, CD Timmers, J Zwiebel, GB Lesinski, MA Villalona-Calero, TS Bekaii-Saab. Randomized phase 2 trial of the oncolytic virus Pelareorep (Reolysin) in upfront treatment of metastatic pancreatic adenocarcinoma. Mol Ther 2016; 24(6): 1150–1158
https://doi.org/10.1038/mt.2016.66 pmid: 27039845
19 D Mahalingam, C Fountzilas, J Moseley, N Noronha, H Tran, R Chakrabarty, G Selvaggi, M Coffey, B Thompson, J Sarantopoulos. A phase II study of REOLYSIN® (pelareorep) in combination with carboplatin and paclitaxel for patients with advanced malignant melanoma. Cancer Chemother Pharmacol 2017; 79(4): 697–703
https://doi.org/10.1007/s00280-017-3260-6 pmid: 28289863
20 S Tayeb, Z Zakay-Rones, A Panet. Therapeutic potential of oncolytic Newcastle disease virus: a critical review. Oncolytic Virother 2015; 4: 49–62
pmid: 27512670
21 A Dispenzieri, C Tong, B LaPlant, MQ Lacy, K Laumann, D Dingli, Y Zhou, MJ Federspiel, MA Gertz, S Hayman, F Buadi, M O’Connor, VJ Lowe, KW Peng, SJ Russell. Phase I trial of systemic administration of Edmonston strain of measles virus genetically engineered to express the sodium iodide symporter in patients with recurrent or refractory multiple myeloma. Leukemia 2017; 31(12): 2791–2798
https://doi.org/10.1038/leu.2017.120 pmid: 28439108
22 J Niemann, F Kühnel. Oncolytic viruses: adenoviruses. Virus Genes 2017; 53(5): 700–706
https://doi.org/10.1007/s11262-017-1488-1 pmid: 28702840
23 LE Torres-Domínguez, G McFadden. Poxvirus oncolytic virotherapy. Expert Opin Biol Ther 2019; 19(6): 561–573
https://doi.org/10.1080/14712598.2019.1600669 pmid: 30919708
24 D Watanabe, F Goshima. Oncolytic virotherapy by HSV. Adv Exp Med Biol 2018; 1045: 63–84
https://doi.org/10.1007/978-981-10-7230-7_4 pmid: 29896663
25 AL Angelova, M Barf, K Geletneky, A Unterberg, J Rommelaere. Immunotherapeutic potential of oncolytic H-1 parvovirus: hints of glioblastoma microenvironment conversion towards immunogenicity. Viruses 2017; 9(12): 382
https://doi.org/10.3390/v9120382 pmid: 29244745
26 P Msaouel, M Opyrchal, A Dispenzieri, KW Peng, MJ Federspiel, SJ Russell, E Galanis. Clinical trials with oncolytic measles virus: current status and future prospects. Curr Cancer Drug Targets 2018; 18(2): 177–187
https://doi.org/10.2174/1568009617666170222125035 pmid: 28228086
27 V Schirrmacher. Fifty years of clinical application of Newcastle disease virus: time to celebrate! Biomedicines 2016; 4(3): 16
https://doi.org/10.3390/biomedicines4030016 pmid: 28536382
28 NM Durham, K Mulgrew, K McGlinchey, NR Monks, H Ji, R Herbst, J Suzich, SA Hammond, EJ Kelly. Oncolytic VSV primes differential responses to immuno-oncology therapy. Mol Ther 2017; 25(8): 1917–1932
https://doi.org/10.1016/j.ymthe.2017.05.006 pmid: 28578991
29 MC Brown, EY Dobrikova, MI Dobrikov, RW Walton, SL Gemberling, SK Nair, A Desjardins, JH Sampson, HS Friedman, AH Friedman, DS Tyler, DD Bigner, M Gromeier. Oncolytic polio virotherapy of cancer. Cancer 2014; 120(21): 3277–3286
https://doi.org/10.1002/cncr.28862 pmid: 24939611
30 S Bradley, AD Jakes, K Harrington, H Pandha, A Melcher, F Errington-Mais. Applications of coxsackievirus A21 in oncology. Oncolytic Virother 2014; 3: 47–55
https://doi.org/10.2147/OV.S56322 pmid: 27512662
31 T Bourhill, Y Mori, DE Rancourt, M Shmulevitz, RN Johnston. Going (Reo)Viral: factors promoting successful reoviral oncolytic infection. Viruses 2018; 10(8): 421
https://doi.org/10.3390/v10080421 pmid: 30103501
32 EF Wheelock, JH Dingle. Observations on the repeated administration of viruses to a patient with acute leukemia. A preliminary report. N Engl J Med 1964; 271(13): 645–651
https://doi.org/10.1056/NEJM196409242711302 pmid: 14170843
33 Z Zygiert. Hodgkin’s disease: remissions after measles. Lancet 1971; 297(7699): 593
https://doi.org/10.1016/S0140-6736(71)91186-X pmid: 4100922
34 HW Toolan, EL Saunders, CM Southam, AE Moore, AG Levin. H-1 virus viremia in the human. Proc Soc Exp Biol Med 1965; 119(3): 711–715
https://doi.org/10.3181/00379727-119-30278 pmid: 14328982
35 A Howells, G Marelli, NR Lemoine, Y Wang. Oncolytic viruses-interaction of virus and tumor cells in the battle to eliminate cancer. Front Oncol 2017; 7(195): 195
https://doi.org/10.3389/fonc.2017.00195 pmid: 28944214
36 M Aghi, RL Martuza. Oncolytic viral therapies—the clinical experience. Oncogene 2005; 24(52): 7802–7816
https://doi.org/10.1038/sj.onc.1209037 pmid: 16299539
37 IR Eissa, I Bustos-Villalobos, T Ichinose, S Matsumura, Y Naoe, N Miyajima, D Morimoto, N Mukoyama, W Zhiwen, M Tanaka, H Hasegawa, S Sumigama, B Aleksic, Y Kodera, H Kasuya. The current status and future prospects of oncolytic viruses in clinical trials against melanoma, glioma, pancreatic, and breast cancers. Cancers (Basel) 2018; 10(10): 356
https://doi.org/10.3390/cancers10100356 pmid: 30261620
38 RL Martuza, A Malick, JM Markert, KL Ruffner, DM Coen. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991; 252(5007): 854–856
https://doi.org/10.1126/science.1851332 pmid: 1851332
39 M Liang. Oncorine, the world first oncolytic virus medicine and its update in China. Curr Cancer Drug Targets 2018; 18(2): 171–176
https://doi.org/10.2174/1568009618666171129221503 pmid: 29189159
40 D Wei, J Xu, XY Liu, ZN Chen, H Bian. Fighting cancer with viruses: oncolytic virus therapy in China. Hum Gene Ther 2018; 29(2): 151–159
https://doi.org/10.1089/hum.2017.212 pmid: 29284308
41 FJ Kohlhapp, A Zloza, HL Kaufman. Talimogene laherparepvec (T-VEC) as cancer immunotherapy. Drugs Today (Barc) 2015; 51(9): 549–558
https://doi.org/10.1358/dot.2015.51.9.2383044 pmid: 26488034
42 RM Conry, B Westbrook, S McKee, TG Norwood. Talimogene laherparepvec: first in class oncolytic virotherapy. Hum Vaccin Immunother 2018; 14(4): 839–846
https://doi.org/10.1080/21645515.2017.1412896 pmid: 29420123
43 MC Bourgeois-Daigneault, LE St-Germain, DG Roy, A Pelin, AS Aitken, R Arulanandam, T Falls, V Garcia, JS Diallo, JC Bell. Combination of paclitaxel and MG1 oncolytic virus as a successful strategy for breast cancer treatment. Breast Cancer Res 2016; 18(1): 83
https://doi.org/10.1186/s13058-016-0744-y pmid: 27503504
44 M Garofalo, H Saari, P Somersalo, D Crescenti, L Kuryk, L Aksela, C Capasso, M Madetoja, K Koskinen, T Oksanen, A Mäkitie, M Jalasvuori, V Cerullo, P Ciana, M Yliperttula. Antitumor effect of oncolytic virus and paclitaxel encapsulated in extracellular vesicles for lung cancer treatment. J Control Release 2018; 283: 223–234
https://doi.org/10.1016/j.jconrel.2018.05.015 pmid: 29864473
45 E Binz, S Berchtold, J Beil, M Schell, C Geisler, I Smirnow, UM Lauer. Chemovirotherapy of pancreatic adenocarcinoma by combining oncolytic vaccinia virus GLV-1h68 with nab-paclitaxel plus gemcitabine. Mol Ther Oncolytics 2017; 6: 10–21
https://doi.org/10.1016/j.omto.2017.04.001 pmid: 28607950
46 MJ Wilkinson, HG Smith, G McEntee, J Kyula-Currie, TD Pencavel, DC Mansfield, AA Khan, V Roulstone, AJ Hayes, KJ Harrington. Oncolytic vaccinia virus combined with radiotherapy induces apoptotic cell death in sarcoma cells by down-regulating the inhibitors of apoptosis. Oncotarget 2016; 7(49): 81208–81222
https://doi.org/10.18632/oncotarget.12820 pmid: 27783991
47 SM O’Cathail, TD Pokrovska, TS Maughan, KD Fisher, LW Seymour, MA Hawkins. Combining oncolytic adenovirus with radiation—a paradigm for the future of radiosensitization. Front Oncol 2017; 7: 153
https://doi.org/10.3389/fonc.2017.00153 pmid: 28791251
48 BA McKenzie, FJ Zemp, A Pisklakova, A Narendran, G McFadden, X Lun, RS Kenchappa, EU Kurz, PA Forsyth. In vitro screen of a small molecule inhibitor drug library identifies multiple compounds that synergize with oncolytic myxoma virus against human brain tumor-initiating cells. Neuro-oncol 2015; 17(8): 1086–1094
https://doi.org/10.1093/neuonc/nou359 pmid: 25605818
49 MH Dornan, R Krishnan, AM Macklin, M Selman, N El Sayes, HH Son, C Davis, A Chen, K Keillor, PJ Le, C Moi, P Ou, C Pardin, CR Canez, F Le Boeuf, JC Bell, JC Smith, JS Diallo, CN Boddy. First-in-class small molecule potentiators of cancer virotherapy. Sci Rep 2016; 6(1): 26786
https://doi.org/10.1038/srep26786 pmid: 27226390
50 A Ajina, J Maher. Prospects for combined use of oncolytic viruses and CAR T-cells. J Immunother Cancer 2017; 5(1): 90
https://doi.org/10.1186/s40425-017-0294-6 pmid: 29157300
51 CY Chen, B Hutzen, MF Wedekind, TP Cripe. Oncolytic virus and PD-1/PD-L1 blockade combination therapy. Oncolytic Virother 2018; 7: 65–77
https://doi.org/10.2147/OV.S145532 pmid: 30105219
52 L Russell, KW Peng, SJ Russell, RM Diaz. Oncolytic viruses: priming time for cancer immunotherapy. BioDrugs 2019; 33(5): 485–501
https://doi.org/10.1007/s40259-019-00367-0 pmid: 31321623
53 KR Kelly, CM Espitia, W Zhao, K Wu, V Visconte, F Anwer, CM Calton, JS Carew, ST Nawrocki. Oncolytic reovirus sensitizes multiple myeloma cells to anti-PD-L1 therapy. Leukemia 2018; 32(1): 230–233
https://doi.org/10.1038/leu.2017.272 pmid: 28832023
54 C Achard, A Surendran, ME Wedge, G Ungerechts, J Bell, CS Ilkow. Lighting a fire in the tumor microenvironment using oncolytic immunotherapy. EBioMedicine 2018; 31: 17–24
https://doi.org/10.1016/j.ebiom.2018.04.020 pmid: 29724655
55 GG Au, LF Lincz, A Enno, DR Shafren. Oncolytic coxsackievirus A21 as a novel therapy for multiple myeloma. Br J Haematol 2007; 137(2): 133–141
https://doi.org/10.1111/j.1365-2141.2007.06550.x pmid: 17391493
56 C Geiss, Z Kis, B Leuchs, M Frank-Stöhr, JR Schlehofer, J Rommelaere, C Dinsart, J Lacroix. Preclinical testing of an oncolytic parvovirus: standard protoparvovirus H-1PV efficiently induces osteosarcoma cell lysis in vitro. Viruses 2017; 9(10): 301
https://doi.org/10.3390/v9100301 pmid: 29039746
57 L Vidal, HS Pandha, TA Yap, CL White, K Twigger, RG Vile, A Melcher, M Coffey, KJ Harrington, JS DeBono. A phase I study of intravenous oncolytic reovirus type 3 Dearing in patients with advanced cancer. Clin Cancer Res 2008; 14(21): 7127–7137
https://doi.org/10.1158/1078-0432.CCR-08-0524 pmid: 18981012
58 NE Annels, D Mansfield, M Arif, C Ballesteros-Merino, GR Simpson, M Denyer, SS Sandhu, AA Melcher, KJ Harrington, B Davies, G Au, M Grose, I Bagwan, B Fox, R Vile, H Mostafid, D Shafren, HS Pandha. Phase I trial of an ICAM-1-targeted immunotherapeutic-coxsackievirus A21 (CVA21) as an oncolytic agent against non muscle-invasive bladder cancer. Clin Cancer Res 2019; 25(19): 5818–5831
https://doi.org/10.1158/1078-0432.CCR-18-4022 pmid: 31273010
59 NE Annels, D Mansfield, M Arif, C Ballesteros-Merino, GR Simpson, M Denyer, SS Sandhu, AA Melcher, KJ Harrington, B Davies, G Au, M Grose, I Bagwan, B Fox, R Vile, H Mostafid, D Shafren, HS Pandha. Viral targeting of non-muscle-invasive bladder cancer and priming of antitumor immunity following intravesical coxsackievirus A21. Clin Cancer Res 2019 Aug. 14. [Epub ahead of print] doi: 10.1158/1078-0432.CCR-18-4022
https://doi.org/10.1158/1078-0432.CCR-18-4022
60 RHI Andtbacka, BD Curti, H Kaufman, GA Daniels, JJ Nemunaitis, LE Spitler, S Hallmeyer, J Lutzky, SM Schultz, ED Whitman, K Zhou, R Karpathy, JI Weisberg, M Grose, D Shafren. Final data from CALM: a phase II study of coxsackievirus A21 (CVA21) oncolytic virus immunotherapy in patients with advanced melanoma. J Clin Oncol 2015; 33(15_suppl): 9030
https://doi.org/10.1200/jco.2015.33.15_suppl.9030
61 AL Angelova, M Witzens-Harig, AS Galabov, J Rommelaere. The oncolytic virotherapy era in cancer management: prospects of applying H-1 parvovirus to treat blood and solid cancers. Front Oncol 2017; 7: 93
https://doi.org/10.3389/fonc.2017.00093 pmid: 28553616
62 KA Garant, M Shmulevitz, L Pan, RM Daigle, DG Ahn, SA Gujar, PWK Lee. Oncolytic reovirus induces intracellular redistribution of Ras to promote apoptosis and progeny virus release. Oncogene 2016; 35(6): 771–782
https://doi.org/10.1038/onc.2015.136 pmid: 25961930
63 DW Sborov, GJ Nuovo, A Stiff, T Mace, GB Lesinski, DM Benson Jr, YA Efebera, AE Rosko, F Pichiorri, MR Grever, CC Hofmeister. A phase I trial of single-agent reolysin in patients with relapsed multiple myeloma. Clin Cancer Res 2014; 20(23): 5946–5955
https://doi.org/10.1158/1078-0432.CCR-14-1404 pmid: 25294913
64 D Mahalingam, S Goel, S Aparo, S Patel Arora, N Noronha, H Tran, R Chakrabarty, G Selvaggi, A Gutierrez, M Coffey, ST Nawrocki, G Nuovo, MM Mita. A phase II study of Pelareorep (REOLYSIN®) in combination with gemcitabine for patients with advanced pancreatic adenocarcinoma. Cancers (Basel) 2018; 10(6): 160
https://doi.org/10.3390/cancers10060160 pmid: 29799479
65 E Galanis, SN Markovic, VJ Suman, GJ Nuovo, RG Vile, TJ Kottke, WK Nevala, MA Thompson, JE Lewis, KM Rumilla, V Roulstone, K Harrington, GP Linette, WJ Maples, M Coffey, J Zwiebel, K Kendra. Phase II trial of intravenous administration of Reolysin(®) (Reovirus Serotype-3-dearing Strain) in patients with metastatic melanoma. Mol Ther 2012; 20(10): 1998–2003
https://doi.org/10.1038/mt.2012.146 pmid: 22871663
66 A Stiff, E Caserta, DW Sborov, GJ Nuovo, X Mo, SY Schlotter, A Canella, E Smith, J Badway, M Old, AC Jaime-Ramirez, P Yan, DM Benson, JC Byrd, R Baiocchi, B Kaur, CC Hofmeister, F Pichiorri. Histone deacetylase inhibitors enhance the therapeutic potential of reovirus in multiple myeloma. Mol Cancer Ther 2016; 15(5):830–841
https://doi.org/10.1158/1535-7163 pmid: . MCT-15-0240-T26809490
67 M Ramachandran, D Yu, M Dyczynski, S Baskaran, L Zhang, A Lulla, V Lulla, S Saul, S Nelander, A Dimberg, A Merits, J Leja-Jarblad, M. EssandSafe and effective treatment of experimental neuroblastoma and glioblastoma using systemically delivered triple microRNA-detargeted oncolytic Semliki Forest Virus. Clin Cancer Res 2017; 23(6): 1519–1530
https://doi.org/10.1158/1078-0432.CCR-16-0925
68 JI Quetglas, S Labiano, MA Aznar, E Bolaños, A Azpilikueta, I Rodriguez, E Casales, AR Sánchez-Paulete, V Segura, C Smerdou, I Melero. Virotherapy with a Semliki Forest virus-based vector encoding IL12 synergizes with PD-1/PD-L1 blockade. Cancer Immunol Res 2015; 3(5): 449–454
https://doi.org/10.1158/2326-6066.CIR-14-0216 pmid: 25691326
69 PY Huang, JH Guo, LH Hwang. Oncolytic Sindbis virus targets tumors defective in the interferon response and induces significant bystander antitumor immunity in vivo. Mol Ther 2012; 20(2): 298–305
https://doi.org/10.1038/mt.2011.245
70 Y Lin, H Zhang, J Liang, K Li, W Zhu, L Fu, F Wang, X Zheng, H Shi, S Wu, X Xiao, L Chen, L Tang, M Yan, X Yang, Y Tan, P Qiu, Y Huang, W Yin, X Su, H Hu, J Hu, G Yan. Identification and characterization of alphavirus M1 as a selective oncolytic virus targeting ZAP-defective human cancers. Proc Natl Acad Sci U S A 2014; 111(42): E4504–E4512
https://doi.org/10.1073/pnas.1408759111
71 C Hu, Y Liu, Y Lin, JK Liang, WW Zhong, K Li, WT Huang, DJ Wang, GM Yan, WB Zhu, JG Qiu, X Gao. Intravenous injections of the oncolytic virus M1 as a novel therapy for muscle-invasive bladder cancer. Cell Death Dis 2018; 9(3): 274
https://doi.org/10.1038/s41419-018-0325-3 pmid: 29449555
72 J Liang, L Guo, K Li, X Xiao, W Zhu, X Zheng, J Hu, H Zhang, J Cai, Y Yu, Y Tan, C Li, X Liu, C Hu, Y Liu, P Qiu, X Su, S He, Y Lin, G Yan. Inhibition of the mevalonate pathway enhances cancer cell oncolysis mediated by M1 virus. Nat Commun 2018; 9(1): 1524
https://doi.org/10.1038/s41467-018-03913-6 pmid: 29670091
73 H Zhang, Y Lin, K Li, J Liang, X Xiao, J Cai, Y Tan, F Xing, J Mai, Y Li, W Chen, L Sheng, J Gu, W Zhu, W Yin, P Qiu, X Su, B Lu, X Tian, J Liu, W Lu, Y Dou, Y Huang, B Hu, Z Kang, G Gao, Z Mao, SY Cheng, L Lu, XT Bai, S Gong, G Yan, J Hu. Naturally existing oncolytic virus M1 is nonpathogenic for the nonhuman primates after multiple rounds of repeated intravenous injections. Hum Gene Ther 2016; 27(9): 700–711
https://doi.org/10.1089/hum.2016.038 pmid: 27296553
74 H Zhang, K Li, Y Lin, F Xing, X Xiao, J Cai, W Zhu, J Liang, Y Tan, L Fu, F Wang, W Yin, B Lu, P Qiu, X Su, S Gong, X Bai, J Hu, G Yan. Targeting VCP enhances anticancer activity of oncolytic virus M1 in hepatocellular carcinoma. Sci Transl Med 2017; 9(404): eaam7996
https://doi.org/10.1126/scitranslmed.aam7996 pmid: 28835517
75 X Xiao, J Liang, C Huang, K Li, F Xing, W Zhu, Z Lin, W Xu, G Wu, J Zhang, X Lin, Y Tan, J Cai, J Hu, X Chen, Y Huang, Z Qin, P Qiu, X Su, L Chen, Y Lin, H Zhang, G Yan. DNA-PK inhibition synergizes with oncolytic virus M1 by inhibiting antiviral response and potentiating DNA damage. Nat Commun 2018; 9(1): 4342
https://doi.org/10.1038/s41467-018-06771-4 pmid: 30337542
76 AH Choi, MP O’Leary, Y Fong, NG Chen. From benchtop to bedside: a review of oncolytic virotherapy. Biomedicines 2016; 4(3): 18
https://doi.org/10.3390/biomedicines4030018 pmid: 28536385
77 J Maroun, M Muñoz-Alía, A Ammayappan, A Schulze, KW Peng, S Russell. Designing and building oncolytic viruses. Future Virol 2017; 12(4):193–213
https://doi.org/10.2217/fvl-2016-0129 pmid: 29387140
78 SR Jhawar, A Thandoni, PK Bommareddy, S Hassan, FJ Kohlhapp, S Goyal, JM Schenkel, AW Silk, A Zloza. Oncolytic viruses-natural and genetically engineered cancer immunotherapies. Front Oncol 2017; 7: 202
https://doi.org/10.3389/fonc.2017.00202 pmid: 28955655
79 PK Bommareddy, M Shettigar, HL Kaufman. Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol 2018; 18(8): 498–513
https://doi.org/10.1038/s41577-018-0014-6 pmid: 29743717
80 TS Miest, R Cattaneo. New viruses for cancer therapy: meeting clinical needs. Nat Rev Microbiol 2014; 12(1): 23–34
https://doi.org/10.1038/nrmicro3140 pmid: 24292552
81 AA Stepanenko, VP Chekhonin. Tropism and transduction of oncolytic adenovirus 5 vectors in cancer therapy: focus on fiber chimerism and mosaicism, hexon and pIX. Virus Res 2018; 257: 40–51
https://doi.org/10.1016/j.virusres.2018.08.012 pmid: 30125593
82 PM Foreman, GK Friedman, KA Cassady, JM Markert. Oncolytic virotherapy for the treatment of malignant glioma. Neurotherapeutics 2017; 14(2): 333–344
https://doi.org/10.1007/s13311-017-0516-0 pmid: 28265902
83 D Betancourt, JC Ramos, GN Barber. Retargeting oncolytic vesicular stomatitis virus to human T-cell lymphotropic virus type 1-associated adult T-cell leukemia. J Virol 2015; 89(23): 11786–11800
https://doi.org/10.1128/JVI.01356-15 pmid: 26378177
84 V Leoni, A Vannini, V Gatta, J Rambaldi, M Sanapo, C Barboni, A Zaghini, P Nanni, PL Lollini, C Casiraghi, G Campadelli-Fiume. A fully-virulent retargeted oncolytic HSV armed with IL-12 elicits local immunity and vaccine therapy towards distant tumors. PLoS Pathog 2018; 14(8): e1007209
https://doi.org/10.1371/journal.ppat.1007209 pmid: 30080893
85 L Menotti, A Cerretani, H Hengel, G Campadelli-Fiume. Construction of a fully retargeted herpes simplex virus 1 recombinant capable of entering cells solely via human epidermal growth factor receptor 2. J Virol 2008; 82(20): 10153–10161
https://doi.org/10.1128/JVI.01133-08 pmid: 18684832
86 F Alessandrini, L Menotti, E Avitabile, I Appolloni, D Ceresa, D Marubbi, G Campadelli-Fiume, P Malatesta. Eradication of glioblastoma by immuno-virotherapy with a retargeted oncolytic HSV in a preclinical model. Oncogene 2019; 38(23): 4467–4479
https://doi.org/10.1038/s41388-019-0737-2 pmid: 30755732
87 T Shibata, H Uchida, T Shiroyama, Y Okubo, T Suzuki, H Ikeda, M Yamaguchi, Y Miyagawa, T Fukuhara, JB Cohen, JC Glorioso, T Watabe, H Hamada, H Tahara. Development of an oncolytic HSV vector fully retargeted specifically to cellular EpCAM for virus entry and cell-to-cell spread. Gene Ther 2016; 23(6): 479–488
https://doi.org/10.1038/gt.2016.17 pmid: 26905369
88 H Uchida, M Marzulli, K Nakano, WF Goins, J Chan, CS Hong, L Mazzacurati, JY Yoo, A Haseley, H Nakashima, H Baek, H Kwon, I Kumagai, M Kuroki, B Kaur, EA Chiocca, P Grandi, JB Cohen, JC Glorioso. Effective treatment of an orthotopic xenograft model of human glioblastoma using an EGFR-retargeted oncolytic herpes simplex virus. Mol Ther 2013; 21(3): 561–569
https://doi.org/10.1038/mt.2012.211 pmid: 23070115
89 D Hanahan, RA Weinberg. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646–674
https://doi.org/10.1016/j.cell.2011.02.013 pmid: 21376230
90 LA Pikor, JC Bell, JS Diallo. Oncolytic viruses: exploiting cancer’s deal with the devil. Trends Cancer 2015; 1(4): 266–277
https://doi.org/10.1016/j.trecan.2015.10.004 pmid: 28741515
91 FJ Kohlhapp, HL Kaufman. Molecular pathways: mechanism of action for Talimogene Laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res 2016; 22(5): 1048–1054
https://doi.org/10.1158/1078-0432.CCR-15-2667 pmid: 26719429
92 N Martínez-Vélez, E Xipell, B Vera, A Acanda de la Rocha, M Zalacain, L Marrodán, M Gonzalez-Huarriz, G Toledo, M Cascallo, R Alemany, A Patiño, MM Alonso. The oncolytic adenovirus VCN-01 as therapeutic approach against pediatric osteosarcoma. Clin Cancer Res 2016; 22(9): 2217–2225
https://doi.org/10.1158/1078-0432.CCR-15-1899 pmid: 26603261
93 KA Garant, M Shmulevitz, L Pan, RM Daigle, DG Ahn, SA Gujar, PW Lee. Oncolytic reovirus induces intracellular redistribution of Ras to promote apoptosis and progeny virus release. Oncogene 2016; 35(6): 771–782
https://doi.org/10.1038/onc.2015.136 pmid: 25961930
94 WH Lin, SH Yeh, WJ Yang, KH Yeh, T Fujiwara, A Nii, SS Chang, PJ Chen. Telomerase-specific oncolytic adenoviral therapy for orthotopic hepatocellular carcinoma in HBx transgenic mice. Int J Cancer 2013; 132(6): 1451–1462
https://doi.org/10.1002/ijc.27770 pmid: 22886913
95 JM Li, KC Kao, LF Li, TM Yang, CP Wu, YM Horng, WW Jia, CT Yang. MicroRNA-145 regulates oncolytic herpes simplex virus-1 for selective killing of human non-small cell lung cancer cells. Virol J 2013; 10(1): 241
https://doi.org/10.1186/1743-422X-10-241 pmid: 23876001
96 T Fujiwara, Y Shirakawa, S Kagawa. Telomerase-specific oncolytic virotherapy for human gastrointestinal cancer. Expert Rev Anticancer Ther 2011; 11(4): 525–532
https://doi.org/10.1586/era.10.200 pmid: 21504319
97 J Hardcastle, K Kurozumi, EA Chiocca, B Kaur. Oncolytic viruses driven by tumor-specific promoters. Curr Cancer Drug Targets 2007; 7(2): 181–189
https://doi.org/10.2174/156800907780058880 pmid: 17346110
98 W Zhang, K Ge, Q Zhao, X Zhuang, Z Deng, L Liu, J Li, Y Zhang, Y Dong, Y Zhang, S Zhang, B Liu. A novel oHSV-1 targeting telomerase reverse transcriptase-positive cancer cells via tumor-specific promoters regulating the expression of ICP4. Oncotarget 2015; 6(24): 20345–20355
https://doi.org/10.18632/oncotarget.3884 pmid: 25972362
99 M Taki, S Kagawa, M Nishizaki, H Mizuguchi, T Hayakawa, S Kyo, K Nagai, Y Urata, N Tanaka, T Fujiwara. Enhanced oncolysis by a tropism-modified telomerase-specific replication-selective adenoviral agent OBP-405 (‘Telomelysin-RGD’). Oncogene 2005; 24(19): 3130–3140
https://doi.org/10.1038/sj.onc.1208460 pmid: 15735729
100 P Huang, H Kaku, J Chen, Y Kashiwakura, T Saika, Y Nasu, Y Urata, T Fujiwara, M Watanabe, H Kumon. Potent antitumor effects of combined therapy with a telomerase-specific, replication-competent adenovirus (OBP-301) and IL-2 in a mouse model of renal cell carcinoma. Cancer Gene Ther 2010; 17(7): 484–491
https://doi.org/10.1038/cgt.2010.5 pmid: 20168351
101 M Shayestehpour, S Moghim, V Salimi, S Jalilvand, J Yavarian, B Romani, T Mokhtari-Azad. Targeting human breast cancer cells by an oncolytic adenovirus using microRNA-targeting strategy. Virus Res 2017; 240: 207–214
https://doi.org/10.1016/j.virusres.2017.08.016 pmid: 28867494
102 MF Leber, MA Baertsch, SC Anker, L Henkel, HM Singh, S Bossow, CE Engeland, R Barkley, B Hoyler, J Albert, C Springfeld, D Jäger, C von Kalle, G Ungerechts. Enhanced control of oncolytic measles virus using microRNA target sites. Mol Ther Oncolytics 2018; 9: 30–40
https://doi.org/10.1016/j.omto.2018.04.002 pmid: 29988512
103 MF Leber, S Bossow, VH Leonard, K Zaoui, C Grossardt, M Frenzke, T Miest, S Sawall, R Cattaneo, C von Kalle, G Ungerechts. MicroRNA-sensitive oncolytic measles viruses for cancer-specific vector tropism. Mol Ther 2011; 19(6): 1097–1106
https://doi.org/10.1038/mt.2011.55 pmid: 21468006
104 JA McCart, JM Ward, J Lee, Y Hu, HR Alexander, SK Libutti, B Moss, DL Bartlett. Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes. Cancer Res 2001; 61(24): 8751–8757
pmid: 11751395
105 N Badrinath, J Heo, SY Yoo. Viruses as nanomedicine for cancer. Int J Nanomedicine 2016; 11: 4835–4847
https://doi.org/10.2147/IJN.S116447 pmid: 27703350
106 R Kanai, C Zaupa, D Sgubin, SJ Antoszczyk, RL Martuza, H Wakimoto, SD Rabkin. Effect of g34.5 deletions on oncolytic herpes simplex virus activity in brain tumors. J Virol 2012; 86(8): 4420–4431
https://doi.org/10.1128/JVI.00017-12 pmid: 22345479
107 EA McKie, AR MacLean, AD Lewis, G Cruickshank, R Rampling, SC Barnett, PGE Kennedy, SM Brown. Selective in vitro replication of herpes simplex virus type 1 (HSV-1) ICP34.5 null mutants in primary human CNS tumours—evaluation of a potentially effective clinical therapy. Br J Cancer 1996; 74(5): 745–752
https://doi.org/10.1038/bjc.1996.431 pmid: 8795577
108 DH Kirn, SH Thorne. Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat Rev Cancer 2009; 9(1): 64–71
https://doi.org/10.1038/nrc2545 pmid: 19104515
109 DF Pease, RA Kratzke. Oncolytic viral therapy for mesothelioma. Front Oncol 2017; 7: 179
https://doi.org/10.3389/fonc.2017.00179 pmid: 28884088
110 A Jefferson, VE Cadet, A Hielscher. The mechanisms of genetically modified vaccinia viruses for the treatment of cancer. Crit Rev Oncol Hematol 2015; 95(3): 407–416
https://doi.org/10.1016/j.critrevonc.2015.04.001 pmid: 25900073
111 UM Lauer, M Schell, J Beil, S Berchtold, U Koppenhöfer, J Glatzle, A Königsrainer, R Möhle, D Nann, F Fend, C Pfannenberg, M Bitzer, NP Malek. Phase I study of oncolytic vaccinia virus GL-ONC1 in patients with peritoneal carcinomatosis. Clin Cancer Res 2018; 24(18): 4388–4398
https://doi.org/10.1158/1078-0432.CCR-18-0244 pmid: 29773661
112 DB Johnson, I Puzanov, MC Kelley. Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy 2015; 7(6): 611–619
https://doi.org/10.2217/imt.15.35 pmid: 26098919
113 C Grigg, Z Blake, R Gartrell, A Sacher, B Taback, Y Saenger. Talimogene laherparepvec (T-Vec) for the treatment of melanoma and other cancers. Semin Oncol 2016; 43(6): 638–646
https://doi.org/10.1053/j.seminoncol.2016.10.005 pmid: 28061981
114 SJ Masoud, JB Hu, GM Beasley, JH 4th Stewart, PJ Mosca. Efficacy of Talimogene Laherparepvec (T-VEC) therapy in patients with in-transit melanoma metastasis decreases with increasing lesion size. Ann Surg Oncol 2019; 26(13): 4633–4641
https://doi.org/10.1245/s10434-019-07691-3
115 Z Zhu, MJ Gorman, LD McKenzie, JN Chai, CG Hubert, BC Prager, E Fernandez, JM Richner, R Zhang, C Shan, E Tycksen, X Wang, PY Shi, MS Diamond, JN Rich, MG Chheda. Zika virus has oncolytic activity against glioblastoma stem cells. J Exp Med 2017; 214(10): 2843–2857
https://doi.org/10.1084/jem.20171093 pmid: 28874392
116 N Wikan, DR Smith. Zika virus: history of a newly emerging arbovirus. Lancet Infect Dis 2016; 16(7): e119–e126
https://doi.org/10.1016/S1473-3099(16)30010-X pmid: 27282424
117 SI Yun, YM Lee. Zika virus: an emerging flavivirus. J Microbiol 2017; 55(3): 204–219
https://doi.org/10.1007/s12275-017-7063-6 pmid: 28243937
118 C Shan, AE Muruato, BTD Nunes, H Luo, X Xie, DBA Medeiros, M Wakamiya, RB Tesh, AD Barrett, T Wang, SC Weaver, PFC Vasconcelos, SL Rossi, PY Shi. A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models. Nat Med 2017; 23(6): 763–767
https://doi.org/10.1038/nm.4322 pmid: 28394328
119 Q Chen, J Wu, Q Ye, F Ma, Q Zhu, Y Wu, C Shan, X Xie, D Li, X Zhan, C Li, XF Li, X Qin, T Zhao, H Wu, PY Shi, J Man, CF Qin. Treatment of human glioblastoma with a live attenuated Zika virus vaccine candidate. MBio 2018; 9(5): e01683–18
https://doi.org/10.1128/mBio.01683-18 pmid: 30228241
120 C Shan, X Xie, PY Shi. Zika virus vaccine: progress and challenges. Cell Host Microbe 2018; 24(1): 12–17
https://doi.org/10.1016/j.chom.2018.05.021 pmid: 30008291
121 HJ Zeh, S Downs-Canner, JA McCart, ZS Guo, UN Rao, L Ramalingam, SH Thorne, HL Jones, P Kalinski, E Wieckowski, ME O’Malley, M Daneshmand, K Hu, JC Bell, TH Hwang, A Moon, CJ Breitbach, DH Kirn, DL Bartlett. First-in-man study of western reserve strain oncolytic vaccinia virus: safety, systemic spread, and antitumor activity. Mol Ther 2015; 23(1): 202–214
https://doi.org/10.1038/mt.2014.194 pmid: 25292189
122 CJ Breitbach, NS De Silva, TJ Falls, U Aladl, L Evgin, J Paterson, YY Sun, DG Roy, JL Rintoul, M Daneshmand, K Parato, MM Stanford, BD Lichty, A Fenster, D Kirn, H Atkins, JC Bell. Targeting tumor vasculature with an oncolytic virus. Mol Ther 2011; 19(5): 886–894
https://doi.org/10.1038/mt.2011.26
123 CJ Breitbach, R Arulanandam, N De Silva, SH Thorne, R Patt, M Daneshmand, A Moon, C Ilkow, J Burke, TH Hwang, J Heo, M Cho, H Chen, FA Angarita, C Addison, JA McCart, JC Bell, DH Kirn. Oncolytic vaccinia virus disrupts tumor-associated vasculature in humans. Cancer Res 2013; 73(4): 1265–1275
https://doi.org/10.1158/0008-5472.CAN-12-2687 pmid: 23393196
124 O Hamid, B Hoffner, E Gasal, J Hong, RD Carvajal. Oncolytic immunotherapy: unlocking the potential of viruses to help target cancer. Cancer Immunol Immunother 2017; 66(10): 1249–1264
https://doi.org/10.1007/s00262-017-2025-8 pmid: 28712033
125 JJ Cody, DR Hurst. Promising oncolytic agents for metastatic breast cancer treatment. Oncolytic Virother 2015; 4: 63–73
pmid: 27512671
126 TM Pearl, JM Markert, KA Cassady, MG Ghonime. Oncolytic virus-based cytokine expression to improve immune activity in brain and solid tumors. Mol Ther Oncolytics 2019; 13: 14–21
https://doi.org/10.1016/j.omto.2019.03.001 pmid: 30997392
127 JC Roth, KA Cassady, JJ Cody, JN Parker, KH Price, JM Coleman, JO Peggins, PE Noker, NW Powers, SD Grimes, SL Carroll, GY Gillespie, RJ Whitley, JM Markert. Evaluation of the safety and biodistribution of M032, an attenuated herpes simplex virus type 1 expressing hIL-12, after intracerebral administration to aotus nonhuman primates. Hum Gene Ther Clin Dev 2014; 25(1): 16–27
https://doi.org/10.1089/humc.2013.201 pmid: 24649838
128 DM Patel, PM Foreman, LB Nabors, KO Riley, GY Gillespie, JM Markert. Design of a phase I clinical trial to evaluate M032, a genetically engineered HSV-1 expressing IL-12, in patients with recurrent/progressive glioblastoma multiforme, anaplastic astrocytoma, or gliosarcoma. Hum Gene Ther Clin Dev 2016; 27(2): 69–78
https://doi.org/10.1089/humc.2016.031 pmid: 27314913
129 Y Wu, J He, Y An, X Wang, Y Liu, S Yan, X Ye, J Qi, S Zhu, Q Yu, J Yin, D Li, W Wang. Recombinant Newcastle disease virus (NDV/Anh-IL-2) expressing human IL-2 as a potential candidate for suppresses growth of hepatoma therapy. J Pharmacol Sci 2016; 132(1): 24–30
https://doi.org/10.1016/j.jphs.2016.03.012 pmid: 27174862
130 K Hock, J Laengle, I Kuznetsova, A Egorov, B Hegedus, B Dome, T Wekerle, M Sachet, M Bergmann. Oncolytic influenza A virus expressing interleukin-15 decreases tumor growth invivo. Surgery 2017; 161(3): 735–746
https://doi.org/10.1016/j.surg.2016.08.045 pmid: 27776794
131 J Puskas, D Skrombolas, A Sedlacek, E Lord, M Sullivan, J Frelinger. Development of an attenuated interleukin-2 fusion protein that can be activated by tumour-expressed proteases. Immunology 2011; 133(2): 206–220
https://doi.org/10.1111/j.1365-2567.2011.03428.x pmid: 21426339
132 Z Liu, Y Ge, H Wang, C Ma, M Feist, S Ju, ZS Guo, DL Bartlett. Modifying the cancer-immune set point using vaccinia virus expressing re-designed interleukin-2. Nat Commun 2018; 9(1): 4682
https://doi.org/10.1038/s41467-018-06954-z pmid: 30410056
133 K Autio, A Knuuttila, A Kipar, S Pesonen, K Guse, S Parviainen, M Rajamäki, O Laitinen-Vapaavuori, M Vähä-Koskela, A Kanerva, A Hemminki. Safety and biodistribution of a double-deleted oncolytic vaccinia virus encoding CD40 ligand in laboratory Beagles. Mol Ther Oncolytics 2014; 1: 14002
https://doi.org/10.1038/mto.2014.2 pmid: 27119092
134 JH Huang, SN Zhang, KJ Choi, IK Choi, JH Kim, MG Lee, H Kim, CO Yun. Therapeutic and tumor-specific immunity induced by combination of dendritic cells and oncolytic adenovirus expressing IL-12 and 4-1BBL. Mol Ther 2010; 18(2): 264–274
https://doi.org/10.1038/mt.2009.205 pmid: 19738604
135 AE Moran, M Kovacsovics-Bankowski, AD Weinberg. The TNFRs OX40, 4-1BB, and CD40 as targets for cancer immunotherapy. Curr Opin Immunol 2013; 25(2): 230–237
https://doi.org/10.1016/j.coi.2013.01.004 pmid: 23414607
136 E Eriksson, I Milenova, J Wenthe, M Stahle, J Leja-Jarblad, G Ullenhag, A Dimberg, R Moreno, R Alemany, A. LoskogShaping the tumor stroma and sparking immune activation by CD40 and 4–1BB signaling induced by an armed oncolytic virus. Clin Cancer Res 2017; 23(19): 5846–5857
https://doi.org/10.1158/1078-0432.CCR-17-0285
137 A Rosewell Shaw, M Suzuki. Recent advances in oncolytic adenovirus therapies for cancer. Curr Opin Virol 2016; 21: 9–15
https://doi.org/10.1016/j.coviro.2016.06.009 pmid: 27379906
138 SA Navarro, E Carrillo, C Griñán-Lisón, A Martín, M Perán, JA Marchal, H Boulaiz. Cancer suicide gene therapy: a patent review. Expert Opin Ther Pat 2016; 26(9): 1095–1104
https://doi.org/10.1080/13543776.2016.1211640 pmid: 27424657
139 W Zhu, H Zhang, Y Shi, M Song, B Zhu, L Wei. Oncolytic adenovirus encoding tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits the growth and metastasis of triple-negative breast cancer. Cancer Biol Ther 2013; 14(11): 1016–1023
https://doi.org/10.4161/cbt.26043 pmid: 24025362
140 J Hu, H Wang, J Gu, X Liu, X Zhou. Trail armed oncolytic poxvirus suppresses lung cancer cell by inducing apoptosis. Acta Biochim Biophys Sin (Shanghai) 2018; 50(10): 1018–1027
https://doi.org/10.1093/abbs/gmy096 pmid: 30137199
141 S Chen, YQ Li, XZ Yin, SZ Li, YL Zhu, YY Fan, WJ Li, YL Cui, J Zhao, X Li, QG Zhang, NY Jin. Recombinant adenoviruses expressing apoptin suppress the growth of MCF7 breast cancer cells and affect cell autophagy. Oncol Rep 2019; 41(5): 2818–2832
https://doi.org/10.3892/or.2019.7077 pmid: 30896879
142 W Zhou, S Dai, H Zhu, Z Song, Y Cai, JB Lee, Z Li, X Hu, B Fang, C He, X Huang. Telomerase-specific oncolytic adenovirus expressing TRAIL suppresses peritoneal dissemination of gastric cancer. Gene Ther 2017; 24(4): 199–207
https://doi.org/10.1038/gt.2017.2 pmid: 28075429
143 L Liu, W Wu, G Zhu, L Liu, G Guan, X Li, N Jin, B Chi. Therapeutic efficacy of an hTERT promoter-driven oncolytic adenovirus that expresses apoptin in gastric carcinoma. Int J Mol Med 2012; 30(4): 747–754
https://doi.org/10.3892/ijmm.2012.1077 pmid: 22842823
144 S Schepelmann, CJ Springer. Viral vectors for gene-directed enzyme prodrug therapy. Curr Gene Ther 2006; 6(6): 647–670
https://doi.org/10.2174/156652306779010679 pmid: 17168697
145 J Zhang, V Kale, M Chen. Gene-directed enzyme prodrug therapy. AAPS J 2015; 17(1): 102–110
https://doi.org/10.1208/s12248-014-9675-7 pmid: 25338741
146 S Chalikonda, MH Kivlen, ME O’Malley, XD Eric Dong, JA McCart, MC Gorry, XY Yin, CK Brown, HJ Zeh 3rd, ZS Guo, DL Bartlett. Oncolytic virotherapy for ovarian carcinomatosis using a replication-selective vaccinia virus armed with a yeast cytosine deaminase gene. Cancer Gene Ther 2008; 15(2): 115–125
https://doi.org/10.1038/sj.cgt.7701110 pmid: 18084242
147 JD Dias, I Liikanen, K Guse, J Foloppe, M Sloniecka, I Diaconu, V Rantanen, M Eriksson, T Hakkarainen, M Lusky, P Erbs, S Escutenaire, A Kanerva, S Pesonen, V Cerullo, A Hemminki. Targeted chemotherapy for head and neck cancer with a chimeric oncolytic adenovirus coding for bifunctional suicide protein FCU1. Clin Cancer Res 2010; 16(9): 2540–2549
https://doi.org/10.1158/1078-0432.CCR-09-2974 pmid: 20388844
148 J Foloppe, J Kempf, N Futin, J Kintz, P Cordier, C Pichon, A Findeli, F Vorburger, E Quemeneur, P Erbs. The enhanced tumor specificity of TG6002, an armed oncolytic vaccinia virus deleted in two genes involved in nucleotide metabolism. Mol Ther Oncolytics 2019; 14: 1–14
https://doi.org/10.1016/j.omto.2019.03.005 pmid: 31011628
149 P Erbs, E Regulier, J Kintz, P Leroy, Y Poitevin, F Exinger, R Jund, M Mehtali. In vivo cancer gene therapy by adenovirus-mediated transfer of a bifunctional yeast cytosine deaminase/uracil phosphoribosyltransferase fusion gene. Cancer Res 2000; 60(14): 3813–3822
pmid: 10919655
150 E Smith, J Breznik, BD Lichty. Strategies to enhance viral penetration of solid tumors. Hum Gene Ther 2011; 22(9): 1053–1060
https://doi.org/10.1089/hum.2010.227 pmid: 21443415
151 JH Kim, YS Lee, H Kim, JH Huang, AR Yoon, CO Yun. Relaxin expression from tumor-targeting adenoviruses and its intratumoral spread, apoptosis induction, and efficacy. J Natl Cancer Inst 2006; 98(20): 1482–1493
https://doi.org/10.1093/jnci/djj397 pmid: 17047197
152 S Schäfer, S Weibel, U Donat, Q Zhang, RJ Aguilar, NG Chen, AA Szalay. Vaccinia virus-mediated intra-tumoral expression of matrix metalloproteinase 9 enhances oncolysis of PC-3 xenograft tumors. BMC Cancer 2012; 12(1): 366
https://doi.org/10.1186/1471-2407-12-366 pmid: 22917220
153 N Dmitrieva, L Yu, M Viapiano, TP Cripe, EA Chiocca, JC Glorioso, B Kaur. Chondroitinase ABC I-mediated enhancement of oncolytic virus spread and antitumor efficacy. Clin Cancer Res 2011; 17(6): 1362–1372
https://doi.org/10.1158/1078-0432.CCR-10-2213
154 S Guedan, JJ Rojas, A Gros, E Mercade, M Cascallo, R Alemany. Hyaluronidase expression by an oncolytic adenovirus enhances its intratumoral spread and suppresses tumor growth. Mol Ther 2010; 18(7): 1275–1283
https://doi.org/10.1038/mt.2010.79 pmid: 20442708
155 A Rodríguez-García, M Giménez-Alejandre, JJ Rojas, R Moreno, M Bazan-Peregrino, M Cascalló, R Alemany. Safety and efficacy of VCN-01, an oncolytic adenovirus combining fiber HSG-binding domain replacement with RGD and hyaluronidase expression. Clin Cancer Res 2015; 21(6): 1406–1418
https://doi.org/10.1158/1078-0432.CCR-14-2213 pmid: 25391696
156 G Pascual-Pasto, M Bazan-Peregrino, NG Olaciregui, CA Restrepo-Perdomo, A Mato-Berciano, D Ottaviani, K Weber, G Correa, S Paco, M Vila-Ubach, M Cuadrado-Vilanova, H Castillo-Ecija, G Botteri, L Garcia-Gerique, H Moreno-Gilabert, M Gimenez-Alejandre, P Alonso-Lopez, M Farrera-Sal, S Torres-Manjon, D Ramos-Lozano, R Moreno, I Aerts, F Doz, N Cassoux, E Chapeaublanc, M Torrebadell, M Roldan, A König, M Suñol, J Claverol, C Lavarino, T Carmen de, L Fu, F Radvanyi, FL Munier, J Catalá-Mora, J Mora, R Alemany, M Cascalló, GL Chantada, AM Carcaboso. Therapeutic targeting of the RB1 pathway in retinoblastoma with the oncolytic adenovirus VCN-01. Sci Transl Med 2019; 11(476): eaat9321
https://doi.org/10.1126/scitranslmed.aat9321
157 C Viallard, B Larrivée. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 2017; 20(4): 409–426
https://doi.org/10.1007/s10456-017-9562-9 pmid: 28660302
158 KS Siveen, K Prabhu, R Krishnankutty, S Kuttikrishnan, M Tsakou, FQ Alali, S Dermime, RM Mohammad, S Uddin. Vascular endothelial growth factor (VEGF) signaling in tumour vascularization: potential and challenges. Curr Vasc Pharmacol 2017; 15(4): 339–351
https://doi.org/10.2174/1570161115666170105124038 pmid: 28056756
159 A Frentzen, YA Yu, N Chen, Q Zhang, S Weibel, V Raab, AA Szalay. Anti-VEGF single-chain antibody GLAF-1 encoded by oncolytic vaccinia virus significantly enhances antitumor therapy. Proc Natl Acad Sci USA 2009; 106(31): 12915–12920
https://doi.org/10.1073/pnas.0900660106 pmid: 19617539
160 JM Goodwin, AD Schmitt, CM McGinn, BC Fuchs, D Kuruppu, KK Tanabe, M Lanuti. Angiogenesis inhibition using an oncolytic herpes simplex virus expressing endostatin in a murine lung cancer model. Cancer Invest 2012; 30(3): 243–250
https://doi.org/10.3109/07357907.2012.654870 pmid: 22360364
161 B Hutzen, HK Bid, PJ Houghton, CR Pierson, K Powell, A Bratasz, C Raffel, AW Studebaker. Treatment of medulloblastoma with oncolytic measles viruses expressing the angiogenesis inhibitors endostatin and angiostatin. BMC Cancer 2014; 14(1): 206
https://doi.org/10.1186/1471-2407-14-206 pmid: 24646176
162 T Tsuji, M Nakamori, M Iwahashi, M Nakamura, T Ojima, T Iida, M Katsuda, K Hayata, Y Ino, T Todo, H Yamaue. An armed oncolytic herpes simplex virus expressing thrombospondin-1 has an enhanced in vivo antitumor effect against human gastric cancer. Int J Cancer 2013; 132(2): 485–494
https://doi.org/10.1002/ijc.27681 pmid: 22729516
163 A Miller, SJ Russell. The use of the NIS reporter gene for optimizing oncolytic virotherapy. Expert Opin Biol Ther 2016; 16(1): 15–32
https://doi.org/10.1517/14712598.2016.1100162 pmid: 26457362
164 D Haddad. Genetically engineered vaccinia viruses as agents for cancer treatment, imaging, and transgene delivery. Front Oncol 2017; 7: 96
https://doi.org/10.3389/fonc.2017.00096 pmid: 28589082
165 E Domingo-Musibay, C Allen, C Kurokawa, JJ Hardcastle, I Aderca, P Msaouel, A Bansal, H Jiang, TR DeGrado, E Galanis. Measles Edmonston vaccine strain derivatives have potent oncolytic activity against osteosarcoma. Cancer Gene Ther 2014; 21(11): 483–490
https://doi.org/10.1038/cgt.2014.54 pmid: 25394505
166 K Jiang, C Song, L Kong, L Hu, G Lin, T Ye, G Yao, Y Wang, H Chen, W Cheng, MP Barr, Q Liu, G Zhang, C Ding, S Meng. Recombinant oncolytic Newcastle disease virus displays antitumor activities in anaplastic thyroid cancer cells. BMC Cancer 2018; 18(1): 746
https://doi.org/10.1186/s12885-018-4522-3 pmid: 30021550
167 S Aref, K Bailey, A Fielding. Measles to the rescue: a review of oncolytic measles virus. Viruses 2016; 8(10): 294
https://doi.org/10.3390/v8100294 pmid: 27782084
168 KW Peng, S Facteau, T Wegman, D O’Kane, SJ Russell. Non-invasive in vivo monitoring of trackable viruses expressing soluble marker peptides. Nat Med 2002; 8(5): 527–531
https://doi.org/10.1038/nm0502-527 pmid: 11984600
169 S Robinson, E Galanis. Potential and clinical translation of oncolytic measles viruses. Expert Opin Biol Ther 2017; 17(3): 353–363
https://doi.org/10.1080/14712598.2017.1288713 pmid: 28129716
170 DB Johnson, I Puzanov, MC Kelley. Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy 2015; 7(6): 611–619
https://doi.org/10.2217/imt.15.35 pmid: 26098919
171 J Bell, G McFadden. Viruses for tumor therapy. Cell Host Microbe 2014; 15(3): 260–265
https://doi.org/10.1016/j.chom.2014.01.002 pmid: 24629333
172 RH Andtbacka, SS Agarwala, DW Ollila, S Hallmeyer, M Milhem, T Amatruda, JJ Nemunaitis, KJ Harrington, L Chen, M Shilkrut, M Ross, HL Kaufman. Cutaneous head and neck melanoma in OPTiM, a randomized phase 3 trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor for the treatment of unresected stage IIIB/IIIC/IV melanoma. Head Neck 2016; 38(12): 1752–1758
https://doi.org/10.1002/hed.24522 pmid: 27407058
173 IR Eissa, Y Naoe, I Bustos-Villalobos, T Ichinose, M Tanaka, W Zhiwen, N Mukoyama, T Morimoto, N Miyajima, H Hitoki, S Sumigama, B Aleksic, Y Kodera, H Kasuya. Genomic signature of the natural oncolytic herpes simplex virus HF10 and its therapeutic role in preclinical and clinical trials. Front Oncol 2017; 7: 149
https://doi.org/10.3389/fonc.2017.00149 pmid: 28770166
174 N Martínez-Vélez, M Garcia-Moure, M Marigil, M González-Huarriz, M Puigdelloses, J Gallego Pérez-Larraya, M Zalacaín, L Marrodán, M Varela-Guruceaga, V Laspidea, JJ Aristu, LI Ramos, S Tejada-Solís, R Díez-Valle, C Jones, A Mackay, JA Martínez-Climent, MJ García-Barchino, E Raabe, M Monje, OJ Becher, MP Junier, EA El-Habr, H Chneiweiss, G Aldave, H Jiang, J Fueyo, A Patiño-García, C Gomez-Manzano, MM Alonso. The oncolytic virus Delta-24-RGD elicits an antitumor effect in pediatric glioma and DIPG mouse models. Nat Commun 2019; 10(1): 2235
https://doi.org/10.1038/s41467-019-10043-0 pmid: 31138805
175 O Nakajima, D Ichimaru, Y Urata, T Fujiwara, T Horibe, M Kohno, K Kawakami. Use of telomelysin (OBP-301) in mouse xenografts of human head and neck cancer. Oncol Rep 2009; 22(5): 1039–1043
pmid: 19787218
176 CJ Breitbach, K Parato, J Burke, TH Hwang, JC Bell, DH Kirn. Pexa-Vec double agent engineered vaccinia: oncolytic and active immunotherapeutic. Curr Opin Virol 2015; 13: 49–54
https://doi.org/10.1016/j.coviro.2015.03.016 pmid: 25900822
177 P Singh, SK Pal, A Alex, N Agarwal. Development of PROSTVAC immunotherapy in prostate cancer. Future Oncol 2015; 11(15): 2137–2148
https://doi.org/10.2217/fon.15.120 pmid: 26235179
178 SA Felt, VZ Grdzelishvili. Recent advances in vesicular stomatitis virus-based oncolytic virotherapy: a 5-year update. J Gen Virol 2017; 98(12): 2895–2911
https://doi.org/10.1099/jgv.0.000980 pmid: 29143726
179 MC Brown, M Gromeier. Cytotoxic and immunogenic mechanisms of recombinant oncolytic poliovirus. Curr Opin Virol 2015; 13: 81–85
https://doi.org/10.1016/j.coviro.2015.05.007 pmid: 26083317
180 A Desjardins, M Gromeier, JE Herndon 2nd, N Beaubier, DP Bolognesi, AH Friedman, HS Friedman, F McSherry, AM Muscat, S Nair, KB Peters, D Randazzo, JH Sampson, G Vlahovic, WT Harrison, RE McLendon, D Ashley, DD Bigner. Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med 2018; 379(2): 150–161
https://doi.org/10.1056/NEJMoa1716435 pmid: 29943666
181 MJ Atherton, KB Stephenson, JK Nikota, QN Hu, A Nguyen, Y Wan, BD Lichty. Preclinical development of peptide vaccination combined with oncolytic MG1-E6E7 for HPV-associated cancer. Vaccine 2018; 36(16): 2181–2192
https://doi.org/10.1016/j.vaccine.2018.02.070 pmid: 29544689
182 J Gong, E Sachdev, AC Mita, MM Mita. Clinical development of reovirus for cancer therapy: an oncolytic virus with immune-mediated antitumor activity. World J Methodol 2016; 6(1):25–42
https://doi.org/10.5662/wjm.v6.i1.25 pmid: 27019795
183 K Geletneky, JPF Nüesch, A Angelova, I Kiprianova, J Rommelaere. Double-faceted mechanism of parvoviral oncosuppression. Curr Opin Virol 2015; 13: 17–24
https://doi.org/10.1016/j.coviro.2015.03.008 pmid: 25841215
184 J Hajda, M Lehmann, O Krebs, M Kieser, K Geletneky, D Jäger, M Dahm, B Huber, T Schöning, O Sedlaczek, A Stenzinger, N Halama, V Daniel, B Leuchs, A Angelova, J Rommelaere, CE Engeland, C Springfeld, G Ungerechts. A non-controlled, single arm, open label, phase II study of intravenous and intratumoral administration of ParvOryx in patients with metastatic, inoperable pancreatic cancer: ParvOryx02 protocol. BMC Cancer 2017; 17(1): 576
https://doi.org/10.1186/s12885-017-3604-y pmid: 28851316
185 RM Lorence, MS Roberts, JD O’Neil, WS Groene, JA Miller, SN Mueller, MK Bamat. Phase 1 clinical experience using intravenous administration of PV701, an oncolytic Newcastle disease virus. Curr Cancer Drug Targets 2007; 7(2): 157–167
https://doi.org/10.2174/156800907780058853 pmid: 17346107
186 M Bauzon, T Hermiston. Armed therapeutic viruses — a disruptive therapy on the horizon of cancer immunotherapy. Front Immunol 2014; 5: 74
https://doi.org/10.3389/fimmu.2014.00074 pmid: 24605114
187 A Nguyen, L Ho, Y Wan. Chemotherapy and oncolytic virotherapy: advanced tactics in the war against cancer. Front Oncol 2014; 4: 145
https://doi.org/10.3389/fonc.2014.00145 pmid: 24967214
188 SL Topalian, CG Drake, DM Pardoll. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 2015; 27(4): 450–461
https://doi.org/10.1016/j.ccell.2015.03.001 pmid: 25858804
189 DM Pardoll. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12(4): 252–264
https://doi.org/10.1038/nrc3239 pmid: 22437870
190 JE Rosenberg, J Hoffman-Censits, T Powles, MS van der Heijden, AV Balar, A Necchi, N Dawson, PH O’Donnell, A Balmanoukian, Y Loriot, S Srinivas, MM Retz, P Grivas, RW Joseph, MD Galsky, MT Fleming, DP Petrylak, JL Perez-Gracia, HA Burris, D Castellano, C Canil, J Bellmunt, D Bajorin, D Nickles, R Bourgon, GM Frampton, N Cui, S Mariathasan, O Abidoye, GD Fine, R Dreicer. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 2016; 387(10031): 1909–1920
https://doi.org/10.1016/S0140-6736(16)00561-4 pmid: 26952546
191 HO Alsaab, S Sau, R Alzhrani, K Tatiparti, K Bhise, SK Kashaw, AK Iyer. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 2017; 8: 561
https://doi.org/10.3389/fphar.2017.00561 pmid: 28878676
192 Q Wang, X Wu. Primary and acquired resistance to PD-1/PD-L1 blockade in cancer treatment. Int Immunopharmacol 2017; 46: 210–219
https://doi.org/10.1016/j.intimp.2017.03.015 pmid: 28324831
193 A Kalbasi, A Ribas. Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol 2020; 20(1): 25–39
pmid: 31570880
194 Z Liu, R Ravindranathan, P Kalinski, ZS Guo, DL Bartlett. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat Commun 2017; 8(1): 14754
https://doi.org/10.1038/ncomms14754 pmid: 28345650
195 CY Chen, PY Wang, B Hutzen, L Sprague, HM Swain, JK Love, JR Stanek, L Boon, J Conner, TP Cripe. Cooperation of oncolytic herpes virotherapy and PD-1 blockade in murine rhabdomyosarcoma models. Sci Rep 2017; 7(1): 2396
https://doi.org/10.1038/s41598-017-02503-8 pmid: 28539588
196 J Hardcastle, L Mills, CS Malo, F Jin, C Kurokawa, H Geekiyanage, M Schroeder, J Sarkaria, AJ Johnson, E Galanis. Immunovirotherapy with measles virus strains in combination with anti-PD-1 antibody blockade enhances antitumor activity in glioblastoma treatment. Neuro Oncol 2017; 19(4): 493–502
pmid: 27663389
197 W Shen, MM Patnaik, A Ruiz, SJ Russell, KW Peng. Immunovirotherapy with vesicular stomatitis virus and PD-L1 blockade enhances therapeutic outcome in murine acute myeloid leukemia. Blood 2016; 127(11): 1449–1458
https://doi.org/10.1182/blood-2015-06-652503 pmid: 26712908
198 D Saha, RL Martuza, SD Rabkin. Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade. Cancer Cell 2017; 32(2): 253–267.e5
https://doi.org/10.1016/j.ccell.2017.07.006 pmid: 28810147
199 L Fend, T Yamazaki, C Remy, C Fahrner, M Gantzer, V Nourtier, X Préville, E Quéméneur, O Kepp, J Adam, A Marabelle, JM Pitt, G Kroemer, L Zitvogel. Immune checkpoint blockade, immunogenic chemotherapy or IFN-a blockade boost the local and abscopal effects of oncolytic virotherapy. Cancer Res 2017; 77(15): 4146–4157
https://doi.org/10.1158/0008-5472.CAN-16-2165 pmid: 28536278
200 A Ribas, R Dummer, I Puzanov, A VanderWalde, RHI Andtbacka, O Michielin, AJ Olszanski, J Malvehy, J Cebon, E Fernandez, JM Kirkwood, TF Gajewski, L Chen, KS Gorski, AA Anderson, SJ Diede, ME Lassman, J Gansert, FS Hodi, GV Long. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 2017; 170(6): 1109–1119.e10
https://doi.org/10.1016/j.cell.2017.08.027
201 L Sun, P Funchain, JM Song, P Rayman, C Tannenbaum, J Ko, M Mcnamara, C Marcela Diaz-Montero, B Gastman. Talimogene Laherparepvec combined with anti-PD-1 based immunotherapy for unresectable stage III-IV melanoma: a case series. J Immunother Cancer 2018; 6(1): 36
https://doi.org/10.1186/s40425-018-0337-7 pmid: 29764498
202 I Puzanov, MM Milhem, D Minor, O Hamid, A Li, L Chen, M Chastain, KS Gorski, A Anderson, J Chou, HL Kaufman, RH Andtbacka. Talimogene Laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J Clin Oncol 2016; 34(22): 2619–2626
https://doi.org/10.1200/JCO.2016.67.1529 pmid: 27298410
203 J Chesney, I Puzanov, F Collichio, P Singh, MM Milhem, J Glaspy, O Hamid, M Ross, P Friedlander, C Garbe, TF Logan, A Hauschild, C Lebbé, L Chen, JJ Kim, J Gansert, RHI Andtbacka, HL Kaufman. Randomized, open-label phase II study evaluating the efficacy and safety of Talimogene Laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J Clin Oncol 2018; 36(17): 1658–1667
https://doi.org/10.1200/JCO.2017.73.7379 pmid: 28981385
204 A Wing, CA Fajardo, AD Posey, C Shaw, T Da, RM Young, R Alemany, CH June, S Guedan. Improving CART-cell therapy of solid tumors with oncolytic virus–driven production of a bispecific T-cell engager. Cancer Immunol Res 2018; 6(5): 605–616
https://doi.org/10.1158/2326-6066.CIR-17-0314
205 K Watanabe, Y Luo, T Da, S Guedan, M Ruella, J Scholler, B Keith, RM Young, B Engels, S Sorsa, M Siurala, R Havunen, S Tähtinen, A Hemminki, CH June. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight 2018; 3(7): e99573
https://doi.org/10.1172/jci.insight.99573 pmid: 29618658
206 N Nishio, I Diaconu, H Liu, V Cerullo, I Caruana, V Hoyos, L Bouchier-Hayes, B Savoldo, G Dotti. Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors. Cancer Res 2014; 74(18): 5195–5205
https://doi.org/10.1158/0008-5472.CAN-14-0697 pmid: 25060519
207 A Rosewell Shaw, CE Porter, N Watanabe, K Tanoue, A Sikora, S Gottschalk, MK Brenner, M Suzuki. Adenovirotherapy delivering cytokine and checkpoint inhibitor augments CAR T cells against metastatic head and neck cancer. Mol Ther 2017; 25(11): 2440–2451
https://doi.org/10.1016/j.ymthe.2017.09.010 pmid: 28974431
208 K Tanoue, A Rosewell Shaw, N Watanabe, C Porter, B Rana, S Gottschalk, M Brenner, M Suzuki. Armed oncolytic adenovirus-expressing PD-L1 mini-body enhances antitumor effects of chimeric antigen receptor T cells in solid tumors. Cancer Res 2017; 77(8): 2040–2051
https://doi.org/10.1158/0008-5472.CAN-16-1577 pmid: 28235763
209 JT Pento. Monoclonal antibodies for the treatment of cancer. Anticancer Res 2017; 37(11): 5935–5939
pmid: 29061772
210 [No authors listed] Cemiplimab approved for treatment of CSCC. Cancer Discov 2018; 8(12): OF2
https://doi.org/10.1158/2159-8290.CD-NB2018-140 pmid: 30377167
211 YY Syed. Durvalumab: first global approval. Drugs 2017; 77(12): 1369–1376
https://doi.org/10.1007/s40265-017-0782-5 pmid: 28643244
212 PC Tumeh, CL Harview, JH Yearley, IP Shintaku, EJ Taylor, L Robert, B Chmielowski, M Spasic, G Henry, V Ciobanu, AN West, M Carmona, C Kivork, E Seja, G Cherry, AJ Gutierrez, TR Grogan, C Mateus, G Tomasic, JA Glaspy, RO Emerson, H Robins, RH Pierce, DA Elashoff, C Robert, A Ribas. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014; 515(7528): 568–571
https://doi.org/10.1038/nature13954 pmid: 25428505
213 K Taipale, I Liikanen, J Juhila, A Karioja-Kallio, M Oksanen, R Turkki, N Linder, J Lundin, A Ristimäki, A Kanerva, A Koski, T Joensuu, M Vähä-Koskela, A Hemminki. T-cell subsets in peripheral blood and tumors of patients treated with oncolytic adenoviruses. Mol Ther 2015; 23(5): 964–973
https://doi.org/10.1038/mt.2015.17 pmid: 25655312
214 S Pesonen, I Diaconu, L Kangasniemi, T Ranki, A Kanerva, SK Pesonen, U Gerdemann, AM Leen, K Kairemo, M Oksanen, E Haavisto, SL Holm, A Karioja-Kallio, S Kauppinen, KP Partanen, L Laasonen, T Joensuu, T Alanko, V Cerullo, A Hemminki. Oncolytic immunotherapy of advanced solid tumors with a CD40L-expressing replicating adenovirus: assessment of safety and immunologic responses in patients. Cancer Res 2012; 72(7): 1621–1631
https://doi.org/10.1158/0008-5472.CAN-11-3001 pmid: 22323527
215 P Letendre, V Monga, M Milhem, Y Zakharia. Ipilimumab: from preclinical development to future clinical perspectives in melanoma. Future Oncol 2017; 13(7): 625–636
https://doi.org/10.2217/fon-2016-0385 pmid: 27882779
216 JM Pagel, HJ West. Chimeric antigen receptor (CAR) T-cell therapy. JAMA Oncol 2017; 3(11): 1595
https://doi.org/10.1001/jamaoncol.2017.2989 pmid: 28880983
217 JK Anderson, A Mehta. A review of chimeric antigen receptor T-cells in lymphoma. Expert Rev Hematol 2019; 12(7): 551–561
https://doi.org/10.1080/17474086.2019.1629901 pmid: 31177852
218 L Mikkilineni, JN Kochenderfer. Chimeric antigen receptor T-cell therapies for multiple myeloma. Blood 2017; 130(24): 2594–2602
https://doi.org/10.1182/blood-2017-06-793869 pmid: 28928126
219 HJ Jackson, S Rafiq, RJ Brentjens. Driving CAR T-cells forward. Nat Rev Clin Oncol 2016; 13(6): 370–383
https://doi.org/10.1038/nrclinonc.2016.36 pmid: 27000958
220 KB Long, RM Young, AC Boesteanu, MM Davis, JJ Melenhorst, SF Lacey, DA DeGaramo, BL Levine, JA Fraietta. CAR T cell therapy of non-hematopoietic malignancies: detours on the road to clinical success. Front Immunol 2018; 9: 2740
https://doi.org/10.3389/fimmu.2018.02740 pmid: 30559740
221 RJ Brentjens, ML Davila, I Riviere, J Park, X Wang, LG Cowell, S Bartido, J Stefanski, C Taylor, M Olszewska, O Borquez-Ojeda, J Qu, T Wasielewska, Q He, Y Bernal, IV Rijo, C Hedvat, R Kobos, K Curran, P Steinherz, J Jurcic, T Rosenblat, P Maslak, M Frattini, M Sadelain. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013; 5(177): 177ra38
https://doi.org/10.1126/scitranslmed.3005930 pmid: 23515080
222 J Li, W Li, K Huang, Y Zhang, G Kupfer, Q Zhao. Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward. J Hematol Oncol 2018; 11(1): 22
https://doi.org/10.1186/s13045-018-0568-6 pmid: 29433552
223 TF Gajewski, SR Woo, Y Zha, R Spaapen, Y Zheng, L Corrales, S Spranger. Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr Opin Immunol 2013; 25(2): 268–276
https://doi.org/10.1016/j.coi.2013.02.009 pmid: 23579075
224 Y Lavin, S Kobayashi, A Leader, ED Amir, N Elefant, C Bigenwald, R Remark, R Sweeney, CD Becker, JH Levine, K Meinhof, A Chow, S Kim-Shulze, A Wolf, C Medaglia, H Li, JA Rytlewski, RO Emerson, A Solovyov, BD Greenbaum, C Sanders, M Vignali, MB Beasley, R Flores, S Gnjatic, D Pe’er, A Rahman, I Amit, M Merad. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 2017; 169(4): 750–765.e17
https://doi.org/10.1016/j.cell.2017.04.014 pmid: 28475900
225 AI Salter, SR Riddell. A BiTE from cancer’s intracellular menu. Nat Biotechnol 2015; 33(10): 1040–1041
https://doi.org/10.1038/nbt.3370 pmid: 26448086
226 AM Huehls, TA Coupet, CL Sentman. Bispecific T-cell engagers for cancer immunotherapy. Immunol Cell Biol 2015; 93(3): 290–296
https://doi.org/10.1038/icb.2014.93 pmid: 25367186
227 J Stieglmaier, J Benjamin, D Nagorsen. Utilizing the BiTE (bispecific T-cell engager) platform for immunotherapy of cancer. Expert Opin Biol Ther 2015; 15(8): 1093–1099
https://doi.org/10.1517/14712598.2015.1041373 pmid: 25971805
228 EM Scott, MR Duffy, JD Freedman, KD Fisher, LW Seymour. Solid tumor immunotherapy with T cell engager-armed oncolytic viruses. Macromol Biosci 2018; 18(1): 1700187
https://doi.org/10.1002/mabi.201700187 pmid: 28902983
229 A Cheung, HJ Bax, DH Josephs, KM Ilieva, G Pellizzari, J Opzoomer, J Bloomfield, M Fittall, A Grigoriadis, M Figini, S Canevari, JF Spicer, AN Tutt, SN Karagiannis. Targeting folate receptor alpha for cancer treatment. Oncotarget 2016; 7(32): 52553–52574
https://doi.org/10.18632/oncotarget.9651 pmid: 27248175
230 SN Zolov, SP Rietberg, CL Bonifant. Programmed cell death protein 1 activation preferentially inhibits CD28.CAR-T cells. Cytotherapy 2018; 20(10): 1259–1266
https://doi.org/10.1016/j.jcyt.2018.07.005 pmid: 30309710
231 L Cherkassky, A Morello, J Villena-Vargas, Y Feng, DS Dimitrov, DR Jones, M Sadelain, PS Adusumilli. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest 2016; 126(8): 3130–3144
https://doi.org/10.1172/JCI83092 pmid: 27454297
232 KM Mahoney, PD Rennert, GJ Freeman. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 2015; 14(8): 561–584
https://doi.org/10.1038/nrd4591 pmid: 26228759
233 I Serganova, E Moroz, I Cohen, M Moroz, M Mane, J Zurita, L Shenker, V Ponomarev, R Blasberg. Enhancement of PSMA-directed CAR adoptive immunotherapy by PD-1/PD-L1 blockade. Mol Ther Oncolytics 2017; 4: 41–54
https://doi.org/10.1016/j.omto.2016.11.005 pmid: 28345023
234 MA Postow, R Sidlow, MD Hellmann. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 2018; 378(2): 158–168
https://doi.org/10.1056/NEJMra1703481 pmid: 29320654
235 IM Svane, EM Verdegaal. Achievements and challenges of adoptive T cell therapy with tumor-infiltrating or blood-derived lymphocytes for metastatic melanoma: what is needed to achieve standard of care? Cancer Immunol Immunother 2014; 63(10): 1081–1091
https://doi.org/10.1007/s00262-014-1580-5 pmid: 25099366
236 MJ Besser, R Shapira-Frommer, O Itzhaki, AJ Treves, DB Zippel, D Levy, A Kubi, N Shoshani, D Zikich, Y Ohayon, D Ohayon, B Shalmon, G Markel, R Yerushalmi, S Apter, A Ben-Nun, E Ben-Ami, A Shimoni, A Nagler, J Schachter. Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: intent-to-treat analysis and efficacy after failure to prior immunotherapies. Clin Cancer Res 2013; 19(17): 4792–4800
https://doi.org/10.1158/1078-0432.CCR-13-0380
237 JM Santos, R Havunen, M Siurala, V Cervera-Carrascon, S Tähtinen, S Sorsa, M Anttila, P Karell, A Kanerva, A Hemminki. Adenoviral production of interleukin-2 at the tumor site removes the need for systemic postconditioning in adoptive cell therapy. Int J Cancer 2017; 141(7): 1458–1468
https://doi.org/10.1002/ijc.30839 pmid: 28614908
238 S Hamano, Y Mori, M Aoyama, H Kataoka, M Tanaka, M Ebi, E Kubota, T Mizoshita, S Tanida, RN Johnston, K Asai, T Joh. Oncolytic reovirus combined with trastuzumab enhances antitumor efficacy through TRAIL signaling in human HER2-positive gastric cancer cells. Cancer Lett 2015; 356(2 Pt B): 846–854
https://doi.org/10.1016/j.canlet.2014.10.046 pmid: 25444894
239 G Tan, H Kasuya, TT Sahin, K Yamamura, Z Wu, Y Koide, Y Hotta, T Shikano, S Yamada, A Kanzaki, T Fujii, H Sugimoto, S Nomoto, Y Nishikawa, M Tanaka, N Tsurumaru, T Kuwahara, S Fukuda, T Ichinose, T Kikumori, S Takeda, A Nakao, Y Kodera. Combination therapy of oncolytic herpes simplex virus HF10 and bevacizumab against experimental model of human breast carcinoma xenograft. Int J Cancer 2015; 136(7): 1718–1730
https://doi.org/10.1002/ijc.29163 pmid: 25156870
240 PK Bommareddy, S Aspromonte, A Zloza, SD Rabkin, HL Kaufman. MEK inhibition enhances oncolytic virus immunotherapy through increased tumor cell killing and T cell activation. Sci Transl Med 2018; 10(471): eaau0417
https://doi.org/10.1126/scitranslmed.aau0417 pmid: 30541787
241 S Abdullahi, M Jäkel, SJ Behrend, K Steiger, G Topping, T Krabbe, A Colombo, V Sandig, TS Schiergens, WE Thasler, J Werner, SF Lichtenthaler, RM Schmid, O Ebert, J Altomonte. A novel chimeric oncolytic virus vector for improved safety and efficacy as a platform for the treatment of hepatocellular carcinoma. J Virol 2018; 92(23): e01386-18
https://doi.org/10.1128/JVI.01386-18 pmid: 30232179
[1] Yong Fan, Yan Geng, Lin Shen, Zhuoli Zhang. Advances on immune-related adverse events associated with immune checkpoint inhibitors[J]. Front. Med., 2021, 15(1): 33-42.
[2] Hongnan Mo, Binghe Xu. Progress in systemic therapy for triple-negative breast cancer[J]. Front. Med., 2021, 15(1): 1-10.
[3] Ping Li, Ningxin Dong, Yu Zeng, Jie Liu, Xiaochen Tang, Junbang Wang, Wenjun Zhang, Shiguang Ye, Lili Zhou, Alex Hongsheng Chang, Aibin Liang. Chimeric antigen receptor T-cell therapy: a promising treatment modality for relapsed/refractory mantle cell lymphoma[J]. Front. Med., 2020, 14(6): 811-815.
[4] Lili Zhou, Ping Li, Shiguang Ye, Xiaochen Tang, Junbang Wang, Jie Liu, Aibin Liang. Different sites of extranodal involvement may affect the survival of patients with relapsed or refractory non-Hodgkin lymphoma after chimeric antigen receptor T cell therapy[J]. Front. Med., 2020, 14(6): 786-791.
[5] Ching-Hon Pui. Precision medicine in acute lymphoblastic leukemia[J]. Front. Med., 2020, 14(6): 689-700.
[6] Hongli Chen, Fangxia Wang, Pengyu Zhang, Yilin Zhang, Yinxia Chen, Xiaohu Fan, Xingmei Cao, Jie Liu, Yun Yang, Baiyan Wang, Bo Lei, Liufang Gu, Ju Bai, Lili Wei, Ruili Zhang, Qiuchuan Zhuang, Wanggang Zhang, Wanhong Zhao, Aili He. Management of cytokine release syndrome related to CAR-T cell therapy[J]. Front. Med., 2019, 13(5): 610-617.
[7] Yumeng Wang, Guiling Li. PD-1/PD-L1 blockade in cervical cancer: current studies and perspectives[J]. Front. Med., 2019, 13(4): 438-450.
[8] Synat Kang, Yanyan Li, Yifeng Bao, Yi Li. High-affinity T cell receptors redirect cytokine-activated T cells (CAT) to kill cancer cells[J]. Front. Med., 2019, 13(1): 69-82.
[9] Zhao Zhang, Jun Jiang, Xiaodong Wu, Mengyao Zhang, Dan Luo, Renyu Zhang, Shiyou Li, Youwen He, Huijie Bian, Zhinan Chen. Chimeric antigen receptor T cell targeting EGFRvIII for metastatic lung cancer therapy[J]. Front. Med., 2019, 13(1): 57-68.
[10] Zhen Xiang, Yingyan Yu. Screening responsive or resistant biomarkers of immune checkpoint inhibitors based on online databases[J]. Front. Med., 2019, 13(1): 24-31.
[11] Renyu Zhang, Zhao Zhang, Zekun Liu, Ding Wei, Xiaodong Wu, Huijie Bian, Zhinan Chen. Adoptive cell transfer therapy for hepatocellular carcinoma[J]. Front. Med., 2019, 13(1): 3-11.
[12] Chia-Wei Li, Yun-Ju Lai, Jennifer L. Hsu, Mien-Chie Hung. Activation of phagocytosis by immune checkpoint blockade[J]. Front. Med., 2018, 12(4): 473-480.
[13] Fang Fang, Weihua Xiao, Zhigang Tian. Challenges of NK cell-based immunotherapy in the new era[J]. Front. Med., 2018, 12(4): 440-450.
[14] Min Yu, Zonghai Li. Natural killer cells in hepatocellular carcinoma: current status and perspectives for future immunotherapeutic approaches[J]. Front. Med., 2017, 11(4): 509-521.
[15] Qiang Gao, Yinghong Shi, Xiaoying Wang, Jian Zhou, Shuangjian Qiu, Jia Fan. Translational medicine in hepatocellular carcinoma[J]. Front Med, 2012, 6(2): 122-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed