Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2020, Vol. 14 Issue (5) : 664-673    https://doi.org/10.1007/s11684-020-0810-9
LETTER TO FRONTIERS OF MEDICINE
Clinical study using mesenchymal stem cells for the treatment of patients with severe COVID-19
Lingling Tang1, Yingan Jiang2, Mengfei Zhu1, Lijun Chen3, Xiaoyang Zhou2, Chenliang Zhou2, Peng Ye2, Xiaobei Chen2, Baohong Wang3, Zhenyu Xu4, Qiang Zhang4, Xiaowei Xu3, Hainv Gao1, Xiaojun Wu2, Dong Li2, Wanli Jiang2, Jingjing Qu3, Charlie Xiang3(), Lanjuan Li1,3()
1. The Shulan (Hangzhou) Hospital, Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310022, China
2. Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
3. State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
4. Innovative Precision Medicine (IPM) Group, Hangzhou 311215, China
 Download: PDF(301 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 was identified in December 2019. The symptoms include fever, cough, dyspnea, early symptom of sputum, and acute respiratory distress syndrome (ARDS). Mesenchymal stem cell (MSC) therapy is the immediate treatment used for patients with severe cases of COVID-19. Herein, we describe two confirmed cases of COVID-19 in Wuhan to explore the role of MSC in the treatment of COVID-19. MSC transplantation increases the immune indicators (including CD4 and lymphocytes) and decreases the inflammation indicators (interleukin-6 and C-reactive protein). High-flow nasal cannula can be used as an initial support strategy for patients with ARDS. With MSC transplantation, the fraction of inspired O2 (FiO2) of the two patients gradually decreased while the oxygen saturation (SaO2) and partial pressure of oxygen (PO2) improved. Additionally, the patients’ chest computed tomography showed that bilateral lung exudate lesions were adsorbed after MSC infusion. Results indicated that MSC transplantation provides clinical data on the treatment of COVID-19 and may serve as an alternative method for treating COVID-19, particularly in patients with ARDS.

Keywords coronavirus disease 2019 (COVID-19)      mesenchymal stem cell      acute respiratory distress syndrome      stem cell therapeutics     
Corresponding Author(s): Charlie Xiang,Lanjuan Li   
Just Accepted Date: 28 June 2020   Online First Date: 06 August 2020    Issue Date: 12 October 2020
 Cite this article:   
Lingling Tang,Yingan Jiang,Mengfei Zhu, et al. Clinical study using mesenchymal stem cells for the treatment of patients with severe COVID-19[J]. Front. Med., 2020, 14(5): 664-673.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-020-0810-9
https://academic.hep.com.cn/fmd/EN/Y2020/V14/I5/664
Fig.1  Detailed CONSORT diagram for the treatment of two patients in our study. The two patients for clinical trial were diagnosed with severe COVID-19. Their informed consent for MSC therapy was obtained accordingly. The first patient received MSC transplant on February 5, February 6, and February 8, 2020. The second patient received MSC transplant on February 8, February 9, and February 11, 2020. They were then subjected to routine blood examination and tests for liver function, immune indicators, inflammation indicators, oxygenation indicators, and chest CT scan within 2 weeks post-MSC infusion. The two patients were then discharged from the hospital and regularly examined.
Variables Reference range Jan 31 Feb 4 Feb 5 MSC treatment Feb 6 MSC treatment Feb 7 Feb 8 MSC treatment Feb 9 Feb 10 Feb 11 Feb 14 Feb 17
Temperature (°C) 36.1–37 38.7 37.8 37 37 38 37.2 37.2 36.7 36.8 37.1 37.1
Routine blood examination
LC (×109/L) 3.5–9.5 13.6 3.2 5 5.3 5.3 4.4 3.1 2.7 3.2 3.5 2.3
Lymphocytes (%) 20–50 4.1 16.9 25.4 13.2 11 13.8 15.4 23.4 21.2 28.9 41.6
Neutrophils (%) 40–75 95 80.3 71.8 84.1 86.7 83 79.2 68.2 69.5 63.2 47.6
Platelets (×109/L) 125–325 319 350 305 323 243 237 278 321 334 347 320
Hb (g/L) 115–150 72 85 87 84 79 77 76 77 81 87 89
Liver function
ALB (g/L) 40–55 38 35.1 34.9 33.5 32.6 32 31.2 31.3 32.3 33.6 34.7
ALT (U/L) 7–40 18 23 27 25 21 18 19 18 20 25 26
AST (U/L) 13–35 20 22 26 26 19 17 18 16 23 25 22
Immune indicator
CD4 (%) 33–58 47.7 N/A 55.2 51.5 N/A N/A 54.9 58 N/A N/A N/A
CD8 (%) 13–39 18.1 N/A 16.3 18.5 N/A N/A 16.5 17.1 N/A N/A N/A
IgG (g/L) 7–16 N/A N/A 20 21.5 N/A N/A 21.9 22 N/A N/A N/A
IgM (g/L) 0.4–2.3 N/A N/A 2.4 2.3 N/A N/A 1.8 1.8 N/A N/A N/A
IgA (g/L) 0.7–4 N/A N/A 2.5 2.2 N/A N/A 2 1.9 N/A N/A N/A
Inflammation indicator
CRP (mg/L) 0–10 N/A 42.5 20.3 42.3 103.4 103.4 32.9 37.6 20.7 10.9 5
IL-6 (pg/mL) <10 N/A 27.1 15.7 N/A N/A 18 21.5 9.8 5.6 5 2.2
Oxygenation indicator
FiO2 (%) <60 100 100 N/A 55 50 50 60 55 N/A N/A N/A
SaO2 (%) 95–98 98 92 N/A 96 93 98 99 97 N/A N/A N/A
PO2 (mmHg) 80–100 99 66 N/A 85 67 97 131 86 N/A N/A N/A
Tab.1  Routine laboratory test values, pre- and post-admission of MSC in the 1st patient
Fig.2  Chest computerized tomography (CT) images of the first patient. The chest X-ray on February 1 and 4 indicated large, patchy, and high-density lesions in the bilateral lungs, and the costal diaphragm angle was not clear. The X-ray on February 6 and 10 showed the absorption of the exudate lesions in the bilateral lungs.
Variables Reference range Feb 7 Feb 8 MSC treatment Feb 9 MSC treatment Feb 10 Feb 11 MSC treatment Feb 12 Feb 13 Feb 15 Feb 17 Feb 19 Feb 22
Temperature (°C) 36.1–37 36.5 36.1 36.1 36.3 36.3 N/A 36.6 36.2 N/A 36.5 36.5
Routine blood examination
LC (×109/L) 3.5–9.5 2.6 5.8 6.6 6.5 5.7 5.4 4.8 4.8 3 4.2 4
Lymphocytes (%) 20–50 10.5 10.4 10.8 11.8 9.3 15.4 24.6 23.3 31.2 28.7 35.5
Neutrophils (%) 40–75 81.3 73.4 82.8 82.7 83.8 75.2 74.8 62.6 53.9 60.8 53.5
Platelets (×109/L) 125–325 273 295 267 247 215 213 181 149 132 99 138
Hb (g/L) 115–150 132 125 126 127 132 133 128 133 123 122 114
Liver function
ALB (g/L) 40–55 34.6 29.4 32.5 34.1 31.8 31.5 32.7 31.2 33 29.9 30.7
ALT (U/L) 7–40 106 80 60 45 39 45 71 109 88 126 102
AST (U/L) 13–35 73 40 25 23 20 29 48 72 46 65 43
Immune indicator
CD4 (%) 33–58 N/A N/A 27.2 N/A N/A 27.3 N/A 37.9 N/A 44.3 46.4
CD8 (%) 13–39 N/A N/A 19.7 N/A N/A 18.4 N/A 16.6 N/A 17.9 16
IgG (g/L) 7–16 18.8 N/A 21.5 N/A N/A 29.9 N/A 33.4 N/A 34.6 39.8
IgM (g/L) 0.4–2.3 0.61 N/A 0.62 N/A N/A 0.75 N/A 0.89 N/A 0.91 0.94
IgA (g/L) 0.7–4.0 2.29 N/A 2.16 N/A N/A 1.9 N/A 1.85 N/A 1.66 1.64
Inflammation indicator
CRP (mg/L) 0–10 15.5 64.3 28.5 19.7 9.1 6.2 4.1 3.9 6.8 4.6 3.8
IL-6 (pg/mL) <10 5.1 N/A 1.5 1.5 16.5 3.3 4 14.7 5.9 6.1 10.5
Oxygenation indicator
FiO2 (%) <60 80 N/A 76 N/A 44 44 41 30 N/A 34 30
SaO2 (%) 95–98 98 N/A 96 N/A 97 99 99 99 N/A 96 99
PO2 (mmHg) 80–100 99 N/A 81 N/A 101 114 122 169 N/A 195 150
Tab.2  Routine laboratory test values, pre- and post-admission of MSC in the 2nd patient
Fig.3  Chest CT images of second patient. The chest X-ray on February 7 and 10 indicated patchy and high-density shadows in the lower lung fields and the left middle lung. Repeat chest X-ray on February 15 and 22 showed that high-density exudate was absorbed in the lower lung fields and the left middle lung.
1 C Huang, Y Wang, X Li, L Ren, J Zhao, Y Hu, L Zhang, G Fan, J Xu, X Gu, Z Cheng, T Yu, J Xia, Y Wei, W Wu, X Xie, W Yin, H Li, M Liu, Y Xiao, H Gao, L Guo, J Xie, G Wang, R Jiang, Z Gao, Q Jin, J Wang, B Cao. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497–506
https://doi.org/10.1016/S0140-6736(20)30183-5 pmid: 31986264
2 Q Li, X Guan, P Wu, X Wang, L Zhou, Y Tong, R Ren, KSM Leung, EHY Lau, JY Wong, X Xing, N Xiang, Y Wu, C Li, Q Chen, D Li, T Liu, J Zhao, M Liu, W Tu, C Chen, L Jin, R Yang, Q Wang, S Zhou, R Wang, H Liu, Y Luo, Y Liu, G Shao, H Li, Z Tao, Y Yang, Z Deng, B Liu, Z Ma, Y Zhang, G Shi, TTY Lam, JT Wu, GF Gao, BJ Cowling, B Yang, GM Leung, Z Feng. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020; 382(13): 1199–1207
https://doi.org/10.1056/NEJMoa2001316 pmid: 31995857
3 XW Xu, XX Wu, XG Jiang, KJ Xu, LJ Ying, CL Ma, SB Li, HY Wang, S Zhang, HN Gao, JF Sheng, HL Cai, YQ Qiu, LJ Li. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: retrospective case series. BMJ 2020; 368: m606
https://doi.org/10.1136/bmj.m606 pmid: 32075786
4 ML Holshue, C DeBolt, S Lindquist, KH Lofy, J Wiesman, H Bruce, C Spitters, K Ericson, S Wilkerson, A Tural, G Diaz, A Cohn, L Fox, A Patel, SI Gerber, L Kim, S Tong, X Lu, S Lindstrom, MA Pallansch, WC Weldon, HM Biggs, TM Uyeki, SK; PillaiWashington State 2019-nCoV Case Investigation Team. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020; 382(10): 929–936
https://doi.org/10.1056/NEJMoa2001191 pmid: 32004427
5 S Xia, M Liu, C Wang, W Xu, Q Lan, S Feng, F Qi, L Bao, L Du, S Liu, C Qin, F Sun, Z Shi, Y Zhu, S Jiang, L Lu. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 2020; 30: 343–355
https://doi.org/10.1038/s41422-020-0305-x pmid: 32231345
6 WJ Guan, ZY Ni, Y Hu, WH Liang, CQ Ou, JX He, L Liu, H Shan, CL Lei, DSC Hui, B Du, LJ Li, G Zeng, KY Yuen, RC Chen, CL Tang, T Wang, PY Chen, J Xiang, SY Li, JL Wang, ZJ Liang, YX Peng, L Wei, Y Liu, YH Hu, P Peng, JM Wang, JY Liu, Z Chen, G Li, ZJ Zheng, SQ Qiu, J Luo, CJ Ye, SY Zhu, NS; China Medical Treatment Expert Group for COVID-19 Zhong. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708–1720
https://doi.org/10.1056/NEJMoa2002032 pmid: 32109013
7 M Zhou, X, Zhang J Qu. Coronavirus disease 2019 (COVID-19): a clinical update. Front Med 2020; 14(2): 126–135
https://doi.org/10.1007/s11684-020-0767-8 PMID:32240462
8 P Zhou, XL Yang, XG Wang, B Hu, L Zhang, W Zhang, HR Si, Y Zhu, B Li, CL Huang, HD Chen, J Chen, Y Luo, H Guo, RD Jiang, MQ Liu, Y Chen, XR Shen, X Wang, XS Zheng, K Zhao, QJ Chen, F Deng, LL Liu, B Yan, FX Zhan, YY Wang, GF Xiao, ZL Shi. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270–273
https://doi.org/10.1038/s41586-020-2012-7 pmid: 32015507
9 H Lu, CW Stratton, YW Tang. Outbreak of pneumonia of unknown etiology in Wuhan, China: the mystery and the miracle. J Med Virol 2020; 92(4): 401–402
https://doi.org/10.1002/jmv.25678 pmid: 31950516
10 R Lu, X Zhao, J Li, P Niu, B Yang, H Wu, W Wang, H Song, B Huang, N Zhu, Y Bi, X Ma, F Zhan, L Wang, T Hu, H Zhou, Z Hu, W Zhou, L Zhao, J Chen, Y Meng, J Wang, Y Lin, J Yuan, Z Xie, J Ma, WJ Liu, D Wang, W Xu, EC Holmes, GF Gao, G Wu, W Chen, W Shi, W Tan. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565–574
https://doi.org/10.1016/S0140-6736(20)30251-8 pmid: 32007145
11 Q Zhang, Y Wang, C Qi, L Shen, J Li. Clinical trial analysis of 2019-nCoV therapy registered in China. J Med Virol 2020; 92(6): 540–545
https://doi.org/10.1002/jmv.25733
12 HA Rothan, SN Byrareddy. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 2020; 109: 102433
https://doi.org/10.1016/j.jaut.2020.102433 pmid: 32113704
13 C Wang, PW Horby, FG Hayden, GF Gao. A novel coronavirus outbreak of global health concern. Lancet 2020; 395(10223): 470–473
https://doi.org/10.1016/S0140-6736(20)30185-9 pmid: 31986257
14 Z Xu, L Shi, Y Wang, J Zhang, L Huang, C Zhang, S Liu, P Zhao, H Liu, L Zhu, Y Tai, C Bai, T Gao, J Song, P Xia, J Dong, J Zhao, FS Wang. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8(4): 420–422
https://doi.org/10.1016/S2213-2600(20)30076-X pmid: 32085846
15 Y Han, X Li, Y Zhang, Y Han, F Chang, J Ding. Mesenchymal stem cells for regenerative medicine. Cells 2019; 8(8): E886
https://doi.org/10.3390/cells8080886 pmid: 31412678
16 K Le Blanc, LC Davies. MSCs-cells with many sides. Cytotherapy 2018; 20(3): 273–278
https://doi.org/10.1016/j.jcyt.2018.01.009 pmid: 29434007
17 M Shi, Z Liu, Y Wang, R Xu, Y Sun, M Zhang, X Yu, H Wang, L Meng, H Su, L Jin, FS Wang. A pilot study of mesenchymal stem cell therapy for acute liver allograft rejection. Stem Cells Transl Med 2017; 6(12): 2053–2061
https://doi.org/10.1002/sctm.17-0134 pmid: 29178564
18 ARR Weiss, MH Dahlke. Immunomodulation by mesenchymal stem cells (MSCs): mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol 2019; 10: 1191
https://doi.org/10.3389/fimmu.2019.01191 pmid: 31214172
19 RM Samsonraj, M Raghunath, V Nurcombe, JH Hui, AJ van Wijnen, SM Cool. Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med 2017; 6(12): 2173–2185
https://doi.org/10.1002/sctm.17-0129 pmid: 29076267
20 S Hashmi, M Ahmed, MH Murad, MR Litzow, RH Adams, LM Ball, VK Prasad, P Kebriaei, O Ringden. Survival after mesenchymal stromal cell therapy in steroid-refractory acute graft-versus-host disease: systematic review and meta-analysis. Lancet Haematol 2016; 3(1): e45–e52
https://doi.org/10.1016/S2352-3026(15)00224-0 pmid: 26765648
21 J Liang, H Zhang, W Kong, W Deng, D Wang, X Feng, C Zhao, B Hua, H Wang, L Sun. Safety analysis in patients with autoimmune disease receiving allogeneic mesenchymal stem cells infusion: a long-term retrospective study. Stem Cell Res Ther 2018; 9(1): 312
https://doi.org/10.1186/s13287-018-1053-4 pmid: 30428931
22 F Gao, SM Chiu, DA Motan, Z Zhang, L Chen, HL Ji, HF Tse, QL Fu, Q Lian. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis 2016; 7(1): e2062
https://doi.org/10.1038/cddis.2015.327 pmid: 26794657
23 LL de Castro, M Lopes-Pacheco, DJ Weiss, FF Cruz, PRM Rocco. Current understanding of the immunosuppressive properties of mesenchymal stromal cells. J Mol Med (Berl) 2019; 97(5): 605–618
https://doi.org/10.1007/s00109-019-01776-y pmid: 30903229
24 L Saldaña, F Bensiamar, G Vallés, FJ Mancebo, E García-Rey, N Vilaboa. Immunoregulatory potential of mesenchymal stem cells following activation by macrophage-derived soluble factors. Stem Cell Res Ther 2019; 10(1): 58
https://doi.org/10.1186/s13287-019-1156-6 pmid: 30760316
25 M Khoury, PRM Rocco, DG Phinney, M Krampera, I Martin, S Viswanathan, JA Nolta, K LeBlanc, J Galipeau, DJ Weiss. Cell-based therapies for COVID-19: proper clinical investigations are essential. Cytotherapy 2020; [Epub ahead of print] doi: 10.1016/j.jcyt.2020.04.089
https://doi.org/10.1016/j.jcyt.2020.04.089
26 JG Wilson, KD Liu, H Zhuo, L Caballero, M McMillan, X Fang, K Cosgrove, R Vojnik, CS Calfee, JW Lee, AJ Rogers, J Levitt, J Wiener-Kronish, EK Bajwa, A Leavitt, D McKenna, BT Thompson, MA Matthay. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med 2015; 3(1): 24–32
https://doi.org/10.1016/S2213-2600(14)70291-7 pmid: 25529339
27 X Meng, TE Ichim, J Zhong, A Rogers, Z Yin, J Jackson, H Wang, W Ge, V Bogin, KW Chan, B Thébaud, NH Riordan. Endometrial regenerative cells: a novel stem cell population. J Transl Med 2007; 5(1): 57
https://doi.org/10.1186/1479-5876-5-57 pmid: 18005405
28 W Zuo, B Xie, C Li, Y Yan, Y Zhang, W Liu, J Huang, D Chen. The clinical applications of endometrial mesenchymal stem cells. Biopreserv Biobank 2018; 16(2): 158–164
https://doi.org/10.1089/bio.2017.0057 pmid: 29265881
29 L Chen, J Qu, C Xiang. The multi-functional roles of menstrual blood-derived stem cells in regenerative medicine. Stem Cell Res Ther 2019; 10(1): 1
https://doi.org/10.1186/s13287-018-1105-9 pmid: 30606242
30 Z Yan, F Guo, Q Yuan, Y Shao, Y Zhang, H Wang, S Hao, X Du. Endometrial mesenchymal stem cells isolated from menstrual blood repaired epirubicin-induced damage to human ovarian granulosa cells by inhibiting the expression of Gadd45b in cell cycle pathway. Stem Cell Res Ther 2019; 10(1): 4
https://doi.org/10.1186/s13287-018-1101-0 pmid: 30606243
31 L Chen, C Zhang, L Chen, X Wang, B Xiang, X Wu, Y Guo, X Mou, L Yuan, B Chen, J Wang, C Xiang. Human menstrual blood-derived stem cells ameliorate liver fibrosis in mice by targeting hepatic stellate cells via paracrine mediators. Stem Cells Transl Med 2017; 6(1): 272–284
https://doi.org/10.5966/sctm.2015-0265 pmid: 28170193
32 M Khanmohammadi, S Khanjani, H Edalatkhah, AH Zarnani, H Heidari-Vala, M Soleimani, K Alimoghaddam, S Kazemnejad. Modified protocol for improvement of differentiation potential of menstrual blood-derived stem cells into adipogenic lineage. Cell Prolif 2014; 47(6): 615–623
https://doi.org/10.1111/cpr.12133 pmid: 25252214
33 L Chen, J Qu, T Cheng, X Chen, C Xiang. Menstrual blood-derived stem cells: toward therapeutic mechanisms, novel strategies, and future perspectives in the treatment of diseases. Stem Cell Res Ther 2019; 10(1): 406
https://doi.org/10.1186/s13287-019-1503-7 pmid: 31864423
34 J Chen, C Hu, L Chen, L Tang, Y Zhu, X Xu, L Chen, H Gao, X Lu, L Yu, X Dai, C Xiang, L Li. Clinical study of mesenchymal stem cell treating acute respiratory distress syndrome induced by epidemic influenza A (H7N9) infection, a hint for COVID-19 treatment. Engineering (Beijing) 2020; [Epub ahead of print] doi: 10.1016/j.eng.2020.02.006
https://doi.org/10.1016/j.eng.2020.02.006 pmid: 32292627
35 X Wu, Y Luo, J Chen, R Pan, B Xiang, X Du, L Xiang, J Shao, C Xiang. Transplantation of human menstrual blood progenitor cells improves hyperglycemia by promoting endogenous progenitor differentiation in type 1 diabetic mice. Stem Cells Dev 2014; 23(11): 1245–1257
https://doi.org/10.1089/scd.2013.0390 pmid: 24499421
36 Y Wu, X Chen, Y Zhao, Y Wang, Y Li, C Xiang. Genome-wide DNA methylation and hydroxymethylation analysis reveal human menstrual blood-derived stem cells inhibit hepatocellular carcinoma growth through oncogenic pathway suppression via regulating 5-hmC in enhancer elements. Stem Cell Res Ther 2019; 10(1): 151
https://doi.org/10.1186/s13287-019-1243-8 pmid: 31151404
37 YH Li, CY Hu, NP Wu, HP Yao, LJ Li. Molecular characteristics, functions, and related pathogenicity of MERS-CoV proteins. Engineering (Beijing) 2019; 5(5): 940–947
https://doi.org/10.1016/j.eng.2018.11.035 pmid: 32288963
38 BJ Bosch, BE Martina, R Van Der Zee, J Lepault, BJ Haijema, C Versluis, AJ Heck, R De Groot, AD Osterhaus, PJ Rottier. Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. Proc Natl Acad Sci USA 2004; 101(22): 8455–8460
https://doi.org/10.1073/pnas.0400576101 pmid: 15150417
39 G Chen, D Wu, W Guo, Y Cao, D Huang, H Wang, T Wang, X Zhang, H Chen, H Yu, X Zhang, M Zhang, S Wu, J Song, T Chen, M Han, S Li, X Luo, J Zhao, Q Ning. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020; 130(5): 2620–2629
https://doi.org/10.1172/JCI137244 pmid: 32217835
40 The Lancet. Emerging understandings of 2019-nCoV. Lancet 2020; 395(10221): 311
https://doi.org/10.1016/S0140-6736(20)30186-0 pmid: 31986259
41 J Cohen, D Normile. New SARS-like virus in China triggers alarm. Science 2020; 367(6475): 234–235
https://doi.org/10.1126/science.367.6475.234 pmid: 31949058
42 A Lorusso, P Calistri, A Petrini, G Savini, N Decaro. Novel coronavirus (SARS-CoV-2) epidemic: a veterinary perspective. Vet Ital 2020; 56(1): 5–10
pmid: 32048818
43 N Chen, M Zhou, X Dong, J Qu, F Gong, Y Han, Y Qiu, J Wang, Y Liu, Y Wei, J Xia, T Yu, X Zhang, L Zhang. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395(10223): 507–513
https://doi.org/10.1016/S0140-6736(20)30211-7 pmid: 32007143
44 N Zhu, D Zhang, W Wang, X Li, B Yang, J Song, X Zhao, B Huang, W Shi, R Lu, P Niu, F Zhan, X Ma, D Wang, W Xu, G Wu, GF Gao, W; China Novel Coronavirus Investigating and Research Team Tan. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727–733
https://doi.org/10.1056/NEJMoa2001017 pmid: 31978945
45 S Chen, G Cui, C Peng, MF Lavin, X Sun, E Zhang, Y Yang, Y Guan, Z Du, H Shao. Transplantation of adipose-derived mesenchymal stem cells attenuates pulmonary fibrosis of silicosis via anti-inflammatory and anti-apoptosis effects in rats. Stem Cell Res Ther 2018; 9(1): 110
https://doi.org/10.1186/s13287-018-0846-9 pmid: 29673394
46 D Liu, F Kong, Y Yuan, P Seth, W Xu, H Wang, F Xiao, L Wang, Q Zhang, Y Yang, H Wang. Decorin-modified umbilical cord mesenchymal stem cells (MSCs) attenuate radiation-induced lung injuries via regulating inflammation, fibrotic factors, and immune responses. Int J Radiat Oncol Biol Phys 2018; 101(4): 945–956
https://doi.org/10.1016/j.ijrobp.2018.04.007 pmid: 29976507
47 L Marnell, C Mold, TW Du Clos. C-reactive protein: ligands, receptors and role in inflammation. Clin Immunol 2005; 117(2): 104–111
https://doi.org/10.1016/j.clim.2005.08.004 pmid: 16214080
48 Z Leng, R Zhu, W Hou, Y Feng, Y Yang, Q Han, G Shan, F Meng, D Du, S Wang, J Fan, W Wang, L Deng, H Shi, H Li, Z Hu, F Zhang, J Gao, H Liu, X Li, Y Zhao, K Yin, X He, Z Gao, Y Wang, B Yang, R Jin, I Stambler, LW Lim, H Su, A Moskalev, A Cano, S Chakrabarti, KJ Min, G Ellison-Hughes, C Caruso, K Jin, RC Zhao. Transplantation of ACE2− mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis 2020; 11(2): 216–228
https://doi.org/10.14336/AD.2020.0228 pmid: 32257537
49 EF Cahill, H Kennelly, F Carty, BP Mahon, K English. Hepatocyte growth factor is required for mesenchymal stromal cell protection against bleomycin-induced pulmonary fibrosis. Stem Cells Transl Med 2016; 5(10): 1307–1318
https://doi.org/10.5966/sctm.2015-0337 pmid: 27388243
50 G Zheng, L Huang, H Tong, Q Shu, Y Hu, M Ge, K Deng, L Zhang, B Zou, B Cheng, J Xu. Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study. Respir Res 2014; 15(1): 39
https://doi.org/10.1186/1465-9921-15-39 pmid: 24708472
51 Y Zhang, ZF Ma. Impact of the COVID-19 pandemic on mental health and quality of life among local residents in Liaoning Province, China: a cross-sectional study. Int J Environ Res Public Health 2020; 17(7): E2381
https://doi.org/10.3390/ijerph17072381 pmid: 32244498
52 B Xiang, L Chen, X Wang, Y Zhao, Y Wang, C Xiang. Transplantation of menstrual blood-derived mesenchymal stem cells promotes the repair of LPS-induced acute lung injury. Int J Mol Sci 2017; 18(4): 689
https://doi.org/10.3390/ijms18040689 pmid: 28346367
[1] Zhengqian Li, Taotao Liu, Ning Yang, Dengyang Han, Xinning Mi, Yue Li, Kaixi Liu, Alain Vuylsteke, Hongbing Xiang, Xiangyang Guo. Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain[J]. Front. Med., 2020, 14(5): 533-541.
[2] Shuxian Zhang, Zezhou Wang, Ruijie Chang, Huwen Wang, Chen Xu, Xiaoyue Yu, Lhakpa Tsamlag, Yinqiao Dong, Hui Wang, Yong Cai. COVID-19 containment: China provides important lessons for global response[J]. Front. Med., 2020, 14(2): 215-219.
[3] Shihua Wang, Rongjia Zhu, Hongling Li, Jing Li, Qin Han, Robert Chunhua Zhao. Mesenchymal stem cells and immune disorders: from basic science to clinical transition[J]. Front. Med., 2019, 13(2): 138-151.
[4] Yingchen Li,Guoheng Hu,Qilai Cheng. Implantation of human umbilical cord mesenchymal stem cells for ischemic stroke: perspectives and challenges[J]. Front. Med., 2015, 9(1): 20-29.
[5] Siming Yang, Kui Ma, Changjiang Feng, Yan Wu, Yao Wang, Sha Huang, Xiaobing Fu. Capacity of human umbilical cord-derived mesenchymal stem cells to differentiate into sweat gland-like cells: a preclinical study[J]. Front Med, 2013, 7(3): 345-353.
[6] Tao Li, Nanfu Luo, Lei Du, Jin Liu, Lina Gong, Jing Zhou. Early and marked up-regulation of TNF-α in acute respiratory distress syndrome after cardiopulmonary bypass[J]. Front Med, 2012, 6(3): 296-301.
[7] Siming Yang, Sha Huang, Changjiang Feng, Xiaobing Fu. Umbilical cord-derived mesenchymal stem cells: strategies, challenges, and potential for cutaneous regeneration[J]. Front Med, 2012, 6(1): 41-47.
[8] Shihua Wang, Xuebin Qu, Robert Chunhua Zhao. Mesenchymal stem cells hold promise for regenerative medicine[J]. Front Med, 2011, 5(4): 372-378.
[9] Li LI, Jianxin JIANG. Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms[J]. Front Med, 2011, 5(1): 33-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed