Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2010, Vol. 4 Issue (1) : 82-89    https://doi.org/10.1007/s11684-010-0014-9
Research articles
Functional XPF polymorphisms associated with lung cancer susceptibility in a Chinese population
Dian-Ke YU PhD,Chen WU MD,Wen TAN MD,Dong-Xin LIN MD,
State Key Laboratory of Molecular Oncology and Department of Etiology & Carcinogenesis, Cancer Institute & Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100210, China;
 Download: PDF(320 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Variation of individuals’ DNA repair capacity has been linked to cancer susceptibility. The xeroderma pigmentsum group F (XPF) plays a pivotal role in nucleotide-excision repair (NER) pathway. This study was to examine the functional significance of XPF promoter polymorphisms and their association with lung cancer risk. The function of XPF promoter polymorphisms was tested by a set of biochemical assays, and their effects on lung cancer risk were determined by a case-control analysis of 988 patients with lung cancer and 986 controls. The XPF−673T allele showed a significantly higher transcriptional activity as compared with the −673C allele. The −673TT genotype was associated with a decreased risk of lung cancer compared with the CC genotype (adjusted OR=0.62, 95% CI=0.42–0.91; P=0.015) and this effect was more significant among males (adjusted OR=0.55, 95% CI=0.35–0.86; P=0.009), elder subjects (adjusted OR=0.51, 95% CI=0.30–0.86; P=0.012), and light smokers (adjusted OR=0.35, 95% CI=0.14–0.88; P=0.026). These findings suggest that functional polymorphisms influencing DNA repair capacity may confer susceptibility to lung cancer.
Keywords XPF      polymorphism      lung cancer      
Issue Date: 05 March 2010
 Cite this article:   
Dian-Ke YU PhD,Wen TAN MD,Chen WU MD, et al. Functional XPF polymorphisms associated with lung cancer susceptibility in a Chinese population[J]. Front. Med., 2010, 4(1): 82-89.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-010-0014-9
https://academic.hep.com.cn/fmd/EN/Y2010/V4/I1/82
Herbst R S, Heymach J V, Lippman S M. Lung cancer. N Engl J Med, 2008, 359(13): 1367―1380

doi: 10.1056/NEJMra0802714
Duarte R L, Paschoal M E. Molecular markers in lung cancer: prognostic role and relationshipto smoking. J Bras Pneumol, 2006, 32(1): 56―65
Friedberg E C. How nucleotide excision repair protects against cancer. Nat Rev Cancer, 2001, 1(1): 22―33

doi: 10.1038/35094000
Tsodikov O V, Enzlin J H, Scharer O D, Ellenberger T. Crystal structure and DNA binding functions of ERCC1,a subunit of the DNA structure-specific endonuclease XPF-ERCC1. Proc Natl Acad Sci USA, 2005, 102(32): 11236―11241

doi: 10.1073/pnas.0504341102
Choi Y J, Ryu K S, Ko Y M, Chae Y K, Pelton J G, Wemmer D E, Choi B S. Biophysicalcharacterization of the interaction domains and mapping of the contactresidues in the XPF-ERCC1 complex. J BiolChem, 2005, 280(31): 28644―28652

doi: 10.1074/jbc.M501083200
Gaillard P H, Wood R D. Activityof individual ERCC1 and XPF subunits in DNA nucleotide excision repair. Nucleic Acids Res, 2001, 29(4): 872―879

doi: 10.1093/nar/29.4.872
Niedernhofer L J, Odijk H, Budzowska M, van Drunen E, Maas A, Theil A F, de Wit J, Jaspers N G, Beverloo H B, Hoeijmakers J H, Kanaar R. The structure-specific endonucleaseErcc1-Xpf is required to resolve DNA interstrand cross-link-induceddouble-strand breaks. Mol Cell Biol, 2004, 24(13): 5776―5787

doi: 10.1128/MCB.24.13.5776-5787.2004
Niedernhofer L J, Essers J, Weeda G, Beverloo B, de Wit J, Muijtjens M, Odijk H, Hoeijmakers J H, Kanaar R. The structure-specific endonucleaseErcc1-Xpf is required for targeted gene replacement in embryonic stemcells. EMBO J, 2001, 20(22): 6540―6549

doi: 10.1093/emboj/20.22.6540
Zhu X D, Niedernhofer L, Kuster B, Mann M, Hoeijmakers J H, de Lange T. ERCC1/XPF removes the 3'overhang from uncapped telomeres and represses formation of telomericDNA-containing double minute chromosomes. Mol Cell, 2003, 12(6): 1489―1498

doi: 10.1016/S1097-2765(03)00478-7
McWilliams R R, Bamlet W R, Cunningham J M, Goode E L, de Andrade M, Boardman L A, Petersen G M. Polymorphisms in DNA repair genes, smoking, and pancreaticadenocarcinoma risk. Cancer Res, 2008, 68(12): 4928―4935

doi: 10.1158/0008-5472.CAN-07-5539
Shao M, Ma H, Wang Y, Xu L, Yuan J, Wang Y, Hu Z, Yang L, Wang F, Liu H, Qian J, Xun P, Chen W, Yuan W, Jing G, Chen F, Jin L, Wei Q, Wu T, Shen H, Huang W, Lu D. Polymorphismsin excision repair cross-complementing group 4 (ERCC4) and susceptibilityto primary lung cancer in a Chinese Han population. Lung Cancer, 2008, 60(3): 332―339

doi: 10.1016/j.lungcan.2007.10.023
Milne R L, Ribas G, Gonzalez-Neira A, Fagerholm R, Salas A, Gonzalez E, Dopazo J, Nevanlinna H, Robledo M, Benitez J. ERCC4 associated with breast cancer risk: a two-stage case-controlstudy using high-throughput genotyping. Cancer Res, 2006, 66(19): 9420―9427

doi: 10.1158/0008-5472.CAN-06-1418
Zienolddiny S, Campa D, Lind H, Ryberg D, Skaug V, Stangeland L, Phillips D H, Canzian F, Haugen A. Polymorphisms of DNA repair genes and risk of non-smallcell lung cancer. Carcinogenesis, 2006, 27(3): 560―567

doi: 10.1093/carcin/bgi232
Abbasi R, Ramroth H, Becher H, Dietz A, Schmezer P, Popanda O. Laryngeal cancer risk associatedwith smoking and alcohol consumption is modified by genetic polymorphismsin ERCC5, ERCC6 and RAD23B but not by polymorphisms in five othernucleotide excision repair genes. Int JCancer, 2009, 125(6): 1431―1439

doi: 10.1002/ijc.24442
Shen M, Berndt S I, Rothman N, Demarini D M, Mumford J L, He X, Bonner M R, Tian L, Yeager M, Welch R, Chanock S, Zheng T, Caporaso N, Lan Q. Polymorphismsin the DNA nucleotide excision repair genes and lung cancer risk inXuan Wei, China. Int J Cancer, 2005, 116(5): 768―773

doi: 10.1002/ijc.21117
Zhang X, Miao X, Liang G, Hao B, Wang Y, Tan W, Li Y, Guo Y, He F, Wei Q, Lin D. Polymorphisms in DNA base excision repair genes ADPRTand XRCC1 and risk of lung cancer. CancerRes, 2005, 65(3): 722―726
Liang G, Xing D, Miao X, Tan W, Yu C, Lu W, Lin D. Sequence variationsin the DNA repair gene XPD and risk of lung cancer in a Chinese population. Int J Cancer, 2003, 105(5): 669―673

doi: 10.1002/ijc.11136
International HapMapConsortium. The International HapMap Project. Nature, 2003, 426(6968): 789―796

doi: 10.1038/nature02168
Barrett J C, Fry B, Maller J, Daly M J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005, 21(2): 263―265

doi: 10.1093/bioinformatics/bth457
Lehmann U, Kreipe H. Real-timePCR analysis of DNA and RNA extracted from formalin-fixed and paraffin-embeddedbiopsies. Methods, 2001, 25(4): 409―418

doi: 10.1006/meth.2001.1263
Drablos F, Feyzi E, Aas P A, Vaagbo C B, Kavli B, Bratlie M S, Pena-Diaz J, Otterlei M, Slupphaug G, Krokan H E. Alkylationdamage in DNA and RNA―repair mechanisms and medical significance. DNA Repair, 2004, 3(11): 1389―1407

doi: 10.1016/j.dnarep.2004.05.004
Yu D, Zhang X, Liu J, Yuan P, Tan W, Guo Y, Sun T, Zhao D, Yang M, Liu J, Xu B, Lin D. Characterizationof functional excision repair cross-complementation group 1 variantsand their association with lung cancer risk and prognosis. Clin Cancer Res, 2008, 14(9): 2878–2886

doi: 10.1158/1078-0432.CCR-07-1612
Zhou W, Liu G, Miller D P, Thurston S W, Xu L L, Wain, J C, Lynch T J, Su L, Christiani D C. Polymorphisms in the DNA repair genes XRCC1 and ERCC2, smoking, andlung cancer risk. Cancer Epidemiol BiomarkersPrev, 2003, 12(4): 359―365
Sun T, Miao X, Zhang X, Tan W, Xiong P, Lin D. Polymorphisms of death pathway genes FAS and FASL inesophageal squamous-cell carcinoma. J NatlCancer Inst, 2004, 96(13): 1030―1036
Hao B, Miao X, Li Y, Zhang X, Sun T, Liang G, Zhao Y, Zhou Y, Wang H, Chen X, Zhang L, Tan W, Wei Q, Lin D, He F. A novel T-77C polymorphismin DNA repair gene XRCC1 contributes to diminished promoter activityand increased risk of non-small cell lung cancer. Oncogene, 2006, 25(25): 3613―3620

doi: 10.1038/sj.onc.1209355
[1] Jiahui Xu, Qianqian Wang, Elaine Lai Han Leung, Ying Li, Xingxing Fan, Qibiao Wu, Xiaojun Yao, Liang Liu. Compound C620-0696, a new potent inhibitor targeting BPTF, the chromatin-remodeling factor in non-small-cell lung cancer[J]. Front. Med., 2020, 14(1): 60-67.
[2] Zhao Zhang, Jun Jiang, Xiaodong Wu, Mengyao Zhang, Dan Luo, Renyu Zhang, Shiyou Li, Youwen He, Huijie Bian, Zhinan Chen. Chimeric antigen receptor T cell targeting EGFRvIII for metastatic lung cancer therapy[J]. Front. Med., 2019, 13(1): 57-68.
[3] Kohei Miyazono, Yoko Katsuno, Daizo Koinuma, Shogo Ehata, Masato Morikawa. Intracellular and extracellular TGF-β signaling in cancer: some recent topics[J]. Front. Med., 2018, 12(4): 387-411.
[4] Dalin Zhang, Liwei Qu, Bo Zhou, Guizhen Wang, Guangbiao Zhou. Genomic variations in the counterpart normal controls of lung squamous cell carcinomas[J]. Front. Med., 2018, 12(3): 280-288.
[5] Hongbing Shen. Low-dose CT for lung cancer screening: opportunities and challenges[J]. Front. Med., 2018, 12(1): 116-121.
[6] Alexandra Urman,H. Dean Hosgood. Curbing the burden of lung cancer[J]. Front. Med., 2016, 10(2): 228-232.
[7] Li Bian,Yonghua Ruan,Liju Ma,Hairong Hua,Li Zhou,Xiaoyu Tuo,Zheyan Zhou,Ting Li,Shiyue Liu,Kewei Jin. Pathogenesis sequences in Gejiu miners with lung cancer: an introduction[J]. Front. Med., 2015, 9(3): 344-349.
[8] Lunxiu Qin. Osteopontin is a promoter for hepatocellular carcinoma metastasis: a summary of 10 years of studies[J]. Front Med, 2014, 8(1): 24-32.
[9] Douglas D. Fang, Joan Cao, Jitesh P. Jani, Konstantinos Tsaparikos, Alessandra Blasina, Jill Kornmann, Maruja E. Lira, Jianying Wang, Zuzana Jirout, Justin Bingham, Zhou Zhu, Yin Gu, Gerrit Los, Zdenek Hostomsky, Todd VanArsdale. Combined gemcitabine and CHK1 inhibitor treatment induces apoptosis resistance in cancer stem cell-like cells enriched with tumor spheroids from a non-small cell lung cancer cell line[J]. Front Med, 2013, 7(4): 462-476.
[10] Yue Yu, Jie He. Molecular classification of non-small-cell lung cancer: diagnosis, individualized treatment, and prognosis[J]. Front Med, 2013, 7(2): 157-171.
[11] Renling Pei, Ye Xu, Yan Wei, Tao Ouyang, Jinfeng Li, Tianfeng Wang, Zhaoqing Fan, Tie Fan, Benyao Lin, Yuntao Xie. Association of SIPA1 545 C>T polymorphism with survival in Chinese women with metastatic breast cancer[J]. Front Med, 2013, 7(1): 138-142.
[12] Yize Xiao, Ying Shao, Xianjun Yu, Guangbiao Zhou. The epidemic status and risk factors of lung cancer in Xuanwei City, Yunnan Province, China[J]. Front Med, 2012, 6(4): 388-394.
[13] Ji Qi, David Mu. MicroRNAs and lung cancers: from pathogenesis to clinical implications[J]. Front Med, 2012, 6(2): 134-155.
[14] Min ZHU, Xiang-Ning FU, Xiao-Ping CHEN. Lobectomy by video-assisted thoracoscopic surgery (VATS) for early stage of non-small cell lung cancer[J]. Front Med, 2011, 5(1): 53-60.
[15] Xiu-Liang TAO MM, Sheng-Hao TU MD, Ri-Bo XIONG MM, Yong-Hong HU BM, . Inhibition of TNF-alpha secretion from peripheral blood monocular cells by triptolid is associated with TNF-alpha-308 gene polymorphisms in rheumatoid arthritis patients[J]. Front. Med., 2010, 4(2): 220-224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed