Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2010, Vol. 4 Issue (2) : 229-234    https://doi.org/10.1007/s11684-010-0028-3
Research articles
Ablation of steroid receptor coactivator-3 in mice impairs adipogenesis and enhances energy expenditure
Ling-Yan XU PhD1,Xin-Ran MA PhD1,Xiao-Ying LI PhD, MD1,Shu WANG PhD1,Guang NING PhD, MD1,Jie-Li LI PhD2,Jian-Ming XU PhD3,
1.Laboratory of Endocrinology and Metabolism, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; 2.Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; 3.Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA;
 Download: PDF(333 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Obesity is a medical condition in which excess body fat has accumulated to an extent and may have an adverse effect on health, leading to reduced life expectancy, impaired energy homeostasis and increased health problems. The p160 steroid receptor coactivator (SRC) gene family members have been suggested to be involved in energy homeostasis, but the impact of SRC-3 ablation on white and brown adipose tissue needs to be elucidated. In the current study, we collected in vivo data and carried out morphological studies on the effect of SRC-3 deficiency on white adipose tissue (WAT) and brown adipose tissue (BAT). Primary cells were cultured to investigate the differentiation ability of both adipocytes. Western blot was applied to detect the expression of master genes governing adipogenesis and thermogenesis. We observed that SRC-3−/− mice were lean, with reduced WAT and decreased serum leptin levels, mainly due to the smaller white adipocyte size caused by impaired adipogenesis, presented by decreased peroxisome proliferator activated receptor g (PPARg) expression. In the BAT, the lipid droplets decreased significantly in SRC-3−/− mice as demonstrated by histological analysis and electron microscopic observation, which could be explained by enhanced thermogenesis. The expression of thermogenic marker gene PPARg coactivator 1α and uncoupling protein-1 increased in BAT of SRC-3−/− mice, which proved our observations. Collectively, these results demonstrate that SRC-3 plays a key role in adipogenesis and energy expenditure.
Keywords steroid receptor coactivator-3      white adipose tissue      brown adipose tissue      obesity      adipocytes      energy expenditure      
Issue Date: 05 June 2010
 Cite this article:   
Xiao-Ying LI PhD,Shu WANG PhD,Ling-Yan XU PhD, et al. Ablation of steroid receptor coactivator-3 in mice impairs adipogenesis and enhances energy expenditure[J]. Front. Med., 2010, 4(2): 229-234.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-010-0028-3
https://academic.hep.com.cn/fmd/EN/Y2010/V4/I2/229
Xu J, Li Q. Review of thein vivo functions of the p160 steroid receptor coactivator family. Mol Endocrinol, 2003, 17(9): 1681―1692

doi: 10.1210/me.2003-0116
Liao L, Kuang S Q, Yuan Y, Gonzalez S M, O'Malley B W, Xu J. Molecular structure and biological function of the cancer-amplifiednuclear receptor coactivator SRC-3/AIB1. J Steroid Biochem Mol Biol, 2002, 83(1―5): 3―14
Osborne C K, Bardou V, Hopp T A, Chamness G C, Hilsenbeck S G, Fuqua S A, Wong J, Allred D C, Clark G M, Schiff R. Role of the estrogen receptor coactivator AIB1 (SRC-3)and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst, 2003, 95(5): 353―361
Ying H, Willingham M C, Cheng S Y. The steroid receptor coactivator-3is a tumor promoter in a mouse model of thyroid cancer. Oncogene, 2008, 27(6): 823―830

doi: 10.1038/sj.onc.1210680
Sakaguchi H, Fujimoto J, Sun W S, Tamaya T. Clinical implications of steroid receptor coactivator(SRC)-3 in uterine endometrial cancers. J Steroid Biochem Mol Biol, 2007, 104(3―5): 237―240

doi: 10.1016/j.jsbmb.2007.03.007
Henke R T, Haddad B R, Kim S E, Rone J D, Mani A, Jessup J M, Wellstein A, Maitra A, Riegel A T. Overexpression of the nuclear receptor coactivator AIB1(SRC-3) during progression of pancreatic adenocarcinoma. Clin Cancer Res, 2004, 10(18 Pt 1): 6134―6142

doi: 10.1158/1078-0432.CCR-04-0561
Xu J, Liao L, Ning G, Yoshida-Komiya H, Deng C, O'Malley B W. The steroid receptor coactivator SRC-3 (p/CIP /RAC3 /AIB1/ACTR/ TRAM-1) is required for normal growth, puberty, female reproductivefunction, and mammary gland development. Proc Natl Acad Sci U S A, 2000, 97(12): 6379―6384

doi: 10.1073/pnas.120166297
Louie M C, Zou J X, Rabinovich A, Chen H W. ACTR/AIB1 functions as an E2F1 coactivator to promotebreast cancer cell proliferation and antiestrogen resistance. Mol Cell Biol, 2004, 24(12): 5157―5171

doi: 10.1128/MCB.24.12.5157-5171.2004
Yu C, York B, Wang S, Feng Q, Xu J, O'Malley B W. An essential function of the SRC-3 coactivator in suppressionof cytokine mRNA translation and inflammatory response. Mol Cell, 2007, 25(5): 765―778

doi: 10.1016/j.molcel.2007.01.025
Picard F, Géhin M, Annicotte J, Rocchi S, Champy M F, O'Malley B W, Chambon P, Auwerx J. SRC-1and TIF2 control energy balance between white and brown adipose tissues. Cell, 2002, 111(7): 931―941

doi: 10.1016/S0092-8674(02)01169-8
Coste A, Louet J F, Lagouge M, Lerin C, Antal M C, Meziane H, Schoonjans K, Puigserver P, O'Malley B W, Auwerx J. Thegenetic ablation of SRC-3 protects against obesity and improves insulinsensitivity by reducing the acetylation of PGC-1α. Proc Natl Acad Sci U S A, 2008, 105(44): 17187―17192

doi: 10.1073/pnas.0808207105
Wang Z, Qi C, Krones A, Woodring P, Zhu X, Reddy J K, Evans R M, Rosenfeld M G, Hunter T. Critical roles of the p160 transcriptional coactivatorsp/CIP and SRC-1 in energy balance. CellMetab, 2006, 3(2): 111―122

doi: 10.1016/j.cmet.2006.01.002
Cohen A W, Razani B, Schubert W, Williams T M, Wang X B, Iyengar P, Brasaemle D L, Scherer P E, Lisanti M P. Role of caveolin-1 in the modulation of lipolysis andlipid droplet formation. Diabetes, 2004, 53(5): 1261―1270

doi: 10.2337/diabetes.53.5.1261
Danno H, Jincho Y, Budiyanto S, Furukawa Y, Kimura S. Asimple enzymatic quantitative analysis of triglycerides in tissues. J Nutr Sci Vitaminol, 1992, 38(5): 517―521
Lowell B B. PPARgamma: an essential regulator of adipogenesis andmodulator of fat cell function. Cell, 1999, 99(3): 239―242

doi: 10.1016/S0092-8674(00)81654-2
Louet J F, Coste A, Amazit L, Tannour-Louet M, Wu R C, Tsai S Y, Tsai M J, Auwerx J, O'Malley B W. Oncogenic steroid receptor coactivator-3 is a key regulator of thewhite adipogenic program. Proc Natl AcadSci U S A, 2006, 103(47): 17868―17873

doi: 10.1073/pnas.0608711103
Kopecký J, Flachs P, Bardová K, Brauner P, Prazák T, Sponarová J. Modulationof lipid metabolism by energy status of adipocytes: implications forinsulin sensitivity. Ann N Y Acad Sci, 2002, 967: 88―101
Auwerx J, Staels B. Leptin Lancet, 1998, 351(9104): 737―742

doi: 10.1016/S0140-6736(97)06348-4
Pelleymounter M A, Cullen M J, Baker M B, Hecht R, Winters D, Boone T, Collins F. Effects of the obese gene product on body weight regulationin ob/ob mice. Science, 1995, 269(5223): 540―542

doi: 10.1126/science.7624776
Campfield L A, Smith F J, Guisez Y, Devos R, Burn P. Recombinant mouse OB protein:evidence for a peripheral signal linking adiposity and central neuralnetworks. Science, 1995, 269(5223): 546―549

doi: 10.1126/science.7624778
Cohen A W, Schubert W, Brasaemle D L, Scherer P E, Lisanti M P. Caveolin-1 expression is essential for proper nonshivering thermogenesisin brown adipose tissue. Diabetes, 2005, 54(3): 679―686

doi: 10.2337/diabetes.54.3.679
Hadi M, Chen C C, Whatley M, Pacak K, Carrasquillo J A. Brown fat imaging with (18)F-6-fluorodopaminePET/CT, (18)F-FDG PET/CT, and (123)I-MIBG SPECT: a study of patientsbeing evaluated for pheochromocytoma. JNucl Med, 2007, 48(7): 1077―1083

doi: 10.2967/jnumed.106.035915
Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for activebrown adipose tissue in adult humans. AmJ Physiol Endocrinol Metab, 2007, 293(2): 444―452

doi: 10.1152/ajpendo.00691.2006
Garruti G, Ricquier D. Analysisof uncoupling protein and its mRNA in adipose tissue deposits of adulthumans. Int J Obes, 1992, 16(5): 383―390
Oberkofler H, Dallinger G, Liu Y M, Hell E, Krempler F, Patsch W. Uncoupling protein gene:quantification of expression levels in adipose tissues of obese andnon-obese humans. J Lipid Res, 1997, 38(10): 2125―2133
[1] So Jung Yang, Hun-Sung Kim, Kun-Ho Yoon. Analyzing the distinguishing factors that affect childhood obesity in South Korea[J]. Front. Med., 2018, 12(6): 707-716.
[2] Eun Young Lee, Kun-Ho Yoon. Epidemic obesity in children and adolescents: risk factors and prevention[J]. Front. Med., 2018, 12(6): 658-666.
[3] Ruiting Han, Junli Ma, Houkai Li. Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota[J]. Front. Med., 2018, 12(6): 645-657.
[4] Tiange Wang, Min Xu, Yufang Bi, Guang Ning. Interplay between diet and genetic susceptibility in obesity and related traits[J]. Front. Med., 2018, 12(6): 601-607.
[5] Meng Dong, Jun Lin, Wonchung Lim, Wanzhu Jin, Hyuek Jong Lee. Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia[J]. Front. Med., 2018, 12(2): 130-138.
[6] Tianhua Xu, Zitong Sheng, Li Yao. Obesity-related glomerulopathy: pathogenesis, pathologic, clinical characteristics and treatment[J]. Front. Med., 2017, 11(3): 340-348.
[7] Rahim Ullah, Yan Su, Yi Shen, Chunlu Li, Xiaoqin Xu, Jianwei Zhang, Ke Huang, Naveed Rauf, Yang He, Jingjing Cheng, Huaping Qin, Yu-Dong Zhou, Junfen Fu. Postnatal feeding with high-fat diet induces obesity and precocious puberty in C57BL/6J mouse pups: a novel model of obesity and puberty[J]. Front. Med., 2017, 11(2): 266-276.
[8] Lixia Gan,Wei Xiang,Bin Xie,Liqing Yu. Molecular mechanisms of fatty liver in obesity[J]. Front. Med., 2015, 9(3): 275-287.
[9] Shuwen Qian,Haiyan Huang,Qiqun Tang. Brown and beige fat: the metabolic function, induction, and therapeutic potential[J]. Front. Med., 2015, 9(2): 162-172.
[10] Jianping Ye. Beneficial metabolic activities of inflammatory cytokine interleukin 15 in obesity and type 2 diabetes[J]. Front. Med., 2015, 9(2): 139-145.
[11] Tao Wang,Weiping Jia,Cheng Hu. Advancement in genetic variants conferring obesity susceptibility from genome-wide association studies[J]. Front. Med., 2015, 9(2): 146-161.
[12] Jichun Yang, Jihong Kang, Youfei Guan. The mechanisms linking adiposopathy to type 2 diabetes[J]. Front Med, 2013, 7(4): 433-444.
[13] Yingjiang Zhou, Liangyou Rui. Leptin signaling and leptin resistance[J]. Front Med, 2013, 7(2): 207-222.
[14] Jianping Ye. Mechanisms of insulin resistance in obesity[J]. Front Med, 2013, 7(1): 14-24.
[15] Xinjian Li, Jiying Xu, Haihong Yao, Yanfei Guo, Minna Chen, Wei Lu. Obesity and overweight prevalence and its association with undiagnosed hypertension in Shanghai population, China: a cross-sectional population-based survey[J]. Front Med, 2012, 6(3): 322-328.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed