Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2013, Vol. 7 Issue (1) : 14-24    https://doi.org/10.1007/s11684-013-0262-6
REVIEW
Mechanisms of insulin resistance in obesity
Jianping Ye()
Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA70808, USA
 Download: PDF(195 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Obesity increases the risk for type 2 diabetes through induction of insulin resistance. Treatment of type 2 diabetes has been limited by little translational knowledge of insulin resistance although there have been several well-documented hypotheses for insulin resistance. In those hypotheses, inflammation, mitochondrial dysfunction, hyperinsulinemia and lipotoxicity have been the major concepts and have received a lot of attention. Oxidative stress, endoplasmic reticulum (ER) stress, genetic background, aging, fatty liver, hypoxia and lipodystrophy are active subjects in the study of these concepts. However, none of those concepts or views has led to an effective therapy for type 2 diabetes. The reason is that, there has been no consensus for a unifying mechanism of insulin resistance. In this review article, literature is critically analyzed and reinterpreted for a new energy-based concept of insulin resistance, in which insulin resistance is a result of energy surplus in cells. The energy surplus signal is mediated by ATP and sensed by adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Decreasing ATP level by suppression of production or stimulation of utilization is a promising approach in the treatment of insulin resistance. In support, many of existing insulin sensitizing medicines inhibit ATP production in mitochondria. The effective therapies such as weight loss, exercise, and caloric restriction all reduce ATP in insulin sensitive cells. This new concept provides a unifying cellular and molecular mechanism of insulin resistance in obesity, which may apply to insulin resistance in aging and lipodystrophy.

Keywords type 2 diabetes      energy expenditure      inflammation      lipotoxicity      mitochondria      hyperinsulinemia      adenosine monophosphate-activated protein kinase (AMPK)     
Corresponding Author(s): Ye Jianping,Email:yej@pbrc.edu   
Issue Date: 05 March 2013
 Cite this article:   
Jianping Ye. Mechanisms of insulin resistance in obesity[J]. Front Med, 2013, 7(1): 14-24.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-013-0262-6
https://academic.hep.com.cn/fmd/EN/Y2013/V7/I1/14
Fig.1  Mitochondria over activation in the pathogenesis of insulin resistance. In obesity, lipids induce mitochondrial over activation by boosting fatty acid β-oxidation to enhance energy disposal especially in muscle, liver and brown fat. As a result, a large amount of ATP is generated from the fatty acid catabolism if the extra energy cannot be released in heat. When ATP level exceeds the threshold, the energy surplus will trigger a negative feedback reaction to attenuate the substrate-induced mitochondrial function. In the mechanism, ATP inactivates AMPK to reduce insulin-induced glucose uptake in order to decrease ATP production. In this model, insulin resistance represents a cellular protective mechanism that is aimed to control the ATP stress response in the muscle and liver. Insulin-sensitizing agents rescue the tissue from insulin resistance by inhibiting mitochondrial β-oxidation.
Fig.1  Mitochondria over activation in the pathogenesis of insulin resistance. In obesity, lipids induce mitochondrial over activation by boosting fatty acid β-oxidation to enhance energy disposal especially in muscle, liver and brown fat. As a result, a large amount of ATP is generated from the fatty acid catabolism if the extra energy cannot be released in heat. When ATP level exceeds the threshold, the energy surplus will trigger a negative feedback reaction to attenuate the substrate-induced mitochondrial function. In the mechanism, ATP inactivates AMPK to reduce insulin-induced glucose uptake in order to decrease ATP production. In this model, insulin resistance represents a cellular protective mechanism that is aimed to control the ATP stress response in the muscle and liver. Insulin-sensitizing agents rescue the tissue from insulin resistance by inhibiting mitochondrial β-oxidation.
Fig.2  Hyperinsulinemia in obesity.
Fig.2  Hyperinsulinemia in obesity.
1 Ye J. Role of insulin in the pathogenesis of free fatty acid-induced insulin resistance in skeletal muscle. Endocr Metab Immune Disord Drug Targets 2007; 7(1): 65-74
doi: 10.2174/187153007780059423 pmid:17346204
2 He Q, Gao Z, Yin J, Zhang J, Yun Z, Ye J. Regulation of HIF-1α activity in adipose tissue by obesity-associated factors: adipogenesis, insulin, and hypoxia. Am J Physiol Endocrinol Metab 2011; 300(5): E877-E885
doi: 10.1152/ajpendo.00626.2010 pmid:21343542
3 Ye J, McGuinness OP. Inflammation during obesity is not all bad: Evidence from animal and human studies. Am J Physiol Endocrinol Metab 2012 Dec 26. [Epub ahead of print]
doi: 10.1152/ajpendo.00266.2012 pmid:10.1152/ajpendo.00266.201223269411" target="blank">
doi: 10.1152/ajpendo.00266.201223269411
4 Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest 2006; 116(7): 1793-1801
doi: 10.1172/JCI29069 pmid:16823477
5 Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993; 259(5091): 87-91
doi: 7678183" target="_blank">10.1126/science. pmid:7678183 pmid:7678183
6 Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004; 89(6): 2548-2556
doi: 10.1210/jc.2004-0395 pmid:15181022
7 Halberg N, Wernstedt-Asterholm I, Scherer PE. The adipocyte as an endocrine cell. Endocrinol Metab Clin North Am 2008; 37(3): 753-768, x-xi (x-xi)
doi: 10.1016/j.ecl.2008.07.002 pmid:18775362
8 Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M, Shoelson SE. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 2001; 293(5535): 1673-1677
doi: 10.1126/science.1061620 pmid:11533494
9 Hirosumi J, Tuncman G, Chang L, G?rgün CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS. A central role for JNK in obesity and insulin resistance. Nature 2002; 420(6913): 333-336
doi: 10.1038/nature01137 pmid:12447443
10 Ye J. Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int J Obes (Lond) 2009; 33(1): 54-66
doi: 10.1038/ijo.2008.229 pmid:19050672
11 Peraldi P, Hotamisligil GS, Buurman WA, White MF, Spiegelman BM. Tumor necrosis factor (TNF)-alpha inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase. J Biol Chem 1996; 271(22): 13018-13022
doi: 10.1074/jbc.271.22.13018 pmid:8662983
12 Gao Z, Hwang D, Bataille F, Lefevre M, York D, Quon MJ, Ye J. Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J Biol Chem 2002; 277(50): 48115-48121
doi: 10.1074/jbc.M209459200 pmid:12351658
13 Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 2000; 275(12): 9047-9054
doi: 10.1074/jbc.275.12.9047 pmid:10722755
14 Gao Z, He Q, Peng B, Chiao PJ, Ye J. Regulation of nuclear translocation of HDAC3 by IκBα is required for tumor necrosis factor inhibition of peroxisome proliferator-activated receptor gamma function. J Biol Chem 2006; 281(7): 4540-4547
doi: 10.1074/jbc.M507784200 pmid:16371367
15 Ye J. Regulation of PPARγ function by TNF-α. Biochem Biophys Res Commun 2008; 374(3): 405-408
doi: 10.1016/j.bbrc.2008.07.068 pmid:18655773
16 Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 2000; 18(1): 621-663
doi: 10.1146/annurev.immunol.18.1.621 pmid:10837071
17 Zhang J, Gao Z, Yin J, Quon MJ, Ye J. S6K directly phosphorylates IRS-1 on Ser-270 to promote insulin resistance in response to TNF-(α) signaling through IKK2. J Biol Chem 2008; 283(51): 35375-35382
doi: 10.1074/jbc.M806480200 pmid:18952604
18 Rui L, Aguirre V, Kim JK, Shulman GI, Lee A, Corbould A, Dunaif A, White MF. Insulin/IGF-1 and TNF-α stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest 2001; 107(2): 181-189
doi: 10.1172/JCI10934 pmid:11160134
19 White MF. IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 2002; 283(3): E413-E422
pmid:12169433
20 Ye J, Gimble JM. Regulation of stem cell differentiation in adipose tissue by chronic inflammation. Clin Exp Pharmacol Physiol 2011; 38(12): 872-878
doi: 10.1111/j.1440-1681.2011.05596.x pmid:21883381
21 Xing H, Northrop JP, Grove JR, Kilpatrick KE, Su JL, Ringold GM. TNF α-mediated inhibition and reversal of adipocyte differentiation is accompanied by suppressed expression of PPARγ without effects on Pref-1 expression. Endocrinology 1997; 138(7): 2776-2783
doi: 10.1210/en.138.7.2776 pmid:9202217
22 Ruan H, Hacohen N, Golub TR, Van Parijs L, Lodish HF. Tumor necrosis factor-α suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes 2002; 51(5): 1319-1336
doi: 10.2337/diabetes.51.5.1319 pmid:11978627
23 Suzawa M, Takada I, Yanagisawa J, Ohtake F, Ogawa S, Yamauchi T, Kadowaki T, Takeuchi Y, Shibuya H, Gotoh Y, Matsumoto K, Kato S. Cytokines suppress adipogenesis and PPAR-γ function through the TAK1/TAB1/NIK cascade. Nat Cell Biol 2003; 5(3): 224-230
doi: 10.1038/ncb942 pmid:12598905
24 Anforth HR, Bluthe RM, Bristow A, Hopkins S, Lenczowski MJ, Luheshi G, Lundkvist J, Michaud B, Mistry Y, Van Dam AM, Zhen C, Dantzer R, Poole S, Rothwell NJ, Tilders FJ, Wollman EE. Biological activity and brain actions of recombinant rat interleukin-1α and interleukin-1β. Eur Cytokine Netw 1998; 9(3): 279-288
pmid:9831177
25 García MC, Wernstedt I, Berndtsson A, Enge M, Bell M, Hultgren O, Horn M, Ahrén B, Enerback S, Ohlsson C, Wallenius V, Jansson JO. Mature-onset obesity in interleukin-1 receptor I knockout mice. Diabetes 2006; 55(5): 1205-1213
doi: 10.2337/db05-1304 pmid:16644674
26 Wallenius V, Wallenius K, Ahrén B, Rudling M, Carlsten H, Dickson SL, Ohlsson C, Jansson JO. Interleukin-6-deficient mice develop mature-onset obesity. Nat Med 2002; 8(1): 75-79
doi: 10.1038/nm0102-75 pmid:11786910
27 Xu H, Hirosumi J, Uysal KT, Guler AD, Hotamisligil GS. Exclusive action of transmembrane TNFα in adipose tissue leads to reduced adipose mass and local but not systemic insulin resistance. Endocrinology 2002; 143(4): 1502-1511
doi: 10.1210/en.143.4.1502 pmid:11897709
28 Pamir N, McMillen TS, Kaiyala KJ, Schwartz MW, LeBoeuf RC. Receptors for tumor necrosis factor-α play a protective role against obesity and alter adipose tissue macrophage status. Endocrinology 2009; 150(9): 4124-4134
doi: 10.1210/en.2009-0137 pmid:19477937
29 Chida D, Osaka T, Hashimoto O, Iwakura Y. Combined interleukin-6 and interleukin-1 deficiency causes obesity in young mice. Diabetes 2006; 55(4): 971-977
doi: 10.2337/diabetes.55.04.06.db05-1250 pmid:16567518
30 Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112(12): 1821-1830
pmid:14679177
31 Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112(12): 1796-1808
pmid:14679176
32 Di Gregorio GB, Yao-Borengasser A, Rasouli N, Varma V, Lu T, Miles LM, Ranganathan G, Peterson CA, McGehee RE, Kern PA. Expression of CD68 and macrophage chemoattractant protein-1 genes in human adipose and muscle tissues: association with cytokine expression, insulin resistance, and reduction by pioglitazone. Diabetes 2005; 54(8): 2305-2313
doi: 10.2337/diabetes.54.8.2305 pmid:16046295
33 Fain JN. Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam Horm 2006; 74: 443-477
doi: 10.1016/S0083-6729(06)74018-3 pmid:17027526
34 Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Red Eagle A, Vats D, Brombacher F, Ferrante AW, Chawla A. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 2007; 447(7148): 1116-1120
doi: 10.1038/nature05894 pmid:17515919
35 Hevener AL, Olefsky JM, Reichart D, Nguyen MTA, Bandyopadyhay G, Leung HY, Watt MJ, Benner C, Febbraio MA, Nguyen AK, Folian B, Subramaniam S, Gonzalez FJ, Glass CK, Ricote M. Macrophage PPARγ is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J Clin Invest 2007; 117(6): 1658-1669
doi: 10.1172/JCI31561 pmid:17525798
36 Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007; 117(1): 175-184
doi: 10.1172/JCI29881 pmid:17200717
37 Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003; 3(1): 23-35
doi: 10.1038/nri978 pmid:12511873
38 Mosser DM. The many faces of macrophage activation. J Leukoc Biol 2003; 73(2): 209-212
doi: 10.1189/jlb.0602325 pmid:12554797
39 Nishimura S, Manabe I, Nagasaki M, Hosoya Y, Yamashita H, Fujita H, Ohsugi M, Tobe K, Kadowaki T, Nagai R, Sugiura S. Adipogenesis in obesity requires close interplay between differentiating adipocytes, stromal cells, and blood vessels. Diabetes 2007; 56(6): 1517-1526
doi: 10.2337/db06-1749 pmid:17389330
40 Cho CH, Koh YJ, Han J, Sung HK, Jong Lee H, Morisada T, Schwendener RA, Brekken RA, Kang G, Oike Y, Choi TS, Suda T, Yoo OJ, Koh GY. Angiogenic role of LYVE-1-positive macrophages in adipose tissue. Circ Res 2007; 100(4): e47-e57
doi: 10.1161/01.RES.0000259564.92792.93 pmid:17272806
41 Lijnen HR. Angiogenesis and obesity. Cardiovasc Res 2008; 78(2): 286-293
pmid:18006485
42 Pang C, Gao Z, Yin J, Zhang J, Jia W, Ye J. Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity. Am J Physiol Endocrinol Metab 2008; 295(2): E313-E322
doi: 10.1152/ajpendo.90296.2008 pmid:18492768
43 Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, Wang S, Fortier M, Greenberg AS, Obin MS. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005; 46(11): 2347-2355
doi: 10.1194/jlr.M500294-JLR200 pmid:16150820
44 Clavien PA. IL-6, a key cytokine in liver regeneration. Hepatology 1997; 25(5): 1294-1296
doi: 10.1002/hep.510250544 pmid:9141458
45 Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-κB. Nat Med 2005; 11(2): 183-190
doi: 10.1038/nm1166 pmid:15685173
46 Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, Wynshaw-Boris A, Poli G, Olefsky J, Karin M. IKK-β links inflammation to obesity-induced insulin resistance. Nat Med 2005; 11(2): 191-198
doi: 10.1038/nm1185 pmid:15685170
47 Tang T, Zhang J, Yin J, Staszkiewicz J, Gawronska-Kozak B, Jung DY, Ko HJ, Ong H, Kim JK, Mynatt R, Martin RJ, Keenan M, Gao Z, Ye J. Uncoupling of inflammation and insulin resistance by NF-κB in transgenic mice through elevated energy expenditure. J Biol Chem 2010; 285(7): 4637-4644
doi: 10.1074/jbc.M109.068007 pmid:20018865
48 Jiao P, Feng B, Ma J, Nie Y, Paul E, Li Y, Xu H. Constitutive activation of IKKβ in adipose tissue prevents diet-induced obesity in mice. Endocrinology 2012; 153(1): 154-165
doi: 10.1210/en.2011-1346 pmid:22067324
49 Pedersen BK. IL-6 signalling in exercise and disease. Biochem Soc Trans 2007; 35(5): 1295-1297
doi: 10.1042/BST0351295 pmid:17956334
50 Fearon KC, Glass DJ, Guttridge DC. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab 2012; 16(2): 153-166
doi: 10.1016/j.cmet.2012.06.011 pmid:22795476
51 Straub RH, Cutolo M, Buttgereit F, Pongratz G. Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases. J Intern Med 2010; 267(6): 543-560
doi: 10.1111/j.1365-2796.2010.02218.x pmid:20210843
52 Ye J, Keller JN. Regulation of energy metabolism by inflammation: a feedback response in obesity and calorie restriction. Aging (Albany NY) 2010; 2(6): 361-368
pmid:20606248
53 Holloszy JO. Exercise-induced increase in muscle insulin sensitivity. J Appl Physiol 2005; 99(1): 338-343
doi: 10.1152/japplphysiol.00123.2005 pmid:16036907
54 Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science 2005; 307(5708): 384-387
doi: 10.1126/science.1104343 pmid:15662004
55 Szendroedi J, Phielix E, Roden M. The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol 2012; 8(2): 92-103
doi: 10.1038/nrendo.2011.138 pmid:21912398
56 Holloszy JO. Skeletal muscle “mitochondrial deficiency” does not mediate insulin resistance. Am J Clin Nutr 2009; 89(1): 463S-466S
doi: 10.3945/ajcn.2008.26717C pmid:19056574
57 Pagel-Langenickel I, Bao J, Pang L, Sack MN. The role of mitochondria in the pathophysiology of skeletal muscle insulin resistance. Endocr Rev 2010; 31(1): 25-51
doi: 10.1210/er.2009-0003 pmid:19861693
58 Muoio DM. Intramuscular triacylglycerol and insulin resistance: guilty as charged or wrongly accused? Biochim Biophys Acta 2010; 1801(3): 281-288
doi: 10.1016/j.bbalip.2009.11.007 pmid:19958841
59 Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, Neschen S, White MF, Bilz S, Sono S, Pypaert M, Shulman GI. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest 2005; 115(12): 3587-3593
doi: 10.1172/JCI25151 pmid:16284649
60 Stump CS, Short KR, Bigelow ML, Schimke JM, Nair KS. Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts. Proc Natl Acad Sci USA 2003; 100(13): 7996-8001
doi: 10.1073/pnas.1332551100 pmid:12808136
61 Sreekumar R, Halvatsiotis P, Schimke JC, Nair KS. Gene expression profile in skeletal muscle of type 2 diabetes and the effect of insulin treatment. Diabetes 2002; 51(6): 1913-1920
doi: 10.2337/diabetes.51.6.1913 pmid:12031981
62 Boden G, Jadali F, White J, Liang Y, Mozzoli M, Chen X, Coleman E, Smith C. Effects of fat on insulin-stimulated carbohydrate metabolism in normal men. J Clin Invest 1991; 88(3): 960-966
doi: 10.1172/JCI115399 pmid:1885781
63 Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, Shulman GI. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 1996; 97(12): 2859-2865
doi: 10.1172/JCI118742 pmid:8675698
64 Brunmair B, Staniek K, Gras F, Scharf N, Althaym A, Clara R, Roden M, Gnaiger E, Nohl H, Waldh?usl W, Fürnsinn C. Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes 2004; 53(4): 1052-1059
doi: 10.2337/diabetes.53.4.1052 pmid:15047621
65 Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 2000; 348(3): 607-614
doi: 10.1042/0264-6021:3480607 pmid:10839993
66 Yin J, Gao Z, Liu D, Liu Z, Ye J. Berberine improves glucose metabolism through induction of glycolysis. Am J Physiol Endocrinol Metab 2008; 294(1): E148-E156
doi: 10.1152/ajpendo.00211.2007 pmid:17971514
67 Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S, Towler MC, Brown LJ, Ogunbayo OA, Evans AM, Hardie DG. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab 2010; 11(6): 554-565
doi: 10.1016/j.cmet.2010.04.001 pmid:20519126
68 Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y, Roth J. Insulin resistance and hyperinsulinemia: is hyperinsulinemia the cart or the horse? Diabetes Care 2008; 31(Suppl 2): S262-S268
doi: 10.2337/dc08-s264 pmid:18227495
69 Corkey BE. Banting lecture 2011: hyperinsulinemia: cause or consequence? Diabetes 2012; 61(1): 4-13
doi: 10.2337/db11-1483 pmid:22187369
70 Gray SL, Donald C, Jetha A, Covey SD, Kieffer TJ. Hyperinsulinemia precedes insulin resistance in mice lacking pancreatic β-cell leptin signaling. Endocrinology 2010; 151(9): 4178-4186
doi: 10.1210/en.2010-0102 pmid:20631001
71 Zhao AZ, Bornfeldt KE, Beavo JA. Leptin inhibits insulin secretion by activation of phosphodiesterase 3B. J Clin Invest 1998; 102(5): 869-873
doi: 10.1172/JCI3920 pmid:9727054
72 Mehran AE, Templeman NM, Brigidi GS, Lim GE, Chu KY, Hu X, Botezelli JD, Asadi A, Hoffman BG, Kieffer TJ, Bamji SX, Clee SM, Johnson JD. Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. Cell Metab 2012; 16(6): 723-737
doi: 10.1016/j.cmet.2012.10.019 pmid:23217255
73 Valera Mora ME, Scarfone A, Calvani M, Greco AV, Mingrone G. Insulin clearance in obesity. J Am Coll Nutr 2003; 22(6): 487-493
pmid:14684753
74 Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, Kahn CR. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 2000; 6(1): 87-97
pmid:10949030
75 Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, Tanzi RE, Selkoe DJ, Guenette S. Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 2003; 100(7): 4162-4167
doi: 10.1073/pnas.0230450100 pmid:12634421
76 Farris W, Mansourian S, Leissring MA, Eckman EA, Bertram L, Eckman CB, Tanzi RE, Selkoe DJ. Partial loss-of-function mutations in insulin-degrading enzyme that induce diabetes also impair degradation of amyloid β-protein. Am J Pathol 2004; 164(4): 1425-1434
doi: 10.1016/S0002-9440(10)63229-4 pmid:15039230
77 Gabriely I, Ma XH, Yang XM, Atzmon G, Rajala MW, Berg AH, Scherer P, Rossetti L, Barzilai N. Removal of visceral fat prevents insulin resistance and glucose intolerance of aging: an adipokine-mediated process? Diabetes 2002; 51(10): 2951-2958
doi: 10.2337/diabetes.51.10.2951 pmid:12351432
78 Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 2003; 300(5622): 1140-1142
doi: 10.1126/science.1082889 pmid:12750520
79 Reznick RM, Zong H, Li J, Morino K, Moore IK, Yu HJ, Liu ZX, Dong J, Mustard KJ, Hawley SA, Befroy D, Pypaert M, Hardie DG, Young LH, Shulman GI. Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab 2007; 5(2): 151-156
doi: 10.1016/j.cmet.2007.01.008 pmid:17276357
80 Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006; 440(7086): 944-948
doi: 10.1038/nature04634 pmid:16612386
81 Nair KS, Bigelow ML, Asmann YW, Chow LS, Coenen-Schimke JM, Klaus KA, Guo ZK, Sreekumar R, Irving BA. Asian Indians have enhanced skeletal muscle mitochondrial capacity to produce ATP in association with severe insulin resistance. Diabetes 2008; 57(5): 1166-1175
doi: 10.2337/db07-1556 pmid:18285554
82 Bergman RN, Ader M. Free fatty acids and pathogenesis of type 2 diabetes mellitus. Trends Endocrinol Metab 2000; 11(9): 351-356
doi: 10.1016/S1043-2760(00)00323-4 pmid:11042464
83 Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest 2000; 106(2): 171-176
doi: 10.1172/JCI10583 pmid:10903330
84 Boden G. Free fatty acids and insulin secretion in humans. Curr Diab Rep 2005; 5(3): 167-170
doi: 10.1007/s11892-005-0004-5 pmid:15929861
85 Paolisso G, Tataranni PA, Foley JE, Bogardus C, Howard BV, Ravussin E. A high concentration of fasting plasma non-esterified fatty acids is a risk factor for the development of NIDDM. Diabetologia 1995; 38(10): 1213-1217
doi: 10.1007/BF00422371 pmid:8690174
86 Heilbronn L, Smith SR, Ravussin E. Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus. Int J Obes Relat Metab Disord 2004; 28(Suppl 4): S12-S21
doi: 10.1038/sj.ijo.0802853 pmid:15592481
87 Shimomura I, Hammer RE, Richardson JA, Ikemoto S, Bashmakov Y, Goldstein JL, Brown MS. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev 1998; 12(20): 3182-3194
doi: 10.1101/gad.12.20.3182 pmid:9784493
88 Schenk S, Horowitz JF. Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid-induced insulin resistance. J Clin Invest 2007; 117(6): 1690-1698
doi: 10.1172/JCI30566 pmid:17510709
89 Yadav H, Quijano C, Kamaraju AK, Gavrilova O, Malek R, Chen W, Zerfas P, Zhigang D, Wright EC, Stuelten C, Sun P, Lonning S, Skarulis M, Sumner AE, Finkel T, Rane SG. Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metab 2011; 14(1): 67-79
doi: 10.1016/j.cmet.2011.04.013 pmid:21723505
90 Tan CK, Leuenberger N, Tan MJ, Yan YW, Chen Y, Kambadur R, Wahli W, Tan NS. Smad3 deficiency in mice protects against insulin resistance and obesity induced by a high-fat diet. Diabetes 2011; 60(2): 464-476
doi: 10.2337/db10-0801 pmid:21270259
91 Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 2005; 1(1): 15-25
doi: 10.1016/j.cmet.2004.12.003 pmid:16054041
92 Zhang BB, Zhou G, Li C. AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 2009; 9(5): 407-416
doi: 10.1016/j.cmet.2009.03.012 pmid:19416711
93 Lee JY, Ye J, Gao Z, Youn HS, Lee WH, Zhao L, Sizemore N, Hwang DH. Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids. J Biol Chem 2003; 278(39): 37041-37051
doi: 10.1074/jbc.M305213200 pmid:12865424
94 Weigert C, Brodbeck K, Staiger H, Kausch C, Machicao F, H?ring HU, Schleicher ED. Palmitate, but not unsaturated fatty acids, induces the expression of interleukin-6 in human myotubes through proteasome-dependent activation of nuclear factor-κB. J Biol Chem 2004; 279(23): 23942-23952
doi: 10.1074/jbc.M312692200 pmid:15028733
95 Gao Z, Zhang X, Zuberi A, Hwang D, Quon MJ, Lefevre M, Ye J. Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes. Mol Endocrinol 2004; 18(8): 2024-2034
doi: 10.1210/me.2003-0383 pmid:15143153
96 Brose N, Rosenmund C. Move over protein kinase C, you’ve got company: alternative cellular effectors of diacylglycerol and phorbol esters. J Cell Sci 2002; 115(23): 4399-4411
doi: 10.1242/jcs.00122 pmid:12414987
97 Ballou LR, Laulederkind SJ, Rosloniec EF, Raghow R. Ceramide signalling and the immune response. Biochim Biophys Acta 1996; 1301(3): 273-287
doi: 10.1016/0005-2760(96)00004-5 pmid:8664339
98 Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, G?rgün C, Glimcher LH, Hotamisligil GS. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004; 306(5695): 457-461
doi: 10.1126/science.1103160 pmid:15486293
99 de Luca C, Olefsky JM. Stressed out about obesity and insulin resistance. Nat Med 2006; 12(1): 41-42, discussion 42
doi: 10.1038/nm0106-41 pmid:16397561
100 Ozcan L, Ergin AS, Lu A, Chung J, Sarkar S, Nie D, Myers MG Jr, Ozcan U. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab 2009; 9(1): 35-51
doi: 10.1016/j.cmet.2008.12.004 pmid:19117545
101 Schr?der M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res 2005; 569(1-2): 29-63
doi: 10.1016/j.mrfmmm.2004.06.056 pmid:15603751
102 Lee J, Sun C, Zhou Y, Lee J, Gokalp D, Herrema H, Park SW, Davis RJ, Ozcan U. p38 MAPK-mediated regulation of Xbp1s is crucial for glucose homeostasis. Nat Med 2011; 17(10): 1251-1260
doi: 10.1038/nm.2449 pmid:21892182
103 Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, G?rgün CZ, Hotamisligil GS. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 2006; 313(5790): 1137-1140
doi: 10.1126/science.1128294 pmid:16931765
104 Ip MS, Lam B, Ng MM, Lam WK, Tsang KW, Lam KS. Obstructive sleep apnea is independently associated with insulin resistance. Am J Respir Crit Care Med 2002; 165(5): 670-676
pmid:11874812
105 Iiyori N, Alonso LC, Li J, Sanders MH, Garcia-Ocana A, O’Doherty RM, Polotsky VY, O’Donnell CP. Intermittent hypoxia causes insulin resistance in lean mice independent of autonomic activity. Am J Respir Crit Care Med 2007; 175(8): 851-857
doi: 10.1164/rccm.200610-1527OC pmid:17272786
106 Ye J, Gao Z, Yin J, He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab 2007; 293(4): E1118-E1128
doi: 10.1152/ajpendo.00435.2007 pmid:17666485
107 Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev 2009; 89(1): 27-71
doi: 10.1152/physrev.00014.2008 pmid:19126754
108 Greene EL, Lu G, Zhang D, Egan BM. Signaling events mediating the additive effects of oleic acid and angiotensin II on vascular smooth muscle cell migration. Hypertension 2001; 37(2): 308-312
doi: 10.1161/01.HYP.37.2.308 pmid:11230290
109 Lu G, Greene EL, Nagai T, Egan BM. Reactive oxygen species are critical in the oleic acid-mediated mitogenic signaling pathway in vascular smooth muscle cells. Hypertension 1998; 32(6): 1003-1010
doi: 10.1161/01.HYP.32.6.1003 pmid:9856964
110 Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004; 114(12): 1752-1761
pmid:15599400
111 Lin Y, Berg AH, Iyengar P, Lam TKT, Giacca A, Combs TP, Rajala MW, Du X, Rollman B, Li W, Hawkins M, Barzilai N, Rhodes CJ, Fantus IG, Brownlee M, Scherer PE. The hyperglycemia-induced inflammatory response in adipocytes: the role of reactive oxygen species. J Biol Chem 2005; 280(6): 4617-4626
pmid:15536073
112 Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 2003; 52(1): 1-8
doi: 10.2337/diabetes.52.1.1 pmid:12502486
113 Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet β cells in diabetes. J Biol Chem 2004; 279(41): 42351-42354
doi: 10.1074/jbc.R400019200 pmid:15258147
114 Aragonés J, Fraisl P, Baes M, Carmeliet P. Oxygen sensors at the crossroad of metabolism. Cell Metab 2009; 9(1): 11-22
doi: 10.1016/j.cmet.2008.10.001 pmid:19117543
115 Prabhakar NR, Kumar GK, Nanduri J, Semenza GL. ROS signaling in systemic and cellular responses to chronic intermittent hypoxia. Antioxid Redox Signal 2007; 9(9): 1397-1403
doi: 10.1089/ars.2007.1732 pmid:17627465
116 Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 1999; 48(1): 1-9
doi: 10.2337/diabetes.48.1.1 pmid:9892215
117 Ceriello A. Oxidative stress and glycemic regulation. Metabolism 2000; 49(2 Suppl 1): 27-29
doi: 10.1016/S0026-0495(00)80082-7 pmid:10693917
118 Ogihara T, Asano T, Katagiri H, Sakoda H, Anai M, Shojima N, Ono H, Fujishiro M, Kushiyama A, Fukushima Y, Kikuchi M, Noguchi N, Aburatani H, Gotoh Y, Komuro I, Fujita T. Oxidative stress induces insulin resistance by activating the nuclear factor-κB pathway and disrupting normal subcellular distribution of phosphatidylinositol 3-kinase. Diabetologia 2004; 47(5): 794-805
doi: 10.1007/s00125-004-1391-x pmid:15127200
119 Hu FB, Manson JE, Stampfer MJ, Colditz G, Liu S, Solomon CG, Willett WC. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med 2001; 345(11): 790-797
doi: 10.1056/NEJMoa010492 pmid:11556298
120 He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, An Z, Loh J, Fisher J, Sun Q, Korsmeyer S, Packer M, May HI, Hill JA, Virgin HW, Gilpin C, Xiao G, Bassel-Duby R, Scherer PE, Levine B. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 2012; 481(7382): 511-515
doi: 10.1038/nature10758 pmid:22258505
121 Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 1999; 401(6748): 73-76
doi: 10.1038/43448 pmid:10485707
122 Zhang Y, Ye J. Mitochondrial inhibitor as a new class of insulin sensitizer. Acta Pharmaceutica Sinica B 2012; 2(4): 341– 349
[1] Huiwen Ren, Can Wu, Ying Shao, Shuang Liu, Yang Zhou, Qiuyue Wang. Correlation between serum miR-154-5p and urinary albumin excretion rates in patients with type 2 diabetes mellitus: a cross-sectional cohort study[J]. Front. Med., 2020, 14(5): 642-650.
[2] Jian Liu, Pingyan Shen, Xiaobo Ma, Xialian Yu, Liyan Ni, Xu Hao, Weiming Wang, Nan Chen. White blood cell count and the incidence of hyperuricemia: insights from a community-based study[J]. Front. Med., 2019, 13(6): 741-746.
[3] Nikolay V. Tsygan, Alexandr P. Trashkov, Igor V. Litvinenko, Viktoriya A. Yakovleva, Alexandr V. Ryabtsev, Andrey G. Vasiliev, Leonid P. Churilov. Autoimmunity in acute ischemic stroke and the role of blood--brain barrier: the dark side or the light one?[J]. Front. Med., 2019, 13(4): 420-426.
[4] Ning Jiang, Yao Li, Ting Shu, Jing Wang. Cytokines and inflammation in adipogenesis: an updated review[J]. Front. Med., 2019, 13(3): 314-329.
[5] Xiaoqing Li, Xinxin Li, Genbei Wang, Yan Xu, Yuanyuan Wang, Ruijia Hao, Xiaohui Ma. Xiao Ke Qing improves glycometabolism and ameliorates insulin resistance by regulating the PI3K/Akt pathway in KKAy mice[J]. Front. Med., 2018, 12(6): 688-696.
[6] Liping Xuan, Zhiyun Zhao, Xu Jia, Yanan Hou, Tiange Wang, Mian Li, Jieli Lu, Yu Xu, Yuhong Chen, Lu Qi, Weiqing Wang, Yufang Bi, Min Xu. Type 2 diabetes is causally associated with depression: a Mendelian randomization analysis[J]. Front. Med., 2018, 12(6): 678-687.
[7] Qiuxia Han, Hanyu Zhu, Xiangmei Chen, Zhangsuo Liu. Non-genetic mechanisms of diabetic nephropathy[J]. Front. Med., 2017, 11(3): 319-332.
[8] Zhen Zhang, Na Jiang, Zhaohui Ni. Strategies for preventing peritoneal fibrosis in peritoneal dialysis patients: new insights based on peritoneal inflammation and angiogenesis[J]. Front. Med., 2017, 11(3): 349-358.
[9] Palka Kaur Khanuja,Satish Chander Narula,Rajesh Rajput,Rajinder Kumar Sharma,Shikha Tewari. Association of periodontal disease with glycemic control in patients with type 2 diabetes in Indian population[J]. Front. Med., 2017, 11(1): 110-119.
[10] Marijke A. de Vries,Arash Alipour,Erwin Birnie,Andrew Westzaan,Selvetta van Santen,Ellen van der Zwan,Anho H. Liem,Noëlle van der Meulen,Manuel Castro Cabezas. Coronary leukocyte activation in relation to progression of coronary artery disease[J]. Front. Med., 2016, 10(1): 85-90.
[11] Jianping Ye. Beneficial metabolic activities of inflammatory cytokine interleukin 15 in obesity and type 2 diabetes[J]. Front. Med., 2015, 9(2): 139-145.
[12] Zhicheng Zhang,Jun Yang,Mingchao Li,Wei Cai,Qingquan Liu,Tao Wang,Xiaolin Guo,Shaogang Wang,Jihong Liu,Zhangqun Ye. Paratesticular fibrous pseudotumor: a report of five cases and literature review[J]. Front. Med., 2014, 8(4): 484-488.
[13] Xiaoyan Chen,Wenxia Xiao,Xinchun Li,Jianxun He,Xiaochun Huang,Yuyu Tan. In vivo evaluation of renal function using diffusion weighted imaging and diffusion tensor imaging in type 2 diabetics with normoalbuminuria versus microalbuminuria[J]. Front. Med., 2014, 8(4): 471-476.
[14] Jichun Yang, Jihong Kang, Youfei Guan. The mechanisms linking adiposopathy to type 2 diabetes[J]. Front Med, 2013, 7(4): 433-444.
[15] Khurram Siddique, Shirin Mirza, Gandra Harinath. Appendiceal inflammation affects the length of stay following appendicectomy amongst children: a myth or reality?[J]. Front Med, 2013, 7(2): 264-269.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed