Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2013, Vol. 7 Issue (2) : 191-200    https://doi.org/10.1007/s11684-013-0258-2
REVIEW
From gut changes to type 2 diabetes remission after gastric bypass surgeries
Bing Li1, Xinrong Zhou2(), Jiarui Wu1(), Huarong Zhou1()
1. Key Laboratory of Systems Biology, SIBS-Novo Nordisk Translational Research Centre for PreDiabetes, Shanghai Institutes for Biological Sciences, CAS, Shanghai 200233, China; 2. Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
 Download: PDF(224 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Increasing evidence suggests that the gut may influence the host’s metabolism and ultimately change the outcomes of type 2 diabetes mellitus (T2DM). We review the evidence on the relationship between the gut and T2DM remission after gastric bypass surgery, and discuss the potential mechanisms underlying the above relationship: gut anatomical rearrangement, microbial composition changes, altered gut cells, and gut hormone modulation. However, the exact changes and their relative importance in the metabolic improvements after gastric bypass surgery remain to be further clarified. Elucidating the precise metabolic mechanisms of T2DM resolution after bypass surgery will help to reveal the molecular mechanisms of pathogenesis, and facilitate the development of novel diagnoses and preventative interventions for this common disease.

Keywords gastric bypass      T2DM      gut     
Corresponding Author(s): Zhou Xinrong,Email:zhouxinrong8@126.com; Wu Jiarui,Email:wujr@sibs.ac.cn; Zhou Huarong,Email:huarongzhou@hotmail.com   
Issue Date: 05 June 2013
 Cite this article:   
Bing Li,Xinrong Zhou,Jiarui Wu, et al. From gut changes to type 2 diabetes remission after gastric bypass surgeries[J]. Front Med, 2013, 7(2): 191-200.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-013-0258-2
https://academic.hep.com.cn/fmd/EN/Y2013/V7/I2/191
Fig.1  Perspective of changes after gastric bypass surgeries. We schematically summarized the recent results which addressed the changes in the gut related to T2DM amelioration after gastric bypass. They were depicted from macroscopic to microscopic levels, i.e., gut anatomical rearrangement, changes at cellular and molecular level, which include microbial composition changes, altered gut cells, and gut hormone modulations.
1 Huang ES, Basu A, O’Grady M, Capretta JC. Projecting the future diabetes population size and related costs for the U.S. Diabetes Care 2009; 32(12): 2225-2229
2 Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27(5): 1047-1053
doi: 10.2337/diacare.27.5.1047 pmid:15111519
3 Perreault L, Pan Q, Mather KJ, Watson KE, Hamman RF, Kahn SE; the Diabetes Prevention Program Research Group. Effect of regression from prediabetes to normal glucose regulation on long-term reduction in diabetes risk: results from the Diabetes Prevention Program Outcomes Study. Lancet 2012; 379(9833): 2243-2251
doi: 10.1016/S0140-6736(12)60525-X pmid:22683134
4 Hamman RF. Genetic and environmental determinants of non-insulin-dependent diabetes mellitus (NIDDM). Diabetes Metab Rev 1992; 8(4): 287-338
doi: 10.1002/dmr.5610080402 pmid:1307522
5 Polonsky KS, Sturis J, Bell GI. Seminars in Medicine of the Beth Israel Hospital, Boston. Non-insulin-dependent diabetes mellitus- a genetically programmed failure of the beta cell to compensate for insulin resistance. N Engl J Med 1996; 334(12): 777-783
doi: 10.1056/NEJM199603213341207 pmid:8592553
6 James PT, Leach R, Kalamara E, Shayeghi M. The worldwide obesity epidemic. Obes Res 2001; 9(Suppl 4): 228S-233S
doi: 10.1038/oby.2001.123 pmid:11707546
7 Brolin RE. Bariatric surgery and long-term control of morbid obesity. JAMA 2002; 288(22): 2793-2796
doi: 10.1001/jama.288.22.2793 pmid:12472304
8 Fisher BL, Schauer P. Medical and surgical options in the treatment of severe obesity. Am J Surg 2002; 184(6 Supplement 2): 9S-16S
doi: 10.1016/S0002-9610(02)01173-X pmid:12527344
9 Martins C, Str?mmen M, Stavne OA, Nossum R, M?rvik R, Kulseng B. Bariatric surgery versus lifestyle interventions for morbid obesity—changes in body weight, risk factors and comorbidities at 1 year. Obes Surg 2011; 21(7): 841-849
doi: 10.1007/s11695-010-0131-1 pmid:20379796
10 J?rgensen NB, Jacobsen SH, Dirksen C, Bojsen-M?ller KN, Naver L, Hvolris L, Clausen TR, Wulff BS, Worm D, Lindqvist Hansen D, Madsbad S, Holst JJ. Acute and long-term effects of Roux-en-Y gastric bypass on glucose metabolism in subjects with type 2 diabetes and normal glucose tolerance. Am J Physiol Endocrinol Metab 2012; 303(1): E122-E131
doi: 10.1152/ajpendo.00073.2012 pmid:22535748
11 Cohen RV, Pinheiro JC, Schiavon CA, Salles JE, Wajchenberg BL, Cummings DE. Effects of gastric bypass surgery in patients with type 2 diabetes and only mild obesity. Diabetes Care 2012; 35(7): 1420-1428
doi: 10.2337/dc11-2289 pmid:22723580
12 Dixon JB, le Roux CW, Rubino F, Zimmet P. Bariatric surgery for type 2 diabetes. Lancet 2012; 379(9833): 2300-2311
doi: 10.1016/S0140-6736(12)60401-2
13 Carlsson LM, Peltonen M, Ahlin S, Anveden ?, Bouchard C, Carlsson B, Jacobson P, L?nroth H, Maglio C, N?slund I, Pirazzi C, Romeo S, Sj?holm K, Sj?str?m E, Wedel H, Svensson PA, Sj?str?m L. Bariatric surgery and prevention of type 2 diabetes in Swedish obese subjects. N Engl J Med 2012; 367(8): 695-704
doi: 10.1056/NEJMoa1112082 pmid:22913680
14 Badman MK, Flier JS. The gut and energy balance: visceral allies in the obesity wars. Science 2005; 307(5717): 1909-1914
doi: 10.1126/science.1109951 pmid:15790843
15 Schauer PR, Ikramuddin S, Gourash W, Ramanathan R, Luketich J. Outcomes after laparoscopic Roux-en-Y gastric bypass for morbid obesity. Ann Surg 2000; 232(4): 515-529
doi: 10.1097/00000658-200010000-00007 pmid:10998650
16 Pories WJ, Swanson MS, MacDonald KG, Long SB, Morris PG, Brown BM, Barakat HA, deRamon RA, Israel G, Dolezal JM, Dohm L. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg 1995; 222(3): 339-352
doi: 10.1097/00000658-199509000-00011 pmid:7677463
17 Scopinaro N, Adami GF, Marinari GM, Gianetta E, Traverso E, Friedman D, Camerini G, Baschieri G, Simonelli A. Biliopancreatic diversion. World J Surg 1998; 22(9): 936-946
doi: 10.1007/s002689900497 pmid:9717419
18 Elder KA, Wolfe BM. Bariatric surgery: a review of procedures and outcomes. Gastroenterology 2007; 132(6): 2253-2271
doi: 10.1053/j.gastro.2007.03.057 pmid:17498516
19 Cummings DE, Overduin J, Foster-Schubert KE. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab 2004; 89(6): 2608-2615
doi: 10.1210/jc.2004-0433 pmid:15181031
20 Rubino F, R’bibo SL, del Genio F, Mazumdar M, McGraw TE. Metabolic surgery: the role of the gastrointestinal tract in diabetes mellitus. Nat Rev Endocrinol 2010; 6(2): 102-109
doi: 10.1038/nrendo.2009.268 pmid:20098450
21 Boza C, Mu?oz R, Yung E, Milone L, Gagner M. Sleeve gastrectomy with ileal transposition (SGIT) induces a significant weight loss and diabetes improvement without exclusion of the proximal intestine. J Gastrointest Surg 2011; 15(6): 928-934
doi: 10.1007/s11605-010-1369-6 pmid:21431992
22 Escalona A, Yá?ez R, Pimentel F, Galvao M, Ramos AC, Turiel D, Boza C, Awruch D, Gersin K, Ibá?ez L. Initial human experience with restrictive duodenal-jejunal bypass liner for treatment of morbid obesity. Surg Obes Relat Dis 2010; 6(2): 126-131
doi: 10.1016/j.soard.2009.12.009 pmid:20359665
23 Murphy KG, Bloom SR. Gut hormones and the regulation of energy homeostasis. Nature 2006; 444(7121): 854-859
doi: 10.1038/nature05484 pmid:17167473
24 Coll AP, Farooqi IS, O’Rahilly S. The hormonal control of food intake. Cell 2007; 129(2): 251-262
doi: 10.1016/j.cell.2007.04.001 pmid:17448988
25 Lam TKT. Neuronal regulation of homeostasis by nutrient sensing. Nat Med 2010; 16(4): 392-395
doi: 10.1038/nm0410-392 pmid:20376051
26 Imeryüz N, Ye?en B?, Bozkurt A, Co?kun T, Villanueva-Pe?acarrillo ML, Ulusoy NB. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am J Physiol 1997; 273(4 Pt 1): G920-G927
pmid:9357836
27 Drewe J, Gadient A, Rovati LC, Beglinger C. Role of circulating cholecystokinin in control of fat-induced inhibition of food intake in humans. Gastroenterology 1992; 102(5): 1654-1659
pmid:1568575
28 Ogawa N, Yamaguchi H, Shimbara T, Toshinai K, Kakutani M, Yonemori F, Nakazato M. The vagal afferent pathway does not play a major role in the induction of satiety by intestinal fatty acid in rats. Neurosci Lett 2008; 433(1): 38-42
doi: 10.1016/j.neulet.2007.12.036 pmid:18248897
29 Breen DM, Rasmussen BA, Kokorovic A, Wang R, Cheung GWC, Lam TKT. Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes. Nat Med 2012; 18(6): 950-955
doi: 10.1038/nm.2745 pmid:22610279
30 Hansen EN, Tamboli RA, Isbell JM, Saliba J, Dunn JP, Marks-Shulman PA, Abumrad NN. Role of the foregut in the early improvement in glucose tolerance and insulin sensitivity following Roux-en-Y gastric bypass surgery. Am J Physiol Gastrointest Liver Physiol 2011; 300(5): G795-G802
doi: 10.1152/ajpgi.00019.2011 pmid:21372167
31 Gaitonde S, Kohli R, Seeley R. The role of the gut hormone GLP-1 in the metabolic improvements caused by ileal transposition. J Surg Res 2012; 178(1): 33-39
doi: 10.1016/j.jss.2011.04.044 pmid:22929182
32 Boza C, Gagner M, Devaud N, Escalona A, Mu?oz R, Gandarillas M. Laparoscopic sleeve gastrectomy with ileal transposition (SGIT): A new surgical procedure as effective as gastric bypass for weight control in a porcine model. Surg Endosc 2008; 22(4): 1029-1034
doi: 10.1007/s00464-007-9685-y pmid:18270777
33 Strader AD, Vahl TP, Jandacek RJ, Woods SC, D’Alessio DA, Seeley RJ. Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. Am J Physiol Endocrinol Metab 2005; 288(2): E447-E453
doi: 10.1152/ajpendo.00153.2004 pmid:15454396
34 Mason EE. Ilial transposition and enteroglucagon/GLP-1 in obesity (and diabetic?) surgery. Obes Surg 1999; 9(3): 223-228
doi: 10.1381/096089299765553070 pmid:10484306
35 Holst JJ. Glucagon-like peptide 1 (GLP-1): an intestinal hormone, signalling nutritional abundance, with an unusual therapeutic potential. Trends Endocrinol Metab 1999; 10(6): 229-235
doi: 10.1016/S1043-2760(99)00157-5 pmid:10407397
36 Bullock BP, Heller RS, Habener JF. Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology 1996; 137(7): 2968-2978
doi: 10.1210/en.137.7.2968 pmid:8770921
37 Patti ME, Houten SM, Bianco AC, Bernier R, Larsen PR, Holst JJ, Badman MK, Maratos-Flier E, Mun EC, Pihlajamaki J, Auwerx J, Goldfine AB. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring) 2009; 17(9): 1671-1677
doi: 10.1038/oby.2009.102 pmid:19360006
38 Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: opening the X-files. Science 2001; 294(5548): 1866-1870
doi: 10.1126/science.294.5548.1866 pmid:11729302
39 Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C, Pruzanski M, Pellicciari R, Auwerx J, Schoonjans K. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 2009; 10(3): 167-177
doi: 10.1016/j.cmet.2009.08.001 pmid:19723493
40 Pournaras DJ, Glicksman C, Vincent RP, Kuganolipava S, Alaghband-Zadeh J, Mahon D, Bekker JHR, Ghatei MA, Bloom SR, Walters JRF, Welbourn R, le Roux CW. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology 2012; 153(8): 3613-3619
doi: 10.1210/en.2011-2145 pmid:22673227
41 Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun 2005; 329(1): 386-390
doi: 10.1016/j.bbrc.2005.01.139 pmid:15721318
42 Mithieux G. The new functions of the gut in the control of glucose homeostasis. Curr Opin Clin Nutr Metab Care 2005; 8(4): 445-449
doi: 10.1097/01.mco.0000172587.17385.aa pmid:15930972
43 Troy S, Soty M, Ribeiro L, Laval L, Migrenne S, Fioramonti X, Pillot B, Fauveau V, Aubert R, Viollet B, Foretz M, Leclerc J, Duchampt A, Zitoun C, Thorens B, Magnan C, Mithieux G, Andreelli F. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice. Cell Metab 2008; 8(3): 201-211
doi: 10.1016/j.cmet.2008.08.008 pmid:18762021
44 Kashyap SR, Daud S, Kelly KR, Gastaldelli A, Win H, Brethauer S, Kirwan JP, Schauer PR. Acute effects of gastric bypass versus gastric restrictive surgery on beta-cell function and insulinotropic hormones in severely obese patients with type 2 diabetes. Int J Obes (Lond) 2010; 34(3): 462-471
doi: 10.1038/ijo.2009.254 pmid:20029383
45 Hayes MT, Foo J, Besic V, Tychinskaya Y, Stubbs RS. Is intestinal gluconeogenesis a key factor in the early changes in glucose homeostasis following gastric bypass? Obes Surg 2011; 21(6): 759-762
doi: 10.1007/s11695-011-0380-7 pmid:21547404
46 Consortium THMP. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486(7402): 207-214
doi: 10.1038/nature11234 pmid:22699609
47 Musso G, Gambino R, Cassader M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu Rev Med 2011; 62(1): 361-380
doi: 10.1146/annurev-med-012510-175505 pmid:21226616
48 Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 2007; 73(4): 1073-1078
doi: 10.1128/AEM.02340-06 pmid:17189447
49 B?ckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004; 101(44): 15718-15723
doi: 10.1073/pnas.0407076101 pmid:15505215
50 Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA 2008; 105(43): 16767-16772
doi: 10.1073/pnas.0808567105 pmid:18931303
51 Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444(7122): 1022-1023
doi: 10.1038/4441022a pmid:17183309
52 Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, Parameswaran P, Crowell MD, Wing R, Rittmann BE, Krajmalnik-Brown R. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA 2009; 106(7): 2365-2370
doi: 10.1073/pnas.0812600106 pmid:19164560
53 Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P, Flint HJ. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond) 2008; 32(11): 1720-1724
doi: 10.1038/ijo.2008.155 pmid:18779823
54 Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, Sitaraman SV, Knight R, Ley RE, Gewirtz AT. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 2010; 328(5975): 228-231
doi: 10.1126/science.1179721 pmid:20203013
55 Wei X, Yang Z, Rey FE, Ridaura VK, Davidson NO, Gordon JI, Semenkovich CF. Fatty acid synthase modulates intestinal barrier function through palmitoylation of mucin 2. Cell Host Microbe 2012; 11(2): 140-152
doi: 10.1016/j.chom.2011.12.006 pmid:22341463
56 Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science 2005; 308(5728): 1635-1638
doi: 10.1126/science.1110591 pmid:15831718
57 Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI. A core gut microbiome in obese and lean twins. Nature 2009; 457(7228): 480-484
doi: 10.1038/nature07540 pmid:19043404
58 Santacruz A, Marcos A, W?rnberg J, Martí A, Martin-Matillas M, Campoy C, Moreno LA, Veiga O, Redondo-Figuero C, Garagorri JM, Azcona C, Delgado M, García-Fuentes M, Collado MC, Sanz Y, EVASYON Study Group. Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity (Silver Spring) 2009; 17(10): 1906-1915
doi: 10.1038/oby.2009.112 pmid:19390523
59 Nadal I, Santacruz A, Marcos A, Warnberg J, Garagorri JM, Moreno LA, Martin-Matillas M, Campoy C, Martí A, Moleres A, Delgado M, Veiga OL, García-Fuentes M, Redondo CG, Sanz Y. Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int J Obes (Lond) 2009; 33(7): 758-767
doi: 10.1038/ijo.2008.260 pmid:19050675
60 Wu X, Ma C, Han L, Nawaz M, Gao F, Zhang X, Yu P, Zhao C, Li L, Zhou A, Wang J, Moore JE, Millar BC, Xu J. Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr Microbiol 2010; 61(1): 69-78
doi: 10.1007/s00284-010-9582-9 pmid:20087741
61 Larsen N, Vogensen FK, van den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, S?rensen SJ, Hansen LH, Jakobsen M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 2010; 5(2): e9085
doi: 10.1371/journal.pone.0009085 pmid:20140211
62 Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490(7418): 55-60
doi: 10.1038/nature11450 pmid:23023125
63 Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, Mariat D, Corthier G, Doré J, Henegar C, Rizkalla S, Clément K. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 2010; 59(12): 3049-3057
doi: 10.2337/db10-0253 pmid:20876719
64 Pictet RL, Rall LB, Phelps P, Rutter WJ. The neural crest and the origin of the insulin-producing and other gastrointestinal hormone-producing cells. Science 1976; 191(4223): 191-192
doi: 1108195" target="_blank">10.1126/science. pmid:1108195 pmid:1108195
65 Fontaine J, Le Douarin NM. Analysis of endoderm formation in the avian blastoderm by the use of quail-chick chimaeras. The problem of the neurectodermal origin of the cells of the APUD series. J Embryol Exp Morphol 1977; 41(1): 209-222
pmid:22577
66 Sander M, German MS. The β cell transcription factors and development of the pancreas. J Mol Med (Berl) 1997; 75(5): 327-340
doi: 10.1007/s001090050118 pmid:9181474
67 Edlund H. Transcribing pancreas. Diabetes 1998; 47(12): 1817-1823
doi: 10.2337/diabetes.47.12.1817 pmid:9836511
68 St-Onge L, Wehr R, Gruss P. Pancreas development and diabetes. Curr Opin Genet Dev 1999; 9(3): 295-300
doi: 10.1016/S0959-437X(99)80044-6 pmid:10377278
69 Wang S, Yan J, Anderson DA, Xu Y, Kanal MC, Cao Z, Wright CVE, Gu G. Neurog3 gene dosage regulates allocation of endocrine and exocrine cell fates in the developing mouse pancreas. Dev Biol 2010; 339(1): 26-37
doi: 10.1016/j.ydbio.2009.12.009 pmid:20025861
70 Gradwohl G, Dierich A, LeMeur M, Guillemot F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 2000; 97(4): 1607-1611
doi: 10.1073/pnas.97.4.1607 pmid:10677506
71 Jensen J, Pedersen EE, Galante P, Hald J, Heller RS, Ishibashi M, Kageyama R, Guillemot F, Serup P, Madsen OD. Control of endodermal endocrine development by Hes-1. Nat Genet 2000; 24(1): 36-44
doi: 10.1038/71657 pmid:10615124
72 Schwitzgebel VM, Scheel DW, Conners JR, Kalamaras J, Lee JE, Anderson DJ, Sussel L, Johnson JD, German MS. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 2000; 127(16): 3533-3542
pmid:10903178
73 Lee CS, Perreault N, Brestelli JE, Kaestner KH. Neurogenin 3 is essential for the proper specification of gastric enteroendocrine cells and the maintenance of gastric epithelial cell identity. Genes Dev 2002; 16(12): 1488-1497
doi: 10.1101/gad.985002 pmid:12080087
74 Schonhoff SE, Giel-Moloney M, Leiter AB. Neurogenin 3-expressing progenitor cells in the gastrointestinal tract differentiate into both endocrine and non-endocrine cell types. Dev Biol 2004; 270(2): 443-454
doi: 10.1016/j.ydbio.2004.03.013 pmid:15183725
75 Schonhoff SE, Giel-Moloney M, Leiter AB. Minireview: Development and differentiation of gut endocrine cells. Endocrinology 2004; 145(6): 2639-2644
doi: 10.1210/en.2004-0051 pmid:15044355
76 Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 2002; 129(10): 2447-2457
pmid:11973276
77 Xu X, D’Hoker J, Stangé G, Bonné S, De Leu N, Xiao X, Van de Casteele M, Mellitzer G, Ling Z, Pipeleers D, Bouwens L, Scharfmann R, Gradwohl G, Heimberg H. β cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 2008; 132(2): 197-207
doi: 10.1016/j.cell.2007.12.015 pmid:18243096
78 Kitamura T, Kitamura YI, Kobayashi M, Kikuchi O, Sasaki T, Depinho RA, Accili D. Regulation of pancreatic juxtaductal endocrine cell formation by FoxO1. Mol Cell Biol 2009; 29(16): 4417-4430
doi: 10.1128/MCB.01622-08 pmid:19506018
79 Lam EWF, Francis RE, Petkovic M. FOXO transcription factors: key regulators of cell fate. Biochem Soc Trans 2006; 34( 5): 722-726
doi: 10.1042/BST0340722 pmid:17052182
80 Al-Masri M, Krishnamurthy M, Li J, Fellows GF, Dong HH, Goodyer CG, Wang R. Effect of forkhead box O1 (FOXO1) on beta cell development in the human fetal pancreas. Diabetologia 2010; 53(4): 699-711
doi: 10.1007/s00125-009-1632-0 pmid:20033803
81 Talchai C, Xuan S, Kitamura T, DePinho RA, Accili D. Generation of functional insulin-producing cells in the gut by Foxo1 ablation. Nat Genet 2012; 44(4): 406-412
doi: 10.1038/ng.2215 pmid:22406641
82 Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999; 402(6762): 656-660
doi: 10.1038/45230 pmid:10604470
83 Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, Matsukura S, Kangawa K, Nakazato M. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 2000; 141(11): 4255-4261
doi: 10.1210/en.141.11.4255 pmid:11089560
84 Schellekens H, Finger BC, Dinan TG, Cryan JF. Ghrelin signalling and obesity: at the interface of stress, mood and food reward. Pharmacol Ther 2012; 135(3): 316-326
doi: 10.1016/j.pharmthera.2012.06.004 pmid:22749794
85 Hosoda H, Kojima M, Matsuo H, Kangawa K. Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue. Biochem Biophys Res Commun 2000; 279(3): 909-913
doi: 10.1006/bbrc.2000.4039 pmid:11162448
86 Takaya K, Ariyasu H, Kanamoto N, Iwakura H, Yoshimoto A, Harada M, Mori K, Komatsu Y, Usui T, Shimatsu A, Ogawa Y, Hosoda K, Akamizu T, Kojima M, Kangawa K, Nakao K. Ghrelin strongly stimulates growth hormone release in humans. J Clin Endocrinol Metab 2000; 85(12): 4908-4911
doi: 10.1210/jc.85.12.4908 pmid:11134161
87 Nagaya N, Kojima M, Uematsu M, Yamagishi M, Hosoda H, Oya H, Hayashi Y, Kangawa K. Hemodynamic and hormonal effects of human ghrelin in healthy volunteers. Am J Physiol Regul Integr Comp Physiol 2001; 280(5): R1483-R1487
pmid:11294772
88 Gnanapavan S, Kola B, Bustin SA, Morris DG, McGee P, Fairclough P, Bhattacharya S, Carpenter R, Grossman AB, Korbonits M. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metab 2002; 87(6): 2988
doi: 10.1210/jc.87.6.2988 pmid:12050285
89 Volante M, Allìa E, Gugliotta P, Funaro A, Broglio F, Deghenghi R, Muccioli G, Ghigo E, Papotti M. Expression of ghrelin and of the GH secretagogue receptor by pancreatic islet cells and related endocrine tumors. J Clin Endocrinol Metab 2002; 87(3): 1300-1308
doi: 10.1210/jc.87.3.1300 pmid:11889202
90 Broglio F, Arvat E, Benso A, Gottero C, Muccioli G, Papotti M, van der Lely AJ, Deghenghi R, Ghigo E. Ghrelin, a natural GH secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans. J Clin Endocrinol Metab 2001; 86(10): 5083-5086
doi: 10.1210/jc.86.10.5083 pmid:11600590
91 Damjanovic SS, Lalic NM, Pesko PM, Petakov MS, Jotic A, Miljic D, Lalic KS, Lukic L, Djurovic M, Djukic VB. Acute effects of ghrelin on insulin secretion and glucose disposal rate in gastrectomized patients. J Clin Endocrinol Metab 2006; 91(7): 2574-2581
doi: 10.1210/jc.2005-1482 pmid:16621911
92 Rodieux F, Giusti V, D’Alessio DA, Suter M, Tappy L. Effects of gastric bypass and gastric banding on glucose kinetics and gut hormone release. Obesity (Silver Spring) 2008; 16(2): 298-305
doi: 10.1038/oby.2007.83 pmid:18239636
93 Korner J, Inabnet W, Conwell IM, Taveras C, Daud A, Olivero-Rivera L, Restuccia NL, Bessler M. Differential effects of gastric bypass and banding on circulating gut hormone and leptin levels. Obesity (Silver Spring) 2006; 14(9): 1553-1561
doi: 10.1038/oby.2006.179 pmid:17030966
94 Morínigo R, Casamitjana R, Moizé V, Lacy AM, Delgado S, Gomis R, Vidal J. Short-term effects of gastric bypass surgery on circulating ghrelin levels. Obes Res 2004; 12(7): 1108-1116
doi: 10.1038/oby.2004.139 pmid:15292475
95 Leonetti F, Silecchia G, Iacobellis G, Ribaudo MC, Zappaterreno A, Tiberti C, Iannucci CV, Perrotta N, Bacci V, Basso MS, Basso N, Di Mario U. Different plasma ghrelin levels after laparoscopic gastric bypass and adjustable gastric banding in morbid obese subjects. J Clin Endocrinol Metab 2003; 88(9): 4227-4231
doi: 10.1210/jc.2003-030133 pmid:12970291
96 Lin E, Gletsu N, Fugate K, McClusky D, Gu LH, Zhu JL, Ramshaw BJ, Papanicolaou DA, Ziegler TR, Smith CD. The effects of gastric surgery on systemic ghrelin levels in the morbidly obese. Arch Surg 2004; 139(7): 780-784
doi: 10.1001/archsurg.139.7.780 pmid:15249413
97 Tritos NA, Mun E, Bertkau A, Grayson R, Maratos-Flier E, Goldfine A. Serum ghrelin levels in response to glucose load in obese subjects post-gastric bypass surgery. Obes Res 2003; 11(8): 919-924
doi: 10.1038/oby.2003.126 pmid:12917494
98 le Roux CW, Welbourn R, Werling M, Osborne A, Kokkinos A, Laurenius A, L?nroth H, F?ndriks L, Ghatei MA, Bloom SR, Olbers T. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg 2007; 246(5): 780-785
doi: 10.1097/SLA.0b013e3180caa3e3 pmid:17968169
99 Korner J, Bessler M, Cirilo LJ, Conwell IM, Daud A, Restuccia NL, Wardlaw SL. Effects of Roux-en-Y gastric bypass surgery on fasting and postprandial concentrations of plasma ghrelin, peptide YY, and insulin. J Clin Endocrinol Metab 2005; 90(1): 359-365
doi: 10.1210/jc.2004-1076 pmid:15483088
100 Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007; 132(6): 2131-2157
doi: 10.1053/j.gastro.2007.03.054 pmid:17498508
101 Wren AM, Bloom SR. Gut hormones and appetite control. Gastroenterology 2007; 132(6): 2116-2130
doi: 10.1053/j.gastro.2007.03.048 pmid:17498507
103 Falkén Y, Hellstr?m PM, Holst JJ, N?slund E. Changes in glucose homeostasis after Roux-en-Y gastric bypass surgery for obesity at day three, two months, and one year after surgery: role of gut peptides. J Clin Endocrinol Metab 2011; 96(7): 2227-2235
doi: 10.1210/jc.2010-2876 pmid:21543426
104 Kreymann B, Williams G, Ghatei MA, Bloom SR. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 1987; 330(8571): 1300-1304
doi: 10.1016/S0140-6736(87)91194-9 pmid:2890903
105 Preitner F, Ibberson M, Franklin I, Binnert C, Pende M, Gjinovci A, Hansotia T, Drucker DJ, Wollheim C, Burcelin R, Thorens B. Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J Clin Invest 2004; 113(4): 635-645
pmid:14966573
106 Perley MJ, Kipnis DM. Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic sujbjects. J Clin Invest 1967; 46(12): 1954-1962
doi: 10.1172/JCI105685 pmid:6074000
107 Laferrère B, Heshka S, Wang K, Khan Y, McGinty J, Teixeira J, Hart AB, Olivan B. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care 2007; 30(7): 1709-1716
doi: 10.2337/dc06-1549 pmid:17416796
108 Dirksen C, Hansen DL, Madsbad S, Hvolris LE, Naver LS, Holst JJ, Worm D. Postprandial diabetic glucose tolerance is normalized by gastric bypass feeding as opposed to gastric feeding and is associated with exaggerated GLP-1 secretion: a case report. Diabetes Care 2010; 33(2): 375-377
doi: 10.2337/dc09-1374 pmid:19918005
109 Borg CM, le Roux CW, Ghatei MA, Bloom SR, Patel AG, Aylwin SJB. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg 2006; 93(2): 210-215
doi: 10.1002/bjs.5227 pmid:16392104
110 de Carvalho CP, Marin DM, de Souza AL, Pareja JC, Chaim EA, de Barros Mazon S, da Silva CA, Geloneze B, Muscelli E, Alegre SM. GLP-1 and adiponectin: effect of weight loss after dietary restriction and gastric bypass in morbidly obese patients with normal and abnormal glucose metabolism. Obes Surg 2009; 19(3): 313-320
doi: 10.1007/s11695-008-9678-5 pmid:18815849
111 Goldfine AB, Mun EC, Devine E, Bernier R, Baz-Hecht M, Jones DB, Schneider BE, Holst JJ, Patti ME. Patients with neuroglycopenia after gastric bypass surgery have exaggerated incretin and insulin secretory responses to a mixed meal. J Clin Endocrinol Metab 2007; 92(12): 4678-4685
doi: 10.1210/jc.2007-0918 pmid:17895322
112 Holdstock C, Zethelius B, Sundbom M, Karlsson FA, Edén Engstr?m B. Postprandial changes in gut regulatory peptides in gastric bypass patients. Int J Obes (Lond) 2008; 32(11): 1640-1646
doi: 10.1038/ijo.2008.157 pmid:18794895
113 Korner J, Bessler M, Inabnet W, Taveras C, Holst JJ. Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding. Surg Obes Relat Dis 2007; 3(6): 597-601
doi: 10.1016/j.soard.2007.08.004 pmid:17936091
114 Laferrère B, Teixeira J, McGinty J, Tran H, Egger JR, Colarusso A, Kovack B, Bawa B, Koshy N, Lee H, Yapp K, Olivan B. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab 2008; 93(7): 2479-2485
doi: 10.1210/jc.2007-2851 pmid:18430778
115 le Roux CW, Aylwin SJB, Batterham RL, Borg CM, Coyle F, Prasad V, Shurey S, Ghatei MA, Patel AG, Bloom SR. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg 2006; 243(1): 108-114
doi: 10.1097/01.sla.0000183349.16877.84 pmid:16371744
116 Morínigo R, Moizé V, Musri M, Lacy AM, Navarro S, Marín JL, Delgado S, Casamitjana R, Vidal J. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab 2006; 91(5): 1735-1740
doi: 10.1210/jc.2005-0904 pmid:16478824
117 Cohen RV, Schiavon CA, Pinheiro JS, Correa JL, Rubino F. Duodenal-jejunal bypass for the treatment of type 2 diabetes in patients with body mass index of 22-34 kg/m2: a report of 2 cases. Surg Obes Relat Dis 2007; 3(2): 195-197
doi: 10.1016/j.soard.2007.01.009 pmid:17386401
118 Adrian TE, Ferri GL, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 1985; 89(5): 1070-1077
pmid:3840109
119 Kervran A, Blache P, Bataille D. Distribution of oxyntomodulin and glucagon in the gastrointestinal tract and the plasma of the rat. Endocrinology 1987; 121(2): 704-713
doi: 10.1210/endo-121-2-704 pmid:3595539
120 Ghatei MA, Uttenthal LO, Christofides ND, Bryant MG, Bloom SR. Molecular forms of human enteroglucagon in tissue and plasma: plasma responses to nutrient stimuli in health and in disorders of the upper gastrointestinal tract. J Clin Endocrinol Metab 1983; 57(3): 488-495
doi: 10.1210/jcem-57-3-488 pmid:6874888
121 Polak JM, Bloom S, Coulling I, Pearse AGE. Immunofluorescent localization of enteroglucagon cells in the gastrointestinal tract of the dog. Gut 1971; 12(4): 311-318
doi: 10.1136/gut.12.4.311 pmid:4930155
122 Laferrère B, Swerdlow N, Bawa B, Arias S, Bose M, Oliván B, Teixeira J, McGinty J, Rother KI. Rise of oxyntomodulin in response to oral glucose after gastric bypass surgery in patients with type 2 diabetes. J Clin Endocrinol Metab 2010; 95(8): 4072-4076
doi: 10.1210/jc.2009-2767 pmid:20501690
123 Holst JJ. Enteroglucagon. Annu Rev Physiol 1997; 59(1): 257-271
doi: 10.1146/annurev.physiol.59.1.257 pmid:9074764
124 Cohen MA, Ellis SM, Le Roux CW, Batterham RL, Park A, Patterson M, Frost GS, Ghatei MA, Bloom SR. Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab 2003; 88(10): 4696-4701
doi: 10.1210/jc.2003-030421 pmid:14557443
125 Wynne K, Park AJ, Small CJ, Patterson M, Ellis SM, Murphy KG, Wren AM, Frost GS, Meeran K, Ghatei MA, Bloom SR. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes 2005; 54(8): 2390-2395
doi: 10.2337/diabetes.54.8.2390 pmid:16046306
126 Dakin CL, Gunn I, Small CJ, Edwards CMB, Hay DL, Smith DM, Ghatei MA, Bloom SR. Oxyntomodulin inhibits food intake in the rat. Endocrinology 2001; 142(10): 4244-4250
doi: 10.1210/en.142.10.4244 pmid:11564680
127 Parlevliet ET, Heijboer AC, Schr?der-van der Elst JP, Havekes LM, Romijn JA, Pijl H, Corssmit EPM. Oxyntomodulin ameliorates glucose intolerance in mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2008; 294(1): E142-E147
doi: 10.1152/ajpendo.00576.2007 pmid:17971509
128 Maida A, Lovshin JA, Baggio LL, Drucker DJ. The glucagon-like peptide-1 receptor agonist oxyntomodulin enhances β-cell function but does not inhibit gastric emptying in mice. Endocrinology 2008; 149(11): 5670-5678
doi: 10.1210/en.2008-0336 pmid:18669601
129 Kerr BD, Flatt PR, Gault VA. (D-Ser2)Oxm[mPEG-PAL]: a novel chemically modified analogue of oxyntomodulin with antihyperglycaemic, insulinotropic and anorexigenic actions. Biochem Pharmacol 2010; 80(11): 1727-1735
doi: 10.1016/j.bcp.2010.08.010 pmid:20735990
130 Lundberg JM, Tatemoto K, Terenius L, Hellstr?m PM, Mutt V, H?kfelt T, Hamberger B. Localization of peptide YY (PYY) in gastrointestinal endocrine cells and effects on intestinal blood flow and motility. Proc Natl Acad Sci USA 1982; 79(14): 4471-4475
doi: 10.1073/pnas.79.14.4471 pmid:6956876
131 B?ttcher G, Sj?lund K, Ekblad E, H?kanson R, Schwartz TW, Sundler F. Coexistence of peptide YY and glicentin immunoreactivity in endocrine cells of the gut. Regul Pept 1984; 8(4): 261-266
doi: 10.1016/0167-0115(84)90034-X pmid:6548568
132 Roth CL, Enriori PJ, Harz K, Woelfle J, Cowley MA, Reinehr T. Peptide YY is a regulator of energy homeostasis in obese children before and after weight loss. J Clin Endocrinol Metab 2005; 90(12): 6386-6391
doi: 10.1210/jc.2005-1357 pmid:16204364
133 Alvarez Bartolomé M, Borque M, Martinez-Sarmiento JM, Aparicio E, Hernández C, Cabrerizo L, Fernández-Represa JA. Peptide YY secretion in morbidly obese patients before and after vertical banded gastroplasty. Obes Surg 2002; 12(3): 324-327
doi: 10.1381/096089202321088084 pmid:12082881
134 Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, Wren AM, Brynes AE, Low MJ, Ghatei MA, Cone RD, Bloom SR. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 2002; 418(6898): 650-654
doi: 10.1038/nature00887 pmid:12167864
135 Viardot A, Heilbronn LK, Herzog H, Gregersen S, Campbell LV. Abnormal postprandial PYY response in insulin sensitive nondiabetic subjects with a strong family history of type 2 diabetes. Int J Obes (Lond) 2008; 32(6): 943-948
doi: 10.1038/ijo.2008.24 pmid:18317469
136 Pittner RA, Moore CX, Bhavsar SP, Gedulin BR, Smith PA, Jodka CM, Parkes DG, Paterniti JR, Srivastava VP, Young AA. Effects of PYY[3-36] in rodent models of diabetes and obesity. Int J Obes Relat Metab Disord 2004; 28(8): 963-971
doi: 10.1038/sj.ijo.0802696 pmid:15197409
137 Boey D, Heilbronn L, Sainsbury A, Laybutt R, Kriketos A, Herzog H, Campbell LV. Low serum PYY is linked to insulin resistance in first-degree relatives of subjects with type 2 diabetes. Neuropeptides 2006; 40(5): 317-324
doi: 10.1016/j.npep.2006.08.002 pmid:17045646
138 Berthoud HR, Shin AC, Zheng H. Obesity surgery and gut-brain communication. Physiol Behav 2011; 105(1): 106-119
doi: 10.1016/j.physbeh.2011.01.023 pmid:21315095
[1] Hong Zhang, Ying Chang, Qingqing Zheng, Rong Zhang, Cheng Hu, Weiping Jia. Altered intestinal microbiota associated with colorectal cancer[J]. Front. Med., 2019, 13(4): 461-470.
[2] Ruiting Han, Junli Ma, Houkai Li. Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota[J]. Front. Med., 2018, 12(6): 645-657.
[3] Xiaojiao Zheng, Shouli Wang, Wei Jia. Calorie restriction and its impact on gut microbial composition and global metabolism[J]. Front. Med., 2018, 12(6): 634-644.
[4] Chenyang Wang, Qiurong Li, Jieshou Li. Gut microbiota and its implications in small bowel transplantation[J]. Front. Med., 2018, 12(3): 239-248.
[5] Xinyao Tian, Zhe Yang, Fangzhou Luo, Shusen Zheng. Gut microbial balance and liver transplantation: alteration, management, and prediction[J]. Front. Med., 2018, 12(2): 123-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed