Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2013, Vol. 7 Issue (4) : 418-424    https://doi.org/10.1007/s11684-013-0297-8
REVIEW
Advances in immunopathogenesis of adult immune thrombocytopenia
Xinguang Liu1, Yu Hou2, Jun Peng1()
1. Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China; 2. Shandong University School of Medicine, Jinan, 250012, China
 Download: PDF(207 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Primary immune thrombocytopenia (ITP) is an autoimmune disorder characterized by immune-mediated accelerated platelet destruction and/or suppressed platelet production. Although the development of autoantibodies against platelet glycoproteins remains central in the pathophysiology of ITP, several abnormalities involving the cellular mechanisms of immune modulation have been identified, and the pathways behind the immune-mediated destruction of platelets have opened new avenues for the design of specific immunotherapies in an attempt to reduce the platelet destruction. This review is primarily focused on the recent literature with respect to immunopathological mechanisms in patients with ITP.

Keywords primary immune thrombocytopenia      B lymphocytes      T lymphocytes      antigen-presenting cells      cytokines     
Corresponding Author(s): Peng Jun,Email:junpeng88@sina.com.cn   
Issue Date: 05 December 2013
 Cite this article:   
Xinguang Liu,Yu Hou,Jun Peng. Advances in immunopathogenesis of adult immune thrombocytopenia[J]. Front Med, 2013, 7(4): 418-424.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-013-0297-8
https://academic.hep.com.cn/fmd/EN/Y2013/V7/I4/418
Fig.1  Simplified representation of the pathophysiology of ITP. The primary mechanism for the loss of tolerance in ITP is still unknown. Autoantibody-mediated platelet clearance remains the central pathogenetic mechanism. IgG-coated platelets are phagocytized by macrophages through Fcγ receptors. Platelet glycoproteins are cleaved to peptides and expressed on the antigen-presenting cell (APC) surface via MHC-II molecules. A number of new or cryptic epitopes are generated by APCs through epitope spreading. The T cell receptor (TCR) of Th cells can bind the peptide-MHC complex and then signal activation that upregulates CD154 to interact with CD40 of the APC and cause additional costimulatory interaction to occur. Binding of CD28 expressed on Th cells with the CD80 molecule overexpressed on the APC membrane of ITP patients could induce an additional co-stimulatory signal. By secreting interleukin-2 and interferon-γ, the activated Th cells can promote B cell differentiation and autoantibody production. Autoantibodies may also induce suppressed megakaryocyte maturation and platelet production. Autoreactive cytotoxic T cell-mediated platelet lysis and dysmegakariocytopoiesis constitute another alternative pathway of platelet destruction and decreased production.
1 Provan D, Stasi R, Newland AC, Blanchette VS, Bolton-Maggs P, Bussel JB, Chong BH, Cines DB, Gernsheimer TB, Godeau B, Grainger J, Greer I, Hunt BJ, Imbach PA, Lyons G, McMillan R, Rodeghiero F, Sanz MA, Tarantino M, Watson S, Young J, Kuter DJ. International consensus report on the investigation and management of primary immune thrombocytopenia. Blood 2010; 115(2): 168-186
doi: 10.1182/blood-2009-06-225565 pmid:19846889
2 Rodeghiero F, Stasi R, Gernsheimer T, Michel M, Provan D, Arnold DM, Bussel JB, Cines DB, Chong BH, Cooper N, Godeau B, Lechner K, Mazzucconi MG, McMillan R, Sanz MA, Imbach P, Blanchette V, Kühne T, Ruggeri M, George JN. Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children: report from an international working group. Blood 2009; 113(11): 2386-2393
doi: 10.1182/blood-2008-07-162503 pmid:19005182
3 Segal JB, Powe NR. Prevalence of immune thrombocytopenia: analyses of administrative data. J Thromb Haemost 2006; 4(11): 2377-2383
doi: 10.1111/j.1538-7836.2006.02147.x pmid:16869934
4 Terrell DR, Beebe LA, Vesely SK, Neas BR, Segal JB, George JN. The incidence of immune thrombocytopenic purpura in children and adults: a critical review of published reports. Am J Hematol 2010; 85(3): 174-180
pmid:20131303
5 Terrell DR, Beebe LA, Neas BR, Vesely SK, Segal JB, George JN. Prevalence of primary immune thrombocytopenia in Oklahoma. Am J Hematol 2012; 87(9): 848-852
doi: 10.1002/ajh.23262 pmid:22674643
6 Harrington WJ, Sprague CC, Minnich V, Moore CV, Aulvin RC, Dubach R. Immunologic mechanisms in idiopathic and neonatal thrombocytopenic purpura. Ann Intern Med 1953; 38(3): 433-469
doi: 10.7326/0003-4819-38-3-433 pmid:13031392
7 Kiefel V, Freitag E, Kroll H, Santoso S, Mueller-Eckhardt C. Platelet autoantibodies (IgG, IgM, IgA) against glycoproteins IIb/IIIa and Ib/IX in patients with thrombocytopenia. Ann Hematol 1996; 72(4): 280-285
doi: 10.1007/s002770050173 pmid:8624385
8 Roark JH, Bussel JB, Cines DB, Siegel DL. Genetic analysis of autoantibodies in idiopathic thrombocytopenic purpura reveals evidence of clonal expansion and somatic mutation. Blood 2002; 100(4): 1388-1398
pmid:12149222
9 Gu D, Ge J, Du W, Xue F, Chen Z, Zhao H, Zhou Z, Xu J, Liu P, Zhao Q, Zhang L, Yang R. Raised expression of APRIL in Chinese patients with immune thrombocytopenia and its clinical implications. Autoimmunity 2009; 42(8): 692-698
doi: 10.3109/08916930903214025 pmid:19824872
10 Zhu XJ, Shi Y, Peng J, Guo CS, Shan NN, Qin P, Ji XB, Hou M. The effects of BAFF and BAFF-R-Fc fusion protein in immune thrombocytopenia. Blood 2009; 114(26): 5362-5367
doi: 10.1182/blood-2009-05-217513 pmid:19794139
11 Olsson B, Andersson PO, Jern?s M, Jacobsson S, Carlsson B, Carlsson LM, Wadenvik H. T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med 2003; 9(9): 1123-1124
doi: 10.1038/nm921 pmid:12937414
12 Zhang F, Chu X, Wang L, Zhu Y, Li L, Ma D, Peng J, Hou M. Cell-mediated lysis of autologous platelets in chronic idiopathic thrombocytopenic purpura. Eur J Haematol 2006; 76(5): 427-431
doi: 10.1111/j.1600-0609.2005.00622.x pmid:16480433
13 Zhao C, Li X, Zhang F, Wang L, Peng J, Hou M. Increased cytotoxic T-lymphocyte-mediated cytotoxicity predominant in patients with idiopathic thrombocytopenic purpura without platelet autoantibodies. Haematologica 2008; 93(9): 1428-1430
pmid:18757854
14 Semple JW, Provan D. The immunopathogenesis of immune thrombocytopenia: T cells still take center-stage. Curr Opin Hematol 2012; 19(5): 357-362
doi: 10.1097/MOH.0b013e3283567541 pmid:22759631
15 Peng J, Liu C, Liu D, Ren C, Li W, Wang Z, Xing N, Xu C, Chen X, Ji C, Zhang M, Hou M. Effects of B7-blocking agent and/or CsA on induction of platelet-specific T-cell anergy in chronic autoimmune thrombocytopenic purpura. Blood 2003; 101(7): 2721-2726
doi: 10.1182/blood-2002-06-1666 pmid:12446456
16 Zhang XL, Peng J, Sun JZ, Guo CS, Yu Y, Wang ZG, Chu XX, Hou M. Modulation of immune response with cytotoxic T-lymphocyte-associated antigen 4 immunoglobulin-induced anergic T cells in chronic idiopathic thrombocytopenic purpura. J Thromb Haemost 2008; 6(1): 158-165
doi: 10.1111/j.1538-7836.2007.02804.x pmid:17944988
17 Zhu X, Zhu P, Guo XL. T cell repertoires correlate with pathogenesis of chronic idiopathic thrombocytopenic purpura.Natl Med J China (Zhonghua Yi Xue Za Zhi) 2005; 85(47): 3316-3322 (in Chinese)
pmid:16409835
18 Fogarty PF, Rick ME, Zeng W, Risitano AM, Dunbar CE, Bussel JB. T cell receptor VB repertoire diversity in patients with immune thrombocytopenia following splenectomy. Clin Exp Immunol 2003; 133(3): 461-466
doi: 10.1046/j.1365-2249.2003.02239.x pmid:12930375
19 Wang T, Zhao H, Ren H, Guo J, Xu M, Yang R, Han ZC. Type 1 and type 2 T-cell profiles in idiopathic thrombocytopenic purpura. Haematologica 2005; 90(7): 914-923
pmid:15996929
20 Panitsas FP, Theodoropoulou M, Kouraklis A, Karakantza M, Theodorou GL, Zoumbos NC, Maniatis A, Mouzaki A. Adult chronic idiopathic thrombocytopenic purpura (ITP) is the manifestation of a type-1 polarized immune response. Blood 2004; 103(7): 2645-2647
doi: 10.1182/blood-2003-07-2268 pmid:14670926
21 Guo C, Chu X, Shi Y, He W, Li L, Wang L, Wang Y, Peng J, Hou M. Correction of Th1-dominant cytokine profiles by high-dose dexamethasone in patients with chronic idiopathic thrombocytopenic purpura. J Clin Immunol 2007; 27(6): 557-562
doi: 10.1007/s10875-007-9111-1 pmid:17619126
22 Zhang J, Ma D, Zhu X, Qu X, Ji C, Hou M. Elevated profile of Th17, Th1 and Tc1 cells in patients with immune thrombocytopenic purpura. Haematologica 2009; 94(9): 1326-1329
doi: 10.3324/haematol.2009.007823 pmid:19734430
23 Cao J, Li XQ, Chen C, Zeng LY, Cheng H, Li ZY, Pang XY, Xu KL. Imbalance of Th17/Treg cells ratio in peripheral blood of patients with immune thrombocytopenia. J Exp Hematol (Zhongguo Shi Yan Xue Ye Xue Za Zhi) 2011; 19(3): 730-733 (in Chinese)
pmid:21729560
24 Saitoh T, Tsukamoto N, Koiso H, Mitsui T, Yokohama A, Handa H, Karasawa M, Ogawara H, Nojima Y, Murakami H. Interleukin-17F gene polymorphism in patients with chronic immune thrombocytopenia. Eur J Haematol 2011; 87(3): 253-258
doi: 10.1111/j.1600-0609.2011.01651.x pmid:21615796
25 Rocha AM, Souza C, Rocha GA, de Melo FF, Clementino NC, Marino MC, Bozzi A, Silva ML, Martins Filho OA, Queiroz DM. The levels of IL-17A and of the cytokines involved in Th17 cell commitment are increased in patients with chronic immune thrombocytopenia. Haematologica 2011; 96(10): 1560-1564
doi: 10.3324/haematol.2011.046417 pmid:21972211
26 Cao J, Chen C, Zeng L, Li L, Li X, Li Z, Xu K. Elevated plasma IL-22 levels correlated with Th1 and Th22 cells in patients with immune thrombocytopenia. Clin Immunol 2011; 141(1): 121-123
pmid:21652269
27 Hu Y, Li H, Zhang L, Shan B, Xu X, Li H, Liu X, Xu S, Yu S, Ma D, Peng J, Hou M. Elevated profiles of Th22 cells and correlations with Th17 cells in patients with immune thrombocytopenia. Hum Immunol 2012; 73(6): 629-635
doi: 10.1016/j.humimm.2012.04.015 pmid:22537755
28 Cao J, Chen C, Li L, Zeng L, Li Z, Yan Z, Chen W, Cheng H, Sang W, Xu K. Effects of high-dose dexamethasone on regulating interleukin-22 production and correcting Th1 and Th22 polarization in immune thrombocytopenia. J Clin Immunol 2012; 32(3): 523-529
doi: 10.1007/s10875-012-9649-4 pmid:22289995
29 Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol 2008; 8(7): 523-532
doi: 10.1038/nri2343 pmid:18566595
30 Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, Cross R, Sehy D, Blumberg RS, Vignali DA. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 2007; 450(7169): 566-569
doi: 10.1038/nature06306 pmid:18033300
31 Liu B, Zhao H, Poon MC, Han Z, Gu D, Xu M, Jia H, Yang R, Han ZC. Abnormality of CD4(+)CD25(+) regulatory T cells in idiopathic thrombocytopenic purpura. Eur J Haematol 2007; 78(2): 139-143
pmid:17328716
32 Ling Y, Cao X, Yu Z, Ruan C. Circulating dendritic cells subsets and CD4+Foxp3+ regulatory T cells in adult patients with chronic ITP before and after treatment with high-dose dexamethasome. Eur J Haematol 2007; 79(4): 310-316
doi: 10.1111/j.1600-0609.2007.00917.x pmid:17692100
33 Yu J, Heck S, Patel V, Levan J, Yu Y, Bussel JB, Yazdanbakhsh K. Defective circulating CD25 regulatory T cells in patients with chronic immune thrombocytopenic purpura. Blood 2008; 112(4): 1325-1328
doi: 10.1182/blood-2008-01-135335 pmid:18420827
34 Sakakura M, Wada H, Tawara I, Nobori T, Sugiyama T, Sagawa N, Shiku H. Reduced Cd4+Cd25+ T cells in patients with idiopathic thrombocytopenic purpura. Thromb Res 2007; 120(2): 187-193
doi: 10.1016/j.thromres.2006.09.008 pmid:17067661
35 Stasi R, Cooper N, Del Poeta G, Stipa E, Laura Evangelista M, Abruzzese E, Amadori S. Analysis of regulatory T-cell changes in patients with idiopathic thrombocytopenic purpura receiving B cell-depleting therapy with rituximab. Blood 2008; 112(4): 1147-1150
doi: 10.1182/blood-2007-12-129262 pmid:18375792
36 Bao W, Bussel JB, Heck S, He W, Karpoff M, Boulad N, Yazdanbakhsh K. Improved regulatory T-cell activity in patients with chronic immune thrombocytopenia treated with thrombopoietic agents. Blood 2010; 116(22): 4639-4645
doi: 10.1182/blood-2010-04-281717 pmid:20688957
37 Zhang XL, Peng J, Sun JZ, Liu JJ, Guo CS, Wang ZG, Yu Y, Shi Y, Qin P, Li SG, Zhang LN, Hou M. De novo induction of platelet-specific CD4(+)CD25(+) regulatory T cells from CD4(+)CD25(-) cells in patients with idiopathic thrombocytopenic purpura. Blood 2009; 113(11): 2568-2577
doi: 10.1182/blood-2008-03-148288 pmid:19056692
38 Shenoy S, Mohanakumar T, Chatila T, Tersak J, Duffy B, Wang R, Thilenius AR, Russell JH. Defective apoptosis in lymphocytes and the role of IL-2 in autoimmune hematologic cytopenias. Clin Immunol 2001; 99(2): 266-275
doi: 10.1006/clim.2001.5017 pmid:11318598
39 Olsson B, Andersson PO, Jacobsson S, Carlsson L, Wadenvik H. Disturbed apoptosis of T-cells in patients with active idiopathic thrombocytopenic purpura. Thromb Haemost 2005; 93(1): 139-144
pmid:15630504
40 Li X, Zhong H, Bao W, Boulad N, Evangelista J, Haider MA, Bussel J, Yazdanbakhsh K. Defective regulatory B-cell compartment in patients with immune thrombocytopenia. Blood 2012; 120(16): 3318-3325
doi: 10.1182/blood-2012-05-432575 pmid:22859611
41 Mauri C, Bosma A. Immune regulatory function of B cells. Annu Rev Immunol 2012; 30(1): 221-241
doi: 10.1146/annurev-immunol-020711-074934 pmid:22224776
42 Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science 2010; 327(5966): 656-661
doi: 10.1126/science.1178331 pmid:20133564
43 Cines DB, Blanchette VS. Immune thrombocytopenic purpura. N Engl J Med 2002; 346(13): 995-1008
doi: 10.1056/NEJMra010501 pmid:11919310
44 Kuwana M, Okazaki Y, Ikeda Y. Splenic macrophages maintain the anti-platelet autoimmune response via uptake of opsonized platelets in patients with immune thrombocytopenic purpura. J Thromb Haemost 2009; 7(2): 322-329
doi: 10.1111/j.1538-7836.2008.03161.x pmid:18826388
45 Liu XG, Ma SH, Sun JZ, Ren J, Shi Y, Sun L, Dong XY, Qin P, Guo CS, Hou M, Peng J. High-dose dexamethasone shifts the balance of stimulatory and inhibitory Fcγ receptors on monocytes in patients with primary immune thrombocytopenia. Blood 2011; 117(6): 2061-2069
doi: 10.1182/blood-2010-07-295477 pmid:21131591
46 Asahi A, Nishimoto T, Okazaki Y, Suzuki H, Masaoka T, Kawakami Y, Ikeda Y, Kuwana M. Helicobacter pylori eradication shifts monocyte Fcgamma receptor balance toward inhibitory FcγRIIB in immune thrombocytopenic purpura patients. J Clin Invest 2008; 118(8): 2939-2949
pmid:18654664
47 Wu Z, Zhou J, Prsoon P, Wei X, Liu X, Peng B. Low expression of FCGRIIB in macrophages of immune thrombocytopenia-affected individuals. Int J Hematol 2012; 96(5): 588-593
doi: 10.1007/s12185-012-1187-6 pmid:23054650
48 Hamzeh-Cognasse H, Cognasse F, Palle S, Chavarin P, Olivier T, Delézay O, Pozzetto B, Garraud O. Direct contact of platelets and their released products exert different effects on human dendritic cell maturation. BMC Immunol 2008; 9(1): 54
doi: 10.1186/1471-2172-9-54 pmid:18817542
49 Garcia-Suarez J, Prieto A, Reyes E, Manzano L, Merino JL, Alvarez-Mon M. Severe chronic autoimmune thrombocytopenic purpura is associated with an expansion of CD56+ CD3- natural killer cells subset. Blood 1993; 82(5): 1538-1545
pmid:7689873
50 Gernsheimer T. Chronic idiopathic thrombocytopenic purpura: mechanisms of pathogenesis. Oncologist 2009; 14(1): 12-21
doi: 10.1634/theoncologist.2008-0132 pmid:19144680
51 Van Wyk V, Kotzé HF, Heyns AP. Kinetics of indium-111-labelled platelets in HIV-infected patients with and without associated thrombocytopaenia. Eur J Haematol 1999; 62(5): 332-335
pmid:10359062
52 Ballem PJ, Segal GM, Stratton JR, Gernsheimer T, Adamson JW, Slichter SJ. Mechanisms of thrombocytopenia in chronic autoimmune thrombocytopenic purpura. Evidence of both impaired platelet production and increased platelet clearance. J Clin Invest 1987; 80(1): 33-40
doi: 10.1172/JCI113060 pmid:3597777
53 Jenkins JM, Williams D, Deng Y, Uhl J, Kitchen V, Collins D, Erickson-Miller CL. Phase 1 clinical study of eltrombopag, an oral, nonpeptide thrombopoietin receptor agonist. Blood 2007; 109(11): 4739-4741
doi: 10.1182/blood-2006-11-057968 pmid:17327409
54 Chang M, Nakagawa PA, Williams SA, Schwartz MR, Imfeld KL, Buzby JS, Nugent DJ. Immune thrombocytopenic purpura (ITP) plasma and purified ITP monoclonal autoantibodies inhibit megakaryocytopoiesis in vitro. Blood 2003; 102(3): 887-895
doi: 10.1182/blood-2002-05-1475 pmid:12676790
55 McMillan R, Wang L, Tomer A, Nichol J, Pistillo J. Suppression of in vitro megakaryocyte production by antiplatelet autoantibodies from adult patients with chronic ITP. Blood 2004; 103(4): 1364-1369
doi: 10.1182/blood-2003-08-2672 pmid:14576051
56 Yang L, Wang L, Zhao CH, Zhu XJ, Hou Y, Jun P, Hou M. Contributions of TRAIL-mediated megakaryocyte apoptosis to impaired megakaryocyte and platelet production in immune thrombocytopenia. Blood 2010; 116(20): 4307-4316
doi: 10.1182/blood-2010-02-267435 pmid:20671119
57 Benedetti F, de Sabata D, Perona G. T suppressor activated lymphocytes (CD8+/DR+) inhibit megakaryocyte progenitor cell differentiation in a case of acquired amegakaryocytic thrombocytopenic purpura. Stem Cells 1994; 12(2): 205-213
doi: 10.1002/stem.5530120209 pmid:8199563
58 Li S, Wang L, Zhao C, Li L, Peng J, Hou M. CD8+ T cells suppress autologous megakaryocyte apoptosis in idiopathic thrombocytopenic purpura. Br J Haematol 2007; 139(4): 605-611
doi: 10.1111/j.1365-2141.2007.06737.x pmid:17979946
59 Cohen-Solal K, Villeval JL, Titeux M, Lok S, Vainchenker W, Wendling F. Constitutive expression of Mpl ligand transcripts during thrombocytopenia or thrombocytosis. Blood 1996; 88(7): 2578-2584
pmid:8839850
60 Kuter DJ. New thrombopoietic growth factors. Blood 2007; 109(11): 4607-4616
doi: 10.1182/blood-2006-10-019315 pmid:17289815
61 Gu J, Lu L, Xu R, Chen X. Plasma thrombopoietin levels in patients with aplastic anemia and idiopathic thrombocytopenic purpura. Chin Med J (Engl) 2002; 115(7): 983-986
pmid:12150725
62 von dem Borne A, Folman C, van den Oudenrijn S, Linthorst G, de Jong S, de Haas M. The potential role of thrombopoietin in idiopathic thrombocytopenic purpura. Blood Rev 2002; 16(1): 57-59
doi: 10.1054/blre.2001.0184 pmid:11913997
63 Wang B, Nichol JL, Sullivan JT. Pharmacodynamics and pharmacokinetics of AMG 531, a novel thrombopoietin receptor ligand. Clin Pharmacol Ther 2004; 76(6): 628-638
doi: 10.1016/j.clpt.2004.08.010 pmid:15592334
64 Kuter DJ, Bussel JB, Lyons RM, Pullarkat V, Gernsheimer TB, Senecal FM, Aledort LM, George JN, Kessler CM, Sanz MA, Liebman HA, Slovick FT, de Wolf JT, Bourgeois E, Guthrie TH Jr, Newland A, Wasser JS, Hamburg SI, Grande C, Lefrère F, Lichtin AE, Tarantino MD, Terebelo HR, Viallard JF, Cuevas FJ, Go RS, Henry DH, Redner RL, Rice L, Schipperus MR, Guo DM, Nichol JL. Efficacy of romiplostim in patients with chronic immune thrombocytopenic purpura: a double-blind randomised controlled trial. Lancet 2008; 371(9610): 395-403
doi: 10.1016/S0140-6736(08)60203-2 pmid:18242413
65 Erickson-Miller CL, DeLorme E, Tian SS, Hopson CB, Stark K, Giampa L, Valoret EI, Duffy KJ, Luengo JL, Rosen J, Miller SG, Dillon SB, Lamb P. Discovery and characterization of a selective, nonpeptidyl thrombopoietin receptor agonist. Exp Hematol 2005; 33(1): 85-93
doi: 10.1016/j.exphem.2004.09.006 pmid:15661401
66 Bussel JB, Provan D, Shamsi T, Cheng G, Psaila B, Kovaleva L, Salama A, Jenkins JM, Roychowdhury D, Mayer B, Stone N, Arning M. Effect of eltrombopag on platelet counts and bleeding during treatment of chronic idiopathic thrombocytopenic purpura: a randomised, double-blind, placebo-controlled trial. Lancet 2009; 373(9664): 641-648
doi: 10.1016/S0140-6736(09)60402-5 pmid:19231632
67 Wang S, Yang R, Zou P, Hou M, Wu D, Shen Z, Lu X, Li Y, Chen X, Niu T, Sun H, Yu L, Wang Z, Zhang Y, Chang N, Zhang G, Zhao Y. A multicenter randomized controlled trial of recombinant human thrombopoietin treatment in patients with primary immune thrombocytopenia. Int J Hematol 2012; 96(2): 222-228
doi: 10.1007/s12185-012-1124-8 pmid:22753022
[1] Ning Jiang, Yao Li, Ting Shu, Jing Wang. Cytokines and inflammation in adipogenesis: an updated review[J]. Front. Med., 2019, 13(3): 314-329.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed