Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2014, Vol. 8 Issue (1) : 6-16    https://doi.org/10.1007/s11684-014-0317-3
REVIEW
Talin and kindlin: the one-two punch in integrin activation
Feng Ye(), Adam K. Snider, Mark H. Ginsberg()
Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
 Download: PDF(333 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Proper cell-cell and cell-matrix contacts mediated by integrin adhesion receptors are important for development, immune response, hemostasis and wound healing. Integrins pass trans-membrane signals bidirectionally through their regulated affinities for extracellular ligands and intracellular signaling molecules. Such bidirectional signaling by integrins is enabled by the conformational changes that are often linked among extracellular, transmembrane and cytoplasmic domains. Here, we review how talin-integrin and kindlin-integrin interactions, in cooperation with talin-lipid and kindlin-lipid interactions, regulate integrin affinities and how the progress in these areas helps us understand integrin-related diseases.

Keywords signal transduction      transmembrane domain      nanodisc      integrin      talin      kindling      cell adhesion     
Corresponding Author(s): Ye Feng,Email:feye@ucsd.edu; Ginsberg Mark H.,Email:mhginsberg@ucsd.edu   
Issue Date: 26 April 2014
 Cite this article:   
Feng Ye,Adam K. Snider,Mark H. Ginsberg. Talin and kindlin: the one-two punch in integrin activation[J]. Front Med, 2014, 8(1): 6-16.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-014-0317-3
https://academic.hep.com.cn/fmd/EN/Y2014/V8/I1/6
Fig.1  Structure of integrin αIIbβ3 TMD (ribbon view; αIIb in red and β3 in blue. From PDB 2K9J) showing the two interaction interfaces. Left, outer membrane clasp (OMC). Right, inner membrane clasp (IMC). The important residues for the two interfaces are indicated.
Fig.2  Snorkeling Lys716 fixes the tilting angle of the β3 TMD. On the left, the C of Lys716 resides in the hydrophobic core but its ?-NH group snorkels into the negatively charged phosphate head group region. On the right, when Lys716 is mutated to Glu, the residue shifts away from hydrophobic core to place the side chain -COO group in the aqueous region. This shift causes reduced embedding of β3 TMD and decreased β3 TMD tilting angle.
Fig.3  Talin activates integrin by causing a topology change in β3 TMD. (A) Talin stabilizes the helix in the membrane proximal region of β3 and increases the tilting angle of the continuous β3 TMD. (B) A711P mutation introduces a flexible kink that breaks the continuous β3 TMD, decouples the tilting motion of the two helices, and blocks integrin activation.
Fig.4  Model for talin and kindlin function. Talin promotes affinity increase of individual integrin molecules. Kindlins have little primary effect on affinity of individual integrin but increase multivalent ligand binding by promoting the clustering of talin-activated αIIbβ3.
Fig.5  The dynamic equilibrium of integrin activation functions as signal integrator. The factors that shift the equilibrium to the same direction can add to or synergize with each other. Opposing factors can cancel each other.
1 Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110(6): 673–687
doi: 10.1016/S0092-8674(02)00971-6 pmid:12297042
2 Humphries JD, Byron A, Humphries MJ. Integrin ligands at a glance. J Cell Sci 2006; 119(Pt 19): 3901–3903
doi: 10.1242/jcs.03098 pmid:16988024
3 Giancotti FG, Ruoslahti E. Integrin signaling. Science 1999; 285(5430): 1028–1032
doi: 10.1126/science.285.5430.1028 pmid:10446041
4 Du XP, Plow EF, Frelinger AL3rd, O’Toole TE, Loftus JC, Ginsberg MH. Ligands “activate” integrin alpha IIb beta 3 (platelet GPIIb-IIIa). Cell 1991; 65(3): 409–416
doi: 10.1016/0092-8674(91)90458-B pmid:2018974
5 Zhu J, Carman CV, Kim M, Shimaoka M, Springer TA, Luo BH. Requirement of α and β subunit transmembrane helix separation for integrin outside-in signaling. Blood 2007; 110(7): 2475–2483
doi: 10.1182/blood-2007-03-080077 pmid:17615290
6 Shattil SJ, Newman PJ. Integrins: dynamic scaffolds for adhesion and signaling in platelets. Blood 2004; 104(6): 1606–1615
doi: 10.1182/blood-2004-04-1257 pmid:15205259
7 Kim M, Carman CV, Springer TA. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 2003; 301(5640): 1720–1725
doi: 10.1126/science.1084174 pmid:14500982
8 Bodeau AL, Berrier AL, Mastrangelo AM, Martinez R, LaFlamme SE. A functional comparison of mutations in integrin β cytoplasmic domains: effects on the regulation of tyrosine phosphorylation, cell spreading, cell attachment and β1 integrin conformation. J Cell Sci 2001; 114(Pt 15): 2795–2807
pmid:11683413
9 Berrier AL, Mastrangelo AM, Downward J, Ginsberg M, LaFlamme SE. Activated R-ras, Rac1, PI 3-kinase and PKCepsilon can each restore cell spreading inhibited by isolated integrin β1 cytoplasmic domains. J Cell Biol 2000; 151(7): 1549–1560
doi: 10.1083/jcb.151.7.1549 pmid:11134082
10 Díaz-González F, Forsyth J, Steiner B, Ginsberg MH. Trans-dominant inhibition of integrin function. Mol Biol Cell 1996; 7(12): 1939–1951
doi: 10.1091/mbc.7.12.1939 pmid:8970156
11 LaFlamme SE, Thomas LA, Yamada SS, Yamada KM. Single subunit chimeric integrins as mimics and inhibitors of endogenous integrin functions in receptor localization, cell spreading and migration, and matrix assembly. J Cell Biol 1994; 126(5): 1287–1298
doi: 10.1083/jcb.126.5.1287 pmid:8063864
12 LaFlamme SE, Akiyama SK, Yamada KM. Regulation of fibronectin receptor distribution. J Cell Biol 1992; 117(2): 437–447
doi: 10.1083/jcb.117.2.437 pmid:1373145
13 Cluzel C, Saltel F, Lussi J, Paulhe F, Imhof BA, Wehrle-Haller B. The mechanisms and dynamics of αvβ3 integrin clustering in living cells. J Cell Biol 2005; 171(2): 383–392
doi: 10.1083/jcb.200503017 pmid:16247034
14 Arias-Salgado EG, Lizano S, Sarkar S, Brugge JS, Ginsberg MH, Shattil SJ. Src kinase activation by direct interaction with the integrin β cytoplasmic domain. Proc Natl Acad Sci USA 2003; 100(23): 13298–13302
doi: 10.1073/pnas.2336149100 pmid:14593208
15 Miyamoto S, Teramoto H, Coso OA, Gutkind JS, Burbelo PD, Akiyama SK, Yamada KM. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol 1995; 131(3): 791–805
doi: 10.1083/jcb.131.3.791 pmid:7593197
16 Miyamoto S, Akiyama SK, Yamada KM. Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science 1995; 267(5199): 883–885
doi: 7846531" target="_blank">10.1126/science. pmid:7846531 pmid:7846531
17 Hirahashi J, Mekala D, Van Ziffle J, Xiao L, Saffaripour S, Wagner DD, Shapiro SD, Lowell C, Mayadas TN. Mac-1 signaling via Src-family and Syk kinases results in elastase-dependent thrombohemorrhagic vasculopathy. Immunity 2006; 25(2): 271–283
doi: 10.1016/j.immuni.2006.05.014 pmid:16872848
18 Giagulli C, Ottoboni L, Caveggion E, Rossi B, Lowell C, Constantin G, Laudanna C, Berton G. The Src family kinases Hck and Fgr are dispensable for inside-out, chemoattractant-induced signaling regulating β2 integrin affinity and valency in neutrophils, but are required for β2 integrin-mediated outside-in signaling involved in sustained adhesion. J Immunol 2006; 177(1): 604–611
pmid:16785558
19 Mócsai A, Zhou M, Meng F, Tybulewicz VL, Lowell CA. Syk is required for integrin signaling in neutrophils. Immunity 2002; 16(4): 547–558
doi: 10.1016/S1074-7613(02)00303-5 pmid:11970878
20 McNamee HP, Ingber DE, Schwartz MA. Adhesion to fibronectin stimulates inositol lipid synthesis and enhances PDGF-induced inositol lipid breakdown. J Cell Biol 1993; 121(3): 673–678
doi: 10.1083/jcb.121.3.673 pmid:8387531
21 Schaller MD, Otey CA, Hildebrand JD, Parsons JT. Focal adhesion kinase and paxillin bind to peptides mimicking β integrin cytoplasmic domains. J Cell Biol 1995; 130(5): 1181–1187
doi: 10.1083/jcb.130.5.1181 pmid:7657702
22 Ling K, Doughman RL, Firestone AJ, Bunce MW, Anderson RA. Type I g phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 2002; 420(6911): 89–93
doi: 10.1038/nature01082 pmid:12422220
23 Di Paolo G, Pellegrini L, Letinic K, Cestra G, Zoncu R, Voronov S, Chang S, Guo J, Wenk MR, De Camilli P. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 g by the FERM domain of talin. Nature 2002; 420(6911): 85–89
doi: 10.1038/nature01147 pmid:12422219
24 Mitra SK, Hanson DA, Schlaepfer DD. Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 2005; 6(1): 56–68
doi: 10.1038/nrm1549 pmid:15688067
25 Choi CK, Vicente-Manzanares M, Zareno J, Whitmore LA, Mogilner A, Horwitz AR. Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat Cell Biol 2008; 10(9): 1039–1050
doi: 10.1038/ncb1763 pmid:19160484
26 Boylan B, Gao C, Rathore V, Gill JC, Newman DK, Newman PJ. Identification of FcgRIIa as the ITAM-bearing receptor mediating αIIbβ3 outside-in integrin signaling in human platelets. Blood 2008; 112(7): 2780–2786
doi: 10.1182/blood-2008-02-142125 pmid:18641368
27 Mócsai A, Abram CL, Jakus Z, Hu Y, Lanier LL, Lowell CA. Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine-based activation motifs. Nat Immunol 2006; 7(12): 1326–1333
doi: 10.1038/ni1407 pmid:17086186
28 Abtahian F, Bezman N, Clemens R, Sebzda E, Cheng L, Shattil SJ, Kahn ML, Koretzky GA. Evidence for the requirement of ITAM domains but not SLP-76/Gads interaction for integrin signaling in hematopoietic cells. Mol Cell Biol 2006; 26(18): 6936–6949
doi: 10.1128/MCB.01040-06 pmid:16943434
29 del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP. Stretching single talin rod molecules activates vinculin binding. Science 2009; 323(5914): 638–641
doi: 10.1126/science.1162912 pmid:19179532
30 Zhang X, Jiang G, Cai Y, Monkley SJ, Critchley DR, Sheetz MP. Talin depletion reveals independence of initial cell spreading from integrin activation and traction. Nat Cell Biol 2008; 10(9): 1062–1068
doi: 10.1038/ncb1765 pmid:19160486
31 Humphries JD, Wang P, Streuli C, Geiger B, Humphries MJ, Ballestrem C. Vinculin controls focal adhesion formation by direct interactions with talin and actin. J Cell Biol 2007; 179(5): 1043–1057
doi: 10.1083/jcb.200703036 pmid:18056416
32 Saunders RM, Holt MR, Jennings L, Sutton DH, Barsukov IL, Bobkov A, Liddington RC, Adamson EA, Dunn GA, Critchley DR. Role of vinculin in regulating focal adhesion turnover. Eur J Cell Biol 2006; 85(6): 487–500
doi: 10.1016/j.ejcb.2006.01.014 pmid:16584805
33 Even-Ram S, Artym V, Yamada KM. Matrix control of stem cell fate. Cell 2006; 126(4): 645–647
doi: 10.1016/j.cell.2006.08.008 pmid:16923382
34 Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126(4): 677–689
doi: 10.1016/j.cell.2006.06.044 pmid:16923388
35 Kim C, Ye F, Ginsberg MH. Regulation of integrin activation. Annu Rev Cell Dev Biol 2011; 27(1): 321–345
doi: 10.1146/annurev-cellbio-100109-104104 pmid:21663444
36 Shattil SJ, Kim C, Ginsberg MH. The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 2010; 11(4): 288–300
doi: 10.1038/nrm2871 pmid:20308986
37 Wagner CL, Mascelli MA, Neblock DS, Weisman HF, Coller BS, Jordan RE. Analysis of GPIIb/IIIa receptor number by quantification of 7E3 binding to human platelets. Blood 1996; 88(3): 907–914
pmid:8704248
38 Shattil SJ, Kashiwagi H, Pampori N. Integrin signaling: the platelet paradigm. Blood 1998; 91(8): 2645–2657
pmid:9531572
39 Abram CL, Lowell CA. The ins and outs of leukocyte integrin signaling. Annu Rev Immunol 2009; 27(1): 339–362
doi: 10.1146/annurev.immunol.021908.132554 pmid:19302044
40 Pouwels J, Nevo J, Pellinen T, Yl?nne J, Ivaska J. Negative regulators of integrin activity. J Cell Sci 2012; 125(Pt 14): 3271–3280
doi: 10.1242/jcs.093641 pmid:22822081
41 Luo BH, Carman CV, Springer TA. Structural basis of integrin regulation and signaling. Annu Rev Immunol 2007; 25(1): 619–647
doi: 10.1146/annurev.immunol.25.022106.141618 pmid:17201681
42 Arnaout MA, Goodman SL, Xiong JP. Structure and mechanics of integrin-based cell adhesion. Curr Opin Cell Biol 2007; 19(5): 495–507
doi: 10.1016/j.ceb.2007.08.002 pmid:17928215
43 Luo BH, Springer TA. Integrin structures and conformational signaling. Curr Opin Cell Biol 2006; 18(5): 579–586
doi: 10.1016/j.ceb.2006.08.005 pmid:16904883
44 Arnaout MA, Mahalingam B, Xiong JP. Integrin structure, allostery, and bidirectional signaling. Annu Rev Cell Dev Biol 2005; 21(1): 381–410
doi: 10.1146/annurev.cellbio.21.090704.151217 pmid:16212500
45 Shimaoka M, Takagi J, Springer TA. Conformational regulation of integrin structure and function. Annu Rev Biophys Biomol Struct 2002; 31(1): 485–516
doi: 10.1146/annurev.biophys.31.101101.140922 pmid:11988479
46 Zhu J, Luo BH, Xiao T, Zhang C, Nishida N, Springer TA. Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. Mol Cell 2008; 32(6): 849–861
doi: 10.1016/j.molcel.2008.11.018 pmid:19111664
47 Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, Joachimiak A, Goodman SL, Arnaout MA. Crystal structure of the extracellular segment of integrin αVβ3. Science 2001; 294(5541): 339–345
doi: 10.1126/science.1064535 pmid:11546839
48 Takagi J, Petre BM, Walz T, Springer TA. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 2002; 110(5): 599–611
doi: 10.1016/S0092-8674(02)00935-2 pmid:12230977
49 Chen X, Xie C, Nishida N, Li Z, Walz T, Springer TA. Requirement of open headpiece conformation for activation of leukocyte integrin αXβ2. Proc Natl Acad Sci USA 2010; 107(33): 14727–14732
doi: 10.1073/pnas.1008663107 pmid:20679211
50 Luo BH, Strokovich K, Walz T, Springer TA, Takagi J. Allosteric beta1 integrin antibodies that stabilize the low affinity state by preventing the swing-out of the hybrid domain. J Biol Chem 2004; 279(26): 27466–27471
doi: 10.1074/jbc.M404354200 pmid:15123676
51 Xiong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, Arnaout MA. Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science 2002; 296(5565): 151–155
doi: 10.1126/science.1069040 pmid:11884718
52 Adair BD, Xiong JP, Maddock C, Goodman SL, Arnaout MA, Yeager M. Three-dimensional EM structure of the ectodomain of integrin αVβ3 in a complex with fibronectin. J Cell Biol 2005; 168(7): 1109–1118
doi: 10.1083/jcb.200410068 pmid:15795319
53 Ye F, Liu J, Winkler H, Taylor KA. Integrin αIIbβ3 in a membrane environment remains the same height after Mn2+ activation when observed by cryoelectron tomography. J Mol Biol 2008; 378(5): 976–986
doi: 10.1016/j.jmb.2008.03.014 pmid:18405917
54 Mehta RJ, Diefenbach B, Brown A, Cullen E, Jonczyk A, Güssow D, Luckenbach GA, Goodman SL. Transmembrane-truncated αvβ3 integrin retains high affinity for ligand binding: evidence for an “inside-out” suppressor? Biochem J 1998; 330(Pt 2): 861–869
pmid:9480902
55 Partridge AW, Liu S, Kim S, Bowie JU, Ginsberg MH. Transmembrane domain helix packing stabilizes integrin αIIbβ3 in the low affinity state. J Biol Chem 2005; 280(8): 7294–7300
doi: 10.1074/jbc.M412701200 pmid:15591321
56 Luo BH, Carman CV, Takagi J, Springer TA. Disrupting integrin transmembrane domain heterodimerization increases ligand binding affinity, not valency or clustering. Proc Natl Acad Sci USA 2005; 102(10): 3679–3684
doi: 10.1073/pnas.0409440102 pmid:15738420
57 Li W, Metcalf DG, Gorelik R, Li R, Mitra N, Nanda V, Law PB, Lear JD, Degrado WF, Bennett JS. A push-pull mechanism for regulating integrin function. Proc Natl Acad Sci USA 2005; 102(5): 1424–1429
doi: 10.1073/pnas.0409334102 pmid:15671157
58 Li R, Mitra N, Gratkowski H, Vilaire G, Litvinov R, Nagasami C, Weisel JW, Lear JD, DeGrado WF, Bennett JS. Activation of integrin αIIbβ3 by modulation of transmembrane helix associations. Science 2003; 300(5620): 795–798
doi: 10.1126/science.1079441 pmid:12730600
59 Kim C, Lau TL, Ulmer TS, Ginsberg MH. Interactions of platelet integrin αIIb and β3 transmembrane domains in mammalian cell membranes and their role in integrin activation. Blood 2009; 113(19): 4747–4753
doi: 10.1182/blood-2008-10-186551 pmid:19218549
60 Zhu J, Luo BH, Barth P, Schonbrun J, Baker D, Springer TA. The structure of a receptor with two associating transmembrane domains on the cell surface: integrin αIIbβ3. Mol Cell 2009; 34(2): 234–249
doi: 10.1016/j.molcel.2009.02.022 pmid:19394300
61 Luo BH, Springer TA, Takagi J. A specific interface between integrin transmembrane helices and affinity for ligand. PLoS Biol 2004; 2(6): e153
doi: 10.1371/journal.pbio.0020153 pmid:15208712
62 Lau TL, Kim C, Ginsberg MH, Ulmer TS. The structure of the integrin αIIbβ3 transmembrane complex explains integrin transmembrane signalling. EMBO J 2009; 28(9): 1351–1361
doi: 10.1038/emboj.2009.63 pmid:19279667
63 Li R, Babu CR, Lear JD, Wand AJ, Bennett JS, DeGrado WF. Oligomerization of the integrin αIIbβ3: roles of the transmembrane and cytoplasmic domains. Proc Natl Acad Sci USA 2001; 98(22): 12462–12467
doi: 10.1073/pnas.221463098 pmid:11606749
64 Hughes PE, Diaz-Gonzalez F, Leong L, Wu C, McDonald JA, Shattil SJ, Ginsberg MH. Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J Biol Chem 1996; 271(12): 6571–6574
pmid:8636068
65 Kim C, Schmidt T, Cho EG, Ye F, Ulmer TS, Ginsberg MH. Basic amino-acid side chains regulate transmembrane integrin signalling. Nature 2012; 481(7380): 209–213
doi: 10.1038/nature10697 pmid:22178926
66 Critchley DR. Biochemical and structural properties of the integrin-associated cytoskeletal protein talin. Annu Rev Biophys 2009; 38(1): 235–254
doi: 10.1146/annurev.biophys.050708.133744 pmid:19416068
67 Elliott PR, Goult BT, Kopp PM, Bate N, Grossmann JG, Roberts GC, Critchley DR, Barsukov IL. The Structure of the talin head reveals a novel extended conformation of the FERM domain. Structure 2010; 18(10): 1289–1299
doi: 10.1016/j.str.2010.07.011 pmid:20947018
68 Calderwood DA, Fujioka Y, de Pereda JM, García-Alvarez B, Nakamoto T, Margolis B, McGlade CJ, Liddington RC, Ginsberg MH. Integrin β cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. Proc Natl Acad Sci USA 2003; 100(5): 2272–2277
doi: 10.1073/pnas.262791999 pmid:12606711
69 Calderwood DA, Yan B, de Pereda JM, Alvarez BG, Fujioka Y, Liddington RC, Ginsberg MH. The phosphotyrosine binding-like domain of talin activates integrins. J Biol Chem 2002; 277(24): 21749–21758
doi: 10.1074/jbc.M111996200 pmid:11932255
70 Lee HS, Lim CJ, Puzon-McLaughlin W, Shattil SJ, Ginsberg MH. RIAM activates integrins by linking talin to ras GTPase membrane-targeting sequences. J Biol Chem 2009; 284(8): 5119–5127
doi: 10.1074/jbc.M807117200 pmid:19098287
71 Han J, Lim CJ, Watanabe N, Soriani A, Ratnikov B, Calderwood DA, Puzon-McLaughlin W, Lafuente EM, Boussiotis VA, Shattil SJ, Ginsberg MH. Reconstructing and deconstructing agonist-induced activation of integrin αIIbβ3. Curr Biol 2006; 16(18): 1796–1806
doi: 10.1016/j.cub.2006.08.035 pmid:16979556
72 Calderwood DA, Zent R, Grant R, Rees DJ, Hynes RO, Ginsberg MH. The Talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation. J Biol Chem 1999; 274(40): 28071–28074
doi: 10.1074/jbc.274.40.28071 pmid:10497155
73 Petrich BG, Marchese P, Ruggeri ZM, Spiess S, Weichert RA, Ye F, Tiedt R, Skoda RC, Monkley SJ, Critchley DR, Ginsberg MH. Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. J Exp Med 2007; 204(13): 3103–3111
doi: 10.1084/jem.20071800 pmid:18086863
74 Nieswandt B, Moser M, Pleines I, Varga-Szabo D, Monkley S, Critchley D, F?ssler R. Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. J Exp Med 2007; 204(13): 3113–3118
doi: 10.1084/jem.20071827 pmid:18086864
75 Ye F, Hu G, Taylor D, Ratnikov B, Bobkov AA, McLean MA, Sligar SG, Taylor KA, Ginsberg MH. Recreation of the terminal events in physiological integrin activation. J Cell Biol 2010; 188(1): 157–173
doi: 10.1083/jcb.200908045 pmid:20048261
76 Tadokoro S, Shattil SJ, Eto K, Tai V, Liddington RC, de Pereda JM, Ginsberg MH, Calderwood DA. Talin binding to integrin beta tails: a final common step in integrin activation. Science 2003; 302(5642): 103–106
doi: 10.1126/science.1086652 pmid:14526080
77 Wegener KL, Partridge AW, Han J, Pickford AR, Liddington RC, Ginsberg MH, Campbell ID. Structural basis of integrin activation by talin. Cell 2007; 128(1): 171–182
doi: 10.1016/j.cell.2006.10.048 pmid:17218263
78 García-Alvarez B, de Pereda JM, Calderwood DA, Ulmer TS, Critchley D, Campbell ID, Ginsberg MH, Liddington RC. Structural determinants of integrin recognition by talin. Mol Cell 2003; 11(1): 49–58
doi: 10.1016/S1097-2765(02)00823-7 pmid:12535520
79 Tanentzapf G, Brown NH. An interaction between integrin and the talin FERM domain mediates integrin activation but not linkage to the cytoskeleton. Nat Cell Biol 2006; 8(6): 601–606
doi: 10.1038/ncb1411 pmid:16648844
80 Petrich BG, Fogelstrand P, Partridge AW, Yousefi N, Ablooglu AJ, Shattil SJ, Ginsberg MH. The antithrombotic potential of selective blockade of talin-dependent integrin αIIbβ3 (platelet GPIIb-IIIa) activation. J Clin Invest 2007; 117(8): 2250–2259
doi: 10.1172/JCI31024 pmid:17627302
81 Haling JR, Monkley SJ, Critchley DR, Petrich BG. Talin-dependent integrin activation is required for fibrin clot retraction by platelets. Blood 2011; 117(5): 1719–1722
doi: 10.1182/blood-2010-09-305433 pmid:20971947
82 Goult BT, Bouaouina M, Elliott PR, Bate N, Patel B, Gingras AR, Grossmann JG, Roberts GC, Calderwood DA, Critchley DR, Barsukov IL. Structure of a double ubiquitin-like domain in the talin head: a role in integrin activation. EMBO J 2010; 29(6): 1069–1080
doi: 10.1038/emboj.2010.4 pmid:20150896
83 Anthis NJ, Wegener KL, Ye F, Kim C, Goult BT, Lowe ED, Vakonakis I, Bate N, Critchley DR, Ginsberg MH, Campbell ID. The structure of an integrin/talin complex reveals the basis of inside-out signal transduction. EMBO J 2009; 28(22): 3623–3632
doi: 10.1038/emboj.2009.287 pmid:19798053
84 Kim C, Ye F, Hu X, Ginsberg MH. Talin activates integrins by altering the topology of the β transmembrane domain. J Cell Biol 2012; 197(5): 605–611
doi: 10.1083/jcb.201112141 pmid:22641344
85 Kalli AC, Wegener KL, Goult BT, Anthis NJ, Campbell ID, Sansom MS. The structure of the talin/integrin complex at a lipid bilayer: an NMR and MD simulation study. Structure 2010; 18(10): 1280–1288
doi: 10.1016/j.str.2010.07.012 pmid:20947017
86 Moser M, Legate KR, Zent R, F?ssler R. The tail of integrins, talin, and kindlins. Science 2009; 324(5929): 895–899
doi: 10.1126/science.1163865 pmid:19443776
87 Rogalski TM, Mullen GP, Gilbert MM, Williams BD, Moerman DG. The UNC-112 gene in Caenorhabditis elegans encodes a novel component of cell-matrix adhesion structures required for integrin localization in the muscle cell membrane. J Cell Biol 2000; 150(1): 253–264
doi: 10.1083/jcb.150.1.253 pmid:10893272
88 Ussar S, Wang HV, Linder S, F?ssler R, Moser M. The Kindlins: subcellular localization and expression during murine development. Exp Cell Res 2006; 312(16): 3142–3151
doi: 10.1016/j.yexcr.2006.06.030 pmid:16876785
89 Ussar S, Moser M, Widmaier M, Rognoni E, Harrer C, Genzel-Boroviczeny O, F?ssler R. Loss of Kindlin-1 causes skin atrophy and lethal neonatal intestinal epithelial dysfunction. PLoS Genet 2008; 4(12): e1000289
doi: 10.1371/journal.pgen.1000289 pmid:19057668
90 Kloeker S, Major MB, Calderwood DA, Ginsberg MH, Jones DA, Beckerle MC. The Kindler syndrome protein is regulated by transforming growth factor-β and involved in integrin-mediated adhesion. J Biol Chem 2004; 279(8): 6824–6833
doi: 10.1074/jbc.M307978200 pmid:14634021
91 Montanez E, Ussar S, Schifferer M, B?sl M, Zent R, Moser M, F?ssler R. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev 2008; 22(10): 1325–1330
doi: 10.1101/gad.469408 pmid:18483218
92 Harburger DS, Bouaouina M, Calderwood DA. Kindlin-1 and-2 directly bind the C-terminal region of β integrin cytoplasmic tails and exert integrin-specific activation effects. J Biol Chem 2009; 284(17): 11485–11497
doi: 10.1074/jbc.M809233200 pmid:19240021
93 Ma YQ, Qin J, Wu C, Plow EF. Kindlin-2 (Mig-2): a co-activator of β3 integrins. J Cell Biol 2008; 181(3): 439–446
doi: 10.1083/jcb.200710196 pmid:18458155
94 Schmidt S, Nakchbandi I, Ruppert R, Kawelke N, Hess MW, Pfaller K, Jurdic P, F?ssler R, Moser M. Kindlin-3-mediated signaling from multiple integrin classes is required for osteoclast-mediated bone resorption. J Cell Biol 2011; 192(5): 883–897
doi: 10.1083/jcb.201007141 pmid:21357746
95 Svensson L, Howarth K, McDowall A, Patzak I, Evans R, Ussar S, Moser M, Metin A, Fried M, Tomlinson I, Hogg N. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat Med 2009; 15(3): 306–312
doi: 10.1038/nm.1931 pmid:19234463
96 Moser M, Bauer M, Schmid S, Ruppert R, Schmidt S, Sixt M, Wang HV, Sperandio M, F?ssler R. Kindlin-3 is required for β2 integrin-mediated leukocyte adhesion to endothelial cells. Nat Med 2009; 15(3): 300–305
doi: 10.1038/nm.1921 pmid:19234461
97 Malinin NL, Zhang L, Choi J, Ciocea A, Razorenova O, Ma YQ, Podrez EA, Tosi M, Lennon DP, Caplan AI, Shurin SB, Plow EF, Byzova TV. A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans. Nat Med 2009; 15(3): 313–318
doi: 10.1038/nm.1917 pmid:19234460
98 Kuijpers TW, van de Vijver E, Weterman MA, de Boer M, Tool AT, van den Berg TK, Moser M, Jakobs ME, Seeger K, Sanal O, Unal S, Cetin M, Roos D, Verhoeven AJ, Baas F. LAD-1/variant syndrome is caused by mutations in FERMT3. Blood 2009; 113(19): 4740–4746
doi: 10.1182/blood-2008-10-182154 pmid:19064721
99 Moser M, Nieswandt B, Ussar S, Pozgajova M, F?ssler R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med 2008; 14(3): 325–330
doi: 10.1038/nm1722 pmid:18278053
100 Bandyopadhyay A, Rothschild G, Kim S, Calderwood DA, Raghavan S. Functional differences between kindlin-1 and kindlin-2 in keratinocytes. J Cell Sci 2012; 125(Pt 9): 2172–2184
doi: 10.1242/jcs.096214 pmid:22328497
101 Qu H, Tu Y, Shi X, Larjava H, Saleem MA, Shattil SJ, Fukuda K, Qin J, Kretzler M, Wu C. Kindlin-2 regulates podocyte adhesion and fibronectin matrix deposition through interactions with phosphoinositides and integrins. J Cell Sci 2011; 124(Pt 6): 879–891
doi: 10.1242/jcs.076976 pmid:21325030
102 Yates LA, Lumb CN, Brahme NN, Zalyte R, Bird LE, De Colibus L, Owens RJ, Calderwood DA, Sansom MS, Gilbert RJ. Structural and functional characterization of the kindlin-1 pleckstrin homology domain. J Biol Chem 2012; 287(52): 43246–43261
doi: 10.1074/jbc.M112.422089 pmid:23132860
103 Liu J, Fukuda K, Xu Z, Ma YQ, Hirbawi J, Mao X, Wu C, Plow EF, Qin J. Structural basis of phosphoinositide binding to kindlin-2 protein pleckstrin homology domain in regulating integrin activation. J Biol Chem 2011; 286(50): 43334–43342
doi: 10.1074/jbc.M111.295352 pmid:22030399
104 Hart R, Stanley P, Chakravarty P, Hogg N. The kindlin 3 pleckstrin homology domain has an essential role in lymphocyte function-associated antigen 1 (LFA-1) integrin-mediated B cell adhesion and migration. J Biol Chem 2013; 288(21): 14852–14862
doi: 10.1074/jbc.M112.434621 pmid:23595985
105 Goult BT, Bouaouina M, Harburger DS, Bate N, Patel B, Anthis NJ, Campbell ID, Calderwood DA, Barsukov IL, Roberts GC, Critchley DR. The structure of the N-terminus of kindlin-1: a domain important for αIIbβ3 integrin activation. J Mol Biol 2009; 394(5): 944–956
doi: 10.1016/j.jmb.2009.09.061 pmid:19804783
106 Perera HD, Ma YQ, Yang J, Hirbawi J, Plow EF, Qin J. Membrane binding of the N-terminal ubiquitin-like domain of kindlin-2 is crucial for its regulation of integrin activation. Structure 2011; 19(11): 1664–1671
doi: 10.1016/j.str.2011.08.012 pmid:22078565
107 Bouaouina M, Goult BT, Huet-Calderwood C, Bate N, Brahme NN, Barsukov IL, Critchley DR, Calderwood DA. A conserved lipid-binding loop in the kindlin FERM F1 domain is required for kindlin-mediated αIIbβ3 integrin coactivation. J Biol Chem 2012; 287(10): 6979–6990
doi: 10.1074/jbc.M111.330845 pmid:22235127
108 Ye F, Petrich BG. Kindlin: helper, co-activator, or booster of talin in integrin activation? Curr Opin Hematol 2011; 18(5): 356–360
doi: 10.1097/MOH.0b013e3283497f09 pmid:21730832
109 Kahner BN, Kato H, Banno A, Ginsberg MH, Shattil SJ, Ye F. Kindlins, integrin activation and the regulation of talin recruitment to αIIbβ3. PLoS ONE 2012; 7(3): e34056
doi: 10.1371/journal.pone.0034056 pmid:22457811
110 Bledzka K, Liu J, Xu Z, Perera HD, Yadav SP, Bialkowska K, Qin J, Ma YQ, Plow EF. Spatial coordination of kindlin-2 with talin head domain in interaction with integrin β cytoplasmic tails. J Biol Chem 2012; 287(29): 24585–24594
doi: 10.1074/jbc.M111.336743 pmid:22648415
111 Lefort CT, Rossaint J, Moser M, Petrich BG, Zarbock A, Monkley SJ, Critchley DR, Ginsberg MH, F?ssler R, Ley K. Distinct roles for talin-1 and kindlin-3 in LFA-1 extension and affinity regulation. Blood 2012; 119(18): 4275–4282
doi: 10.1182/blood-2011-08-373118 pmid:22431571
112 Morrison VL, MacPherson M, Savinko T, Lek HS, Prescott A, Fagerholm SC. The β2 integrin-kindlin-3 interaction is essential for T-cell homing but dispensable for T-cell activation in vivo. Blood 2013; 122(8): 1428–1436
doi: 10.1182/blood-2013-02-484998 pmid:23823319
113 Margadant C, Kreft M, de Groot DJ, Norman JC, Sonnenberg A. Distinct roles of talin and kindlin in regulating integrin α5β1 function and trafficking. Curr Biol 2012; 22(17): 1554–1563
doi: 10.1016/j.cub.2012.06.060 pmid:22795696
114 Ye F, Petrich BG, Anekal P, Lefort CT, Kasirer-Friede A, Shattil SJ, Ruppert R, Moser M, F?ssler R, Ginsberg MH. The mechanism of kindlin-mediated activation of integrin αIIbβ3. Curr Biol 2013; 23(22): 2288–2295
doi: 10.1016/j.cub.2013.09.050 pmid:24210614
115 Feng C, Li YF, Yau YH, Lee HS, Tang XY, Xue ZH, Zhou YC, Lim WM, Cornvik TC, Ruedl C, Shochat SG, Tan SM. Kindlin-3 mediates integrin αLβ2 outside-in signaling, and it interacts with scaffold protein receptor for activated-C kinase 1 (RACK1). J Biol Chem 2012; 287(14): 10714–10726
doi: 10.1074/jbc.M111.299594 pmid:22334666
116 Manevich-Mendelson E, Feigelson SW, Pasvolsky R, Aker M, Grabovsky V, Shulman Z, Kilic SS, Rosenthal-Allieri MA, Ben-Dor S, Mory A, Bernard A, Moser M, Etzioni A, Alon R. Loss of Kindlin-3 in LAD-III eliminates LFA-1 but not VLA-4 adhesiveness developed under shear flow conditions. Blood 2009; 114(11): 2344–2353
doi: 10.1182/blood-2009-04-218636 pmid:19617577
117 B?ttcher RT, Stremmel C, Meves A, Meyer H, Widmaier M, Tseng HY, F?ssler R. Sorting nexin 17 prevents lysosomal degradation of β1 integrins by binding to the β1-integrin tail. Nat Cell Biol 2012; 14(6): 584–592
doi: 10.1038/ncb2501 pmid:22561348
118 Tu Y, Wu S, Shi X, Chen K, Wu C. Migfilin and Mig-2 link focal adhesions to filamin and the actin cytoskeleton and function in cell shape modulation. Cell 2003; 113(1): 37–47
doi: 10.1016/S0092-8674(03)00163-6 pmid:12679033
119 Mackinnon AC, Qadota H, Norman KR, Moerman DG, Williams BD. C. elegans PAT-4/ILK functions as an adaptor protein within integrin adhesion complexes. Curr Biol 2002; 12(10): 787–797
doi: 10.1016/S0960-9822(02)00810-2 pmid:12015115
120 Qadota H, Moerman DG, Benian GM. A molecular mechanism for the requirement of PAT-4 (integrin-linked kinase (ILK)) for the localization of UNC-112 (Kindlin) to integrin adhesion sites. J Biol Chem 2012; 287(34): 28537–28551
doi: 10.1074/jbc.M112.354852 pmid:22761445
121 Ithychanda SS, Das M, Ma YQ, Ding K, Wang X, Gupta S, Wu C, Plow EF, Qin J. Migfilin, a molecular switch in regulation of integrin activation. J Biol Chem 2009; 284(7): 4713–4722
doi: 10.1074/jbc.M807719200 pmid:19074766
122 Moik DV, Janbandhu VC, F?ssler R. Loss of migfilin expression has no overt consequences on murine development and homeostasis. J Cell Sci 2011; 124(Pt 3): 414–421
doi: 10.1242/jcs.075960 pmid:21224394
123 Hato T, Pampori N, Shattil SJ. Complementary roles for receptor clustering and conformational change in the adhesive and signaling functions of integrin αIIbβ3. J Cell Biol 1998; 141(7): 1685–1695
doi: 10.1083/jcb.141.7.1685 pmid:9647659
124 Mould AP, Garratt AN, Puzon-McLaughlin W, Takada Y, Humphries MJ. Regulation of integrin function: evidence that bivalent-cation-induced conformational changes lead to the unmasking of ligand-binding sites within integrin α5β1. Biochem J 1998; 331(Pt 3): 821–828
pmid:9560310
125 Puzon-McLaughlin W, Yednock TA, Takada Y. Regulation of conformation and ligand binding function of integrin α5β1 by the β1 cytoplasmic domain. J Biol Chem 1996; 271(28): 16580–16585
doi: 10.1074/jbc.271.28.16580 pmid:8663265
126 Phillips DR, Agin PP. Platelet membrane defects in Glanzmann’s thrombasthenia. Evidence for decreased amounts of two major glycoproteins. J Clin Invest 1977; 60(3): 535–545
doi: 10.1172/JCI108805 pmid:70433
127 Nurden AT, Caen JP. An abnormal platelet glycoprotein pattern in three cases of Glanzmann’s thrombasthenia. Br J Haematol 1974; 28(2): 253–260
doi: 10.1111/j.1365-2141.1974.tb06660.x pmid:4473996
128 Nurden AT. Glanzmann thrombasthenia. Orphanet J Rare Dis 2006; 1(1): 10
doi: 10.1186/1750-1172-1-10 pmid:16722529
129 Lanza F, Stierlé A, Fournier D, Morales M, André G, Nurden AT, Cazenave JP. A new variant of Glanzmann’s thrombasthenia (Strasbourg I). Platelets with functionally defective glycoprotein IIb-IIIa complexes and a glycoprotein IIIa 214Arg→214Trp mutation. J Clin Invest 1992; 89(6): 1995–2004
doi: 10.1172/JCI115808 pmid:1602006
130 Loftus JC, O’Toole TE, Plow EF, Glass A, Frelinger AL 3rd, Ginsberg MH. A β3 integrin mutation abolishes ligand binding and alters divalent cation-dependent conformation. Science 1990; 249(4971): 915–918
doi: 2392682" target="_blank">10.1126/science. pmid:2392682 pmid:2392682
131 Chen YP, Djaffar I, Pidard D, Steiner B, Cieutat AM, Caen JP, Rosa JP. Ser-752→Pro mutation in the cytoplasmic domain of integrin β3 subunit and defective activation of platelet integrin αIIbβ3 (glycoprotein IIb-IIIa) in a variant of Glanzmann thrombasthenia. Proc Natl Acad Sci USA 1992; 89(21): 10169–10173
doi: 10.1073/pnas.89.21.10169 pmid:1438206
132 Wang R, Shattil SJ, Ambruso DR, Newman PJ. Truncation of the cytoplasmic domain of β3 in a variant form of Glanzmann thrombasthenia abrogates signaling through the integrin αIIbβ3 complex. J Clin Invest 1997; 100(9): 2393–2403
doi: 10.1172/JCI119780 pmid:9351872
133 Ruiz C, Liu CY, Sun QH, Sigaud-Fiks M, Fressinaud E, Muller JY, Nurden P, Nurden AT, Newman PJ, Valentin N. A point mutation in the cysteine-rich domain of glycoprotein (GP) IIIa results in the expression of a GPIIb-IIIa (αIIbβ3) integrin receptor locked in a high-affinity state and a Glanzmann thrombasthenia-like phenotype. Blood 2001; 98(8): 2432–2441
doi: 10.1182/blood.V98.8.2432 pmid:11588040
134 Chen P, Melchior C, Brons NH, Schlegel N, Caen J, Kieffer N. Probing conformational changes in the I-like domain and the cysteine-rich repeat of human β3 integrins following disulfide bond disruption by cysteine mutations: identification of cysteine 598 involved in αIIbβ3 activation. J Biol Chem 2001; 276(42): 38628–38635
doi: 10.1074/jbc.M105737200 pmid:11507099
135 Hanna S, Etzioni A. Leukocyte adhesion deficiencies. Ann N Y Acad Sci 2012; 1250(1): 50–55
doi: 10.1111/j.1749-6632.2011.06389.x pmid:22276660
136 Lai-Cheong JE, McGrath JA. Kindler syndrome. Dermatol Clin 2010; 28(1): 119–124
doi: 10.1016/j.det.2009.10.013 pmid:19945624
137 D’Souza MA, Kimble RM, McMillan JR. Kindler syndrome pathogenesis and fermitin family homologue 1 (kindlin-1) function. Dermatol Clin 2010; 28(1): 115–118
doi: 10.1016/j.det.2009.10.012 pmid:19945623
138 Heinemann A, He Y, Zimina E, Boerries M, Busch H, Chmel N, Kurz T, Bruckner-Tuderman L, Has C. Induction of phenotype modifying cytokines by FERMT1 mutations. Hum Mutat 2011; 32(4): 397–406
doi: 10.1002/humu.21449 pmid:21309038
[1] Jiansong Huang,Yulan Zhou,Xiaoyu Su,Yuanjing Lyu,Lanlan Tao,Xiaofeng Shi,Ping Liu,Zhangbiao Long,Zheng Ruan,Bing Xiao,Wenda Xi,Quansheng Zhou,Jianhua Mao,Xiaodong Xi. Roles of integrin β3 cytoplasmic tail in bidirectional signal transduction in a trans-dominant inhibition model[J]. Front. Med., 2016, 10(3): 311-319.
[2] Marijke A. de Vries,Arash Alipour,Erwin Birnie,Andrew Westzaan,Selvetta van Santen,Ellen van der Zwan,Anho H. Liem,Noëlle van der Meulen,Manuel Castro Cabezas. Coronary leukocyte activation in relation to progression of coronary artery disease[J]. Front. Med., 2016, 10(1): 85-90.
[3] Yuan CHEN, Qi TIAN. The role of protein kinase C epsilon in neural signal transduction and neurogenic diseases[J]. Front Med, 2011, 5(1): 70-76.
[4] Lei CHEN, Liang HU, Liang LI, Yuan LIU, Qian-Qian TU, Yan-Xin CHANG, He-Xin YAN, Meng-Chao WU, Hong-Yang WANG, . Dysregulation of β-catenin by hepatitis B virus X protein in HBV-infected human hepatocellular carcinomas[J]. Front. Med., 2010, 4(4): 399-411.
[5] Ling XU MM, Feng WANG MM, Xuan-Fu XU MD, Wen-Hui MO BM, Rong WAN MD, Chuan-Yong GUO MD, Xing-Peng WANG MD, . Data mining of microarray for differentially expressed genes in liver metastasis from gastric cancer[J]. Front. Med., 2010, 4(2): 247-253.
[6] Wen YAN MD, Min FENG MD, Pei-Hua WANG MD, Dao-Wen WANG MD, . Effect of bradykinin on bradykinin-B2 receptor in rat aortic vascular smooth muscle cells and the involved signal transduction pathways[J]. Front. Med., 2010, 4(2): 225-228.
[7] Xu WANG MS, Xiao-Wei GONG MD, PhD, Yong JIANG MD, PhD, Yu-Hua LI PhD, . Mitogen-activated protein kinase pathway inhibitors: inhibitors for diseases?[J]. Front. Med., 2010, 4(1): 46-53.
[8] Rui ZHU MD , Lin SHEN MD , Jianguo LIU MD , Weili ZHANG MM , Ling YANG MD , . Effect of decoction on CD14 expression in lipopolysaccharide signal transduction pathway of alcohol-induced liver disease in rats[J]. Front. Med., 2009, 3(3): 363-367.
[9] Jianye WU, Chuanyong GUO, Jun LIU, Xuanfu XUAN. Expression of integrin in hepatic fibrosis and intervention of resveratrol[J]. Front Med Chin, 2009, 3(1): 100-107.
[10] WU Jun, LIN Jinchao, HE Zhaochu, OU Biru, GUO Haisen. Effect of hyperlipidemia on endothelial VCAM-1 expression and the protective role of fenofibrate[J]. Front. Med., 2007, 1(4): 356-358.
[11] LEI Caixia, ZHANG Wei, SUN Xiaowei, DU Guoping, WANG Li, LIU Yinkun. Effects of galectin-3 inhibition on endometrial cell cycle and adhesion[J]. Front. Med., 2007, 1(4): 390-397.
[12] GONG Xiaowei, WEI Jie, LI Yusheng, CHENG Weiwei, DENG Peng, JIANG Yong. Involvement of p38 mitogen-activated protein kinase in the regulation of platelet-derived growth factor -induced cell migration[J]. Front. Med., 2007, 1(3): 248-252.
[13] LI Zhizhen, LI Fangping, YAN Li, LI Feng, LI Yan, CHENG Hua, FU Zuzhi. Study on the action of resistin-induced human umbilical vein endothelial cell dysfunction[J]. Front. Med., 2007, 1(2): 196-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed