Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2015, Vol. 9 Issue (3) : 261-274    https://doi.org/10.1007/s11684-015-0406-y
REVIEW
Environmental pollution and DNA methylation: carcinogenesis, clinical significance, and practical applications
Yi Cao()
Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
 Download: PDF(210 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Environmental pollution is one of the main causes of human cancer. Exposures to environmental carcinogens result in genetic and epigenetic alterations which induce cell transformation. Epigenetic changes caused by environmental pollution play important roles in the development and progression of environmental pollution-related cancers. Studies on DNA methylation are among the earliest and most conducted epigenetic research linked to cancer. In this review, the roles of DNA methylation in carcinogenesis and their significance in clinical medicine were summarized, and the effects of environmental pollutants, particularly air pollutants, on DNA methylation were introduced. Furthermore, prospective applications of DNA methylation to environmental pollution detection and cancer prevention were discussed.

Keywords environmental pollution      DNA methylation      cancer      biomarker      diagnosis      therapy      prevention     
Just Accepted Date: 10 July 2015   Online First Date: 20 August 2015    Issue Date: 26 August 2015
 Cite this article:   
Yi Cao. Environmental pollution and DNA methylation: carcinogenesis, clinical significance, and practical applications[J]. Front. Med., 2015, 9(3): 261-274.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-015-0406-y
https://academic.hep.com.cn/fmd/EN/Y2015/V9/I3/261
Agent Group* Main sources Main objects of pollution or main modes of entry
Polycyclic aromatic hydrocarbons (PAHs) 1/2A/2B/3 Coal and oil combustion products Air, soil
Nitro-polycyclic aromatic hydrocarbons 3 Coal and oil combustion products Air, soil
Coal tar 1 Coal and oil combustion products Air, soil
Coke productions 1 Coal coking Air, water, soil
Carbon black 2B Coal and oil combustion products Air
Sulfur dioxide (SO2) 3 Coal and oil combustion products Air
PM2.5 1 Multi-source, e.g., coal and oil combustion products, etc. Air
Arsenic and its compounds 1 Coal and oil combustion products, mining, smelting, etc. Air, water, soil
Formaldehyde 1 Industry, medicine, agriculture, etc. Air, water, food
Asbestos 1 Construction industry, building materials Inhalation, contact
Bitumen 2B/3 Petrochemical industry, construction industry, etc. Inhalation, contact
Radon and its decay products 1 Mining, smelting Inhalation, radioactive contamination
Benzene 1 Chemical industry Air, water
Styrene 2B Chemical industry Air, water, soil
Trichloroethylene 1 Pharmaceutical and chemical industry Air, water
1,3-butadiene 1 Chemical industry Inhalation, contact
4,4'-diaminobiphenyl ether 2B Synthetic dyes Inhalation, contact
Bis-chloromethyl 1 Chemical industry Inhalation
Carbon tetrachloride 2B Chemical industry Inhalation
Epoxyethane 1 Detergents, fungicides, etc. Inhalation
Dimethylsulfate 2A Synthetic dyes, chemical industry Inhalation
Polychlorophends and their sodium salts 2B Chemical industry Inhalation, contact, ingestion
Dimethylcarbamyl chloride 2A Pharmaceutical and pesticide industry Inhalation, contact, ingestion
Auramine 2B/1 Dyes Inhalation, contact, ingestion
Epichlorohydrin 2A Chemical industry Inhalation, contact, ingestion
Polychloroprene 3 Chemical industry Inhalation, contact
Amitrole 3 Herbicide Water, soil, air
Hexachlorocyclohexane 2B Insecticide Water, soil, air
Dichlorodiphenyltrichloroethane (DDT) 2B Insecticide Water, soil, air
Heptachlor 2B Insecticide Water, soil, air
Chlordane 2B Insecticide Water, soil, air
Hematite (Fe2O3) 3 Mining, smelting Air, soil
Lead compounds 2B/3 Mining, smelting (lead dust), industry, etc. Air, water, soil
Titanium dioxide 2B Mining, smelting Inhalation
Chromium (VI) compounds 1 Smelting (chromium residue), metal processing, electroplating, tanning, etc. Water, soil, air
Cadmium and its compounds 1 Mining, smelting, metal processing, dyes, chemical industry, etc. Water, soil
Nickel compounds 1/2B Mining, smelting, metal processing Air, water, soil
Beryllium and its compounds 1 Mining, smelting Air, water, soil
Tab.1  Some pollutants related to human carcinogenesis
Agent Alterations in DNA methylation References
Polycyclic aromatic hydrocarbons (PAHs) Global DNA hypomethylation and gene-specific hyper- and hypomethylation [47,54-63,80]
Carbon black Gene-specific hypermethylation [68]
PM2.5, PM10 Global DNA hypomethylation and gene-specific hyper- and hypomethylation [65-76]
Arsenic Global DNA hypomethylation and gene-specific hyper- and hypomethylation [77-79]
Formaldehyde Global DNA hypomethylation [80,81]
Radon Gene-specific hypermethylation [82-84]
Asbestos Gene-specific hyper- and hypomethylation [85-87]
Benzene Global DNA hypomethylation and gene-specific hyper- and hypomethylation [80, 88-90]
Styrene Global DNA hypomethylation [80]
Trichloroethylene Global DNA hypomethylation [80]
1,3-Butadiene Global DNA hypomethylation and gene-specific hypermethylation [91-94]
Carbon tetrachloride Global DNA hypomethylation [80]
Dimethylsulfate DNA hypermethylation [95]
Epichlorohydrin Global DNA hypomethylation [80]
Hexachlorocyclohexane Global DNA hypomethylation [96]
Dichlorodiphenyltrichloroethane (DDT) Global DNA hypomethylation and gene-specific hyper- and hypomethylation [97,98]
Chlordane Global DNA hypomethylation [96]
Lead Global DNA hypomethylation and gene-specific hyper- and hypomethylation [99?102]
Chromium Global DNA hypomethylation and gene-specific hyper- and hypomethylation [103?106]
Cadmium Global DNA hyper- and hypomethylationand gene-specific hypermethylation [107-119]
Nickel Gene-specific hypermethylation [120-125]
Beryllium Gene-specific hypermethylation [68]
Tab.2  Some environmental pollutants and DNA methylation in previous studies
1 Chen Z, Wang JN, Ma GX, Zhang YS. China tackles the health effects of air pollution. Lancet 2013; 382(9909): 1959–1960
https://doi.org/10.1016/S0140-6736(13)62064-4 pmid: 24332069
2 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646–674
https://doi.org/10.1016/j.cell.2011.02.013 pmid: 21376230
3 Baylin SB, Jones PA. A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer 2011; 11(10): 726–734
https://doi.org/10.1038/nrc3130 pmid: 21941284
4 Sandoval J, Esteller M. Cancer epigenomics: beyond genomics. Curr Opin Genet Dev 2012; 22(1): 50–55
https://doi.org/10.1016/j.gde.2012.02.008 pmid: 22402447
5 You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 2012; 22(1): 9–20
https://doi.org/10.1016/j.ccr.2012.06.008 pmid: 22789535
6 Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell 2012; 150(1): 12–27
https://doi.org/10.1016/j.cell.2012.06.013 pmid: 22770212
7 Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer 2004; 4(2): 143–153
https://doi.org/10.1038/nrc1279 pmid: 14732866
8 Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev 2009; 23(7): 781–783
https://doi.org/10.1101/gad.1787609 pmid: 19339683
9 Inst Health Metrics & Evaluation, Global Burden of Disease Cause Patterns 2010, available at: go.nature.com/brc4nw
10 Deweerdt S. Aetiology: crucial clues. Nature 2014; 513(7517): S12–S13
https://doi.org/10.1038/513S12a pmid: 25208067
11 Loomis D, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Baan R, Mattock H, Straif K. International Agency for Research on Cancer Monograph Working Group IARC: the carcinogenicity of outdoor air pollution. Lancet Oncol 2013; 14(13): 1262–1263
https://doi.org/10.1016/S1470-2045(13)70487-X pmid: 25035875
12 Watson T. Environment: breathing trouble. Nature 2014; 513(7517): S14–S15
https://doi.org/10.1038/513S14a pmid: 25208068
13 Yang G, Wang Y, Zeng Y, Gao GF, Liang X, Zhou M, Wan X, Yu S, Jiang Y, Naghavi M, Vos T, Wang H, Lopez AD, Murray CJ. Rapid health transition in China, 1990?2010: findings from the Global Burden of Disease Study 2010. Lancet 2013; 381(9882): 1987–2015
https://doi.org/10.1016/S0140-6736(13)61097-1 pmid: 23746901
14 Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, Hoffmann B, Fischer P, Nieuwenhuijsen MJ, Brunekreef B, Xun WW, Katsouyanni K, Dimakopoulou K, Sommar J, Forsberg B, Modig L, Oudin A, Oftedal B, Schwarze PE, Nafstad P, De Faire U, Pedersen NL, Ostenson CG, Fratiglioni L, Penell J, Korek M, Pershagen G, Eriksen KT, S?rensen M, Tj?nneland A, Ellermann T, Eeftens M, Peeters PH, Meliefste K, Wang M, Bueno-de-Mesquita B, Key TJ, de Hoogh K, Concin H, Nagel G, Vilier A, Grioni S, Krogh V, Tsai MY, Ricceri F, Sacerdote C, Galassi C, Migliore E, Ranzi A, Cesaroni G, Badaloni C, Forastiere F, Tamayo I, Amiano P, Dorronsoro M, Trichopoulou A, Bamia C, Vineis P, Hoek G. Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol 2013; 14(9): 813–822
https://doi.org/10.1016/S1470-2045(13)70279-1 pmid: 23849838
15 Subbaraman N. Public health:a burning issue. Nature 2014; 513: S16–S17
https://doi.org/10.1038/513S16a pmid: 25208069
16 Cao Y, Gao H. Prevalence and causes of air pollution and lung cancer in Xuanwei City and Fuyuan County, Yunnan Province, China. Front Med 2012; 6(2): 217–220
https://doi.org/10.1007/s11684-012-0192-8 pmid: 22573219
17 Xiao Y, Shao Y, Yu X, Zhou G. The epidemic status and risk factors of lung cancer in Xuanwei City, Yunnan Province, China. Front Med 2012; 6(4): 388–394
https://doi.org/10.1007/s11684-012-0233-3 pmid: 23224416
18 Mumford JL, He XZ, Chapman RS, Cao SR, Harris DB, Li XM, Xian YL, Jiang WZ, Xu CW, Chuang JC, Wilson WE, Cooke M, Lung cancer and indoor air pollution in Xuan Wei, China. Science 1987; 235(4785): 217–220
https://doi.org/10.1126/science.3798109 pmid: 3798109
19 Oey H, Whitelaw E. On the meaning of the word ”epimutation”. Trends Genet 2014; 30(12): 519–520
https://doi.org/10.1016/j.tig.2014.08.005 pmid: 25301328
20 Sin?i? N, Herceg Z. DNA methylation and cancer: ghosts and angels above the genes. Curr Opin Oncol 2011; 23(1): 69–76
https://doi.org/10.1097/CCO.0b013e3283412eb4 pmid: 21119515
21 Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, Schwind S, Pang J, Yu J, Muthusamy N, Havelange V, Volinia S, Blum W, Rush LJ, Perrotti D, Andreeff M, Bloomfield CD, Byrd JC, Chan K, Wu LC, Croce CM, Marcucci G. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 2009; 113(25): 6411–6418
https://doi.org/10.1182/blood-2008-07-170589 pmid: 19211935
22 Hovestadt V, Jones DT, Picelli S, Wang W, Kool M, Northcott PA, Sultan M, Stachurski K, Ryzhova M, Warnatz HJ, Ralser M, Brun S, Bunt J, J?ger N, Kleinheinz K, Erkek S, Weber UD, Bartholomae CC, von Kalle C, Lawerenz C, Eils J, Koster J, Versteeg R, Milde T, Witt O, Schmidt S, Wolf S, Pietsch T, Rutkowski S, Scheurlen W, Taylor MD, Brors B, Felsberg J, Reifenberger G, Borkhardt A, Lehrach H, Wechsler-Reya RJ, Eils R, Yaspo ML, Landgraf P, Korshunov A, Zapatka M, Radlwimmer B, Pfister SM, Lichter P. Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature 2014; 510(7506): 537–541
https://doi.org/10.1038/nature13268 pmid: 24847876
23 James SR, Cedeno CD, Sharma A, Zhang W, Mohler JL, Odunsi K, Wilson EM, Karpf AR. DNA methylation and nucleosome occupancy regulate the cancer germline antigen gene MAGEA11. Epigenetics 2013; 8(8): 849–863
https://doi.org/10.4161/epi.25500 pmid: 23839233
24 Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci USA 2000; 97(10): 5237–5242
https://doi.org/10.1073/pnas.97.10.5237 pmid: 10805783
25 Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009; 462(7271): 315–322
https://doi.org/10.1038/nature08514 pmid: 19829295
26 Baer C, Claus R, Plass C. Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res 2013; 73(2): 473–477
https://doi.org/10.1158/0008-5472.CAN-12-3731 pmid: 23316035
27 Lopez-Serra P, Esteller M. DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene 2012; 31(13): 1609–1622
https://doi.org/10.1038/onc.2011.354 pmid: 21860412
28 Bell AC, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 2000; 405(6785): 482–485
https://doi.org/10.1038/35013100 pmid: 10839546
29 Fuks Z, Kolesnick R. Engaging the vascular component of the tumor response. Cancer Cell 2005; 8(2): 89–91
https://doi.org/10.1016/j.ccr.2005.07.014 pmid: 16098459
30 Kulis M, Heath S, Bibikova M, Queirós AC, Navarro A, Clot G, Martínez-Trillos A, Castellano G, Brun-Heath I, Pinyol M, Barberán-Soler S, Papasaikas P, Jares P, Beà S, Rico D, Ecker S, Rubio M, Royo R, Ho V, Klotzle B, Hernández L, Conde L, López-Guerra M, Colomer D, Villamor N, Aymerich M, Rozman M, Bayes M, Gut M, Gelpí JL, Orozco M, Fan JB, Quesada V, Puente XS, Pisano DG, Valencia A, López-Guillermo A, Gut I, López-Otín C, Campo E, Martín-Subero JI. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet 2012; 44(11): 1236–1242
https://doi.org/10.1038/ng.2443 pmid: 23064414
31 Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJ, Haussler D, Marra MA, Hirst M, Wang T, Costello JF. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 2010; 466(7303): 253–257
https://doi.org/10.1038/nature09165 pmid: 20613842
32 Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009; 462(7271): 315–322
https://doi.org/10.1038/nature08514 pmid: 19829295
33 Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 2014; 26(4): 577–590
https://doi.org/10.1016/j.ccr.2014.07.028 pmid: 25263941
34 Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M, Ji H, Potash JB, Sabunciyan S, Feinberg AP. Genome-wide methylation analysis of human colon cancer reveals similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 2009; 41: 178–186
https://doi.org/10.1038/ng.298 pmid: 19151715
35 Kanai Y, Ushijima S, Nakanishi Y, Sakamoto M, Hirohashi S. Mutation of the DNA methyltransferase (DNMT) 1 gene in human colorectal cancers. Cancer Lett 2003; 192(1): 75–82
https://doi.org/10.1016/S0304-3835(02)00689-4 pmid: 12637155
36 Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y, Shi JY, Zhu YM, Tang L, Zhang XW, Liang WX, Mi JQ, Song HD, Li KQ, Chen Z, Chen SJ. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 2011; 43(4): 309–315
https://doi.org/10.1038/ng.788 pmid: 21399634
37 Varley KE, Gertz J, Bowling KM, Parker SL, Reddy TE, Pauli-Behn F, Cross MK, Williams BA, Stamatoyannopoulos JA, Crawford GE, Absher DM, Wold BJ, Myers RM. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res 2013; 23(3): 555–567
https://doi.org/10.1101/gr.147942.112 pmid: 23325432
38 Schuster-B?ckler B, Lehner B. Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 2012; 488(7412): 504–507
https://doi.org/10.1038/nature11273 pmid: 22820252
39 Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts<?Pub Caret1?> SA, Kiezun A, Hammerman PS, McKenna A, Drier Y, Zou L, Ramos AH, Pugh TJ, Stransky N, Helman E, Kim J, Sougnez C, Ambrogio L, Nickerson E, Shefler E, Cortés ML, Auclair D, Saksena G, Voet D, Noble M, DiCara D, Lin P, Lichtenstein L, Heiman DI, Fennell T, Imielinski M, Hernandez B, Hodis E, Baca S, Dulak AM, Lohr J, Landau DA, Wu CJ, Melendez-Zajgla J, Hidalgo-Miranda A, Koren A, McCarroll SA, Mora J, Lee RS, Crompton B, Onofrio R, Parkin M, Winckler W, Ardlie K, Gabriel SB, Roberts CW, Biegel JA, Stegmaier K, Bass AJ, Garraway LA, Meyerson M, Golub TR, Gordenin DA, Sunyaev S, Lander ES, Getz G. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013; 499(7457): 214–218
https://doi.org/10.1038/nature12213 pmid: 23770567
40 Polak P, Karli? R, Koren A, Thurman R, Sandstrom R, Lawrence MS, Reynolds A, Rynes E, Vlahovi?ek K, Stamatoyannopoulos JA, Sunyaev SR. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 2015; 518(7539): 360–364
https://doi.org/10.1038/nature14221 pmid: 25693567
41 Hitchins MP, Rapkins RW, Kwok CT, Srivastava S, Wong JJ, Khachigian LM, Polly P, Goldblatt J, Ward RL. Dominantly inherited constitutional epigenetic silencing of MLH1 in a cancer-affected family is linked to a single nucleotide variant within the 5’UTR. Cancer Cell 2011; 20(2): 200–213
https://doi.org/10.1016/j.ccr.2011.07.003 pmid: 21840485
42 Guerrero-Presto R, Michailidi C, Marchionni L, Pickering CR, Frederick MJ, Myers JN, Yegnasubramanian S, Hadar T, Noordhuis MG, Zizkova V, Fertig E, Agrawal N, Westra W, Koch W, Califano J, Velculescu VE, Sidransky D. Key tumor suppressor genes inactivated by “greater promoter’ methylation and somatic mutations in head and neck cancer. Epigenetics 2014; 9: 1031–1046
https://doi.org/10.4161/epi.29025 pmid: 24786473
43 Tomasetti C, Vogelstein B. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 2015; 347(6217): 78–81
https://doi.org/10.1126/science.1260825 pmid: 25554788
44 Roadmap Epigenomics Consortium; Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J, Ziller MJ, Amin V, Whitaker JW, Schultz MD, Ward LD, Sarkar A, Quon G, Sandstrom RS, Eaton ML, Wu YC, Pfenning AR, Wang X, Claussnitzer M, Liu Y, Coarfa C, Harris RA, Shoresh N, Epstein CB, Gjoneska E, Leung D, Xie W, Hawkins RD, Lister R, Hong C, Gascard P, Mungall AJ, Moore R, Chuah E, Tam A, Canfield TK, Hansen RS, Kaul R, Sabo PJ, Bansal MS, Carles A, Dixon JR, Farh KH, Feizi S, Karlic R, Kim AR, Kulkarni A, Li D, Lowdon R, Elliott G, Mercer TR, Neph SJ, Onuchic V, Polak P, Rajagopal N, Ray P, Sallari RC, Siebenthall KT, Sinnott-Armstrong NA, Stevens M, Thurman RE, Wu J, Zhang B, Zhou X, Beaudet AE, Boyer LA, De Jager PL, Farnham PJ, Fisher SJ, Haussler D, Jones SJ, Li W, Marra MA, McManus MT, Sunyaev S, Thomson JA, Tlsty TD, Tsai LH, Wang W, Waterland RA, Zhang MQ, Chadwick LH, Bernstein BE, Costello JF, Ecker JR, Hirst M, Meissner A, Milosavljevic A, Ren B, Stamatoyannopoulos JA, Wang T, Kellis M. Integrative analysis of 111 reference human epigenomes. Nature 2015; 518(7539): 317–330
https://doi.org/10.1038/nature14248 pmid: 25693563
45 Wu J, Wang SH, Potter D, Liu JC, Smith LT, Wu YZ, Huang TH, Plass C. Diverse histone modifications on histone 3 lysine 9 and their relation to DNA methylation in specifying gene silencing. BMC Genomics 2007; 8(1): 131
https://doi.org/10.1186/1471-2164-8-131 pmid: 17524140
46 Bannister AJ, Kouzarides T. Reversing histone methylation. Nature 2005; 436(7054): 1103–1106
https://doi.org/10.1038/nature04048 pmid: 16121170
47 Teneng I, Montoya-Durango DE, Quertermous JL, Lacy ME, Ramos KS. Reactivation of L1 retrotransposon by benzo(a)pyrene involves complex genetic and epigenetic regulation. Epigenetics 2011; 6(3): 355–367
https://doi.org/10.4161/epi.6.3.14282 pmid: 21150308
48 Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 2006; 31(2): 89–97
https://doi.org/10.1016/j.tibs.2005.12.008 pmid: 16403636
49 Bhutani N, Burns DM, Blau HM. DNA demethylation dynamics. Cell 2011; 146(6): 866–872
https://doi.org/10.1016/j.cell.2011.08.042 pmid: 21925312
50 Wu Y, Strawn E, Basir Z, Halverson G, Guo SW. Aberrant expression of deoxyribonucleic acid methyltransferases DNMT1, DNMT3A, and DNMT3B in women with endometriosis. Fertil Steril 2007; 87(1): 24–32
https://doi.org/10.1016/j.fertnstert.2006.05.077 pmid: 17081533
51 Tan AY, Manley JL. The TET family of proteins: functions and roles in disease. J Mol Cell Biol 2009; 1(2): 82–92
https://doi.org/10.1093/jmcb/mjp025 pmid: 19783543
52 Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, Campos C, Fabius AW, Lu C, Ward PS, Thompson CB, Kaufman A, Guryanova O, Levine R, Heguy A, Viale A, Morris LG, Huse JT, Mellinghoff IK, Chan TA. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 2012; 483(7390): 479–483
https://doi.org/10.1038/nature10866 pmid: 22343889
53 Baccarelli A, Bollati V. Epigenetics and environmental chemicals. Curr Opin Pediatr 2009; 21(2): 243–251
https://doi.org/10.1097/MOP.0b013e32832925cc pmid: 19663042
54 Yang P, Ma J, Zhang B, Duan H, He Z, Zeng J, Zeng X, Li D, Wang Q, Xiao Y, Liu C, Xiao Q, Chen L, Zhu X, Xing X, Li Z, Zhang S, Zhang Z, Ma L, Wang E, Zhuang Z, Zheng Y, Chen W. CpG site-specific hypermethylation of p16INK4α in peripheral blood lymphocytes of PAH-exposed workers. Cancer Epidemiol Biomarkers Prev 2012; 21(1): 182–190
https://doi.org/10.1158/1055-9965.EPI-11-0784 pmid: 22028397
55 Herbstman JB, Tang D, Zhu D, Qu L, Sj?din A, Li Z, Camann D, Perera FP. Prenatal exposure to polycyclic aromatic hydrocarbons, benzo[a]pyrene-DNA adducts, and genomic DNA methylation in cord blood. Environ Health Perspect 2012; 120(5): 733–738
https://doi.org/10.1289/ehp.1104056 pmid: 22256332
56 Perera F, Tang WY, Herbstman J, Tang D, Levin L, Miller R, Ho SM. Relation of DNA methylation of 5′-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS ONE 2009; 4(2): e4488
https://doi.org/10.1371/journal.pone.0004488 pmid: 19221603
57 Tang WY, Levin L, Talaska G, Cheung YY, Herbstman J, Tang D, Miller RL, Perera F, Ho SM. Maternal exposure to polycyclic aromatic hydrocarbons and 5′-CpG methylation of interferon-γ in cord white blood cells. Environ Health Perspect 2012; 120(8): 1195–1200
https://doi.org/10.1289/ehp.1103744 pmid: 22562770
58 Shenker NS, Ueland PM, Polidoro S, van Veldhoven K, Ricceri F, Brown R, Flanagan JM, Vineis P. DNA methylation as a long-term biomarker of exposure to tobacco smoke. Epidemiology 2013; 24(5): 712–716
https://doi.org/10.1097/EDE.0b013e31829d5cb3 pmid: 23867811
59 Corrales J, Fang X, Thornton C, Mei W, Barbazuk WB, Duke M, Scheffler BE, Willett KL. Effects on specific promoter DNA methylation in zebrafish embryos and larvae following benzo[a]pyrene exposure. Comp Biochem Physiol C Toxicol Pharmacol 2014; 163: 37–46
https://doi.org/10.1016/j.cbpc.2014.02.005 pmid: 24576477
60 Huang H, Hu G, Cai J, Xia B, Liu J, Li X, Gao W, Zhang J, Liu Y, Zhuang Z. Role of poly(ADP-ribose) glycohydrolase silencing in DNA hypomethylation induced by benzo(a)pyrene. Biochem Biophys Res Commun 2014; 452(3): 708–714
https://doi.org/10.1016/j.bbrc.2014.08.146 pmid: 25195819
61 Zeng JL, Zhang B, Yang P, Xiao YM, Wei Q, Wang Q, Li DC, Xing XM, Chen LP, Chen W. A genome-wide screen for promoter-specific sites of differential DNA methylation during human cell malignant transformation in vitro. Chin J Prev Med (Zhonghua Yu Fang Yi Xue Za Zhi)2011; 45(5): 404–409 (in Chinese)
pmid: 21756782
62 Damiani LA, Yingling CM, Leng S, Romo PE, Nakamura J, Belinsky SA. Carcinogen-induced gene promoter hypermethylation is mediated by DNMT1 and causal for transformation of immortalized bronchial epithelial cells. Cancer Res 2008; 68(21): 9005–9014
https://doi.org/10.1158/0008-5472.CAN-08-1276 pmid: 18974146
63 Sadikovic B, Andrews J, Rodenhiser DI. DNA methylation analysis using CpG microarrays is impaired in benzopyrene exposed cells. Toxicol Appl Pharmacol 2007; 225(3): 300–309
https://doi.org/10.1016/j.taap.2007.08.013 pmid: 17904174
64 Liu F, Killian JK, Yang M, Walker RL, Hong JA, Zhang M, Davis S, Zhang Y, Hussain M, Xi S, Rao M, Meltzer PA, Schrump DS. Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette smoke condensate. Oncogene 2010; 29(25): 3650–3664
https://doi.org/10.1038/onc.2010.129 pmid: 20440268
65 Tarantini L, Bonzini M, Apostoli P, Pegoraro V, Bollati V, Marinelli B, Cantone L, Rizzo G, Hou L, Schwartz J, Bertazzi PA, Baccarelli A. Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation. Environ Health Perspect 2009; 117(2): 217–222
https://doi.org/10.1289/ehp.11898 pmid: 19270791
66 Baccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua AA, Suh HH, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J. Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med 2009; 179(7): 572–578
https://doi.org/10.1164/rccm.200807-1097OC pmid: 19136372
67 Herceg Z, Vaissière T. Epigenetic mechanisms and cancer: an interface between the environment and the genome. Epigenetics 2011; 6(7): 804–819
https://doi.org/10.4161/epi.6.7.16262 pmid: 21758002
68 Belinsky SA, Snow SS, Nikula KJ, Finch GL, Tellez CS, Palmisano WA. Aberrant CpG island methylation of the p16(INK4a) and estrogen receptor genes in rat lung tumors induced by particulate carcinogens. Carcinogenesis 2002; 23(2): 335–339
https://doi.org/10.1093/carcin/23.2.335 pmid: 11872642
69 Hou L, Zhang X, Zheng Y, Wang S, Dou C, Guo L, Byun HM, Motta V, McCracken J, Díaz A, Kang CM, Koutrakis P, Bertazzi PA, Li J, Schwartz J, Baccarelli AA. Altered methylation in tandem repeat element and elemental component levels in inhalable air particles. Environ Mol Mutagen 2014; 55(3): 256–265
https://doi.org/10.1002/em.21829 pmid: 24273195
70 Carmona JJ, Sofer T, Hutchinson J, Cantone L, Coull B, Maity A, Vokonas P, Lin X, Schwartz J, Baccarelli AA. Short-term airborne particulate matter exposure alters the epigenetic landscape of human genes associated with the mitogen-activated protein kinase network: a cross-sectional study. Environ Health 2014; 13(1): 94
https://doi.org/10.1186/1476-069X-13-94 pmid: 25395096
71 Lepeule J, Bind MA, Baccarelli AA, Koutrakis P, Tarantini L, Litonjua A, Sparrow D, Vokonas P, Schwartz JD. Epigenetic influences on associations between air pollutants and lung function in elderly men: the normative aging study. Environ Health Perspect 2014; 122(6): 566–572
pmid: 24602767
72 Bind MA, Lepeule J, Zanobetti A, Gasparrini A, Baccarelli A, Coull BA, Tarantini L, Vokonas PS, Koutrakis P, Schwartz J. Air pollution and gene-specific methylation in the Normative Aging Study: association, effect modification, and mediation analysis. Epigenetics 2014; 9(3): 448–458
https://doi.org/10.4161/epi.27584 pmid: 24385016
73 De Prins S, Koppen G, Jacobs G, Dons E, Van de Mieroop E, Nelen V, Fierens F, Int Panis L, De Boever P, Cox B, Nawrot TS, Schoeters G. Influence of ambient air pollution on global DNA methylation in healthy adults: a seasonal follow-up. Environ Int 2013; 59: 418–424
https://doi.org/10.1016/j.envint.2013.07.007 pmid: 23917442
74 Sofer T, Baccarelli A, Cantone L, Coull B, Maity A, Lin X, Schwartz J. Exposure to airborne particulate matter is associated with methylation pattern in the asthma pathway. Epigenomics 2013; 5(2): 147–154
https://doi.org/10.2217/epi.13.16 pmid: 23566092
75 Bind MA, Baccarelli A, Zanobetti A, Tarantini L, Suh H, Vokonas P, Schwartz J. Air pollution and markers of coagulation, inflammation, and endothelial function: associations and epigene-environment interactions in an elderly cohort. Epidemiology 2012; 23(2): 332–340
https://doi.org/10.1097/EDE.0b013e31824523f0 pmid: 22237295
76 Madrigano J, Baccarelli A, Mittleman MA, Wright RO, Sparrow D, Vokonas PS, Tarantini L, Schwartz J. Prolonged exposure to particulate pollution, genes associated with glutathione pathways, and DNA methylation in a cohort of older men. Environ Health Perspect 2011; 119(7): 977–982
https://doi.org/10.1289/ehp.1002773 pmid: 21385671
77 Chanda S, Dasgupta UB, Guhamazumder D, Gupta M, Chaudhuri U, Lahiri S, Das S, Ghosh N, Chatterjee D. DNA methylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicol Sci 2006; 89(2): 431–437
https://doi.org/10.1093/toxsci/kfj030 pmid: 16251483
78 Benbrahim-Tallaa L, Waterland RA, Styblo M, Achanzar WE, Webber MM, Waalkes MP. Molecular events associated with arsenic-induced malignant transformation of human prostatic epithelial cells: aberrant genomic DNA methylation and K-ras oncogene activation. Toxicol Appl Pharmacol 2005; 206(3): 288–298
https://doi.org/10.1016/j.taap.2004.11.017 pmid: 16039940
79 Jensen TJ, Novak P, Wnek SM, Gandolfi AJ, Futscher BW. Arsenicals produce stable progressive changes in DNA methylation patterns that are linked to malignant transformation of immortalized urothelial cells. Toxicol Appl Pharmacol 2009; 241(2): 221–229
https://doi.org/10.1016/j.taap.2009.08.019 pmid: 19716837
80 Tabish AM, Poels K, Hoet P, Godderis L. Epigenetic factors in cancer risk: effect of chemical carcinogens on global DNA methylation pattern in human TK6 cells. PLoS ONE 2012; 7(4): e34674
https://doi.org/10.1371/journal.pone.0034674 pmid: 22509344
81 Liu Q, Yang L, Gong C, Tao G, Huang H, Liu J, Zhang H, Wu D, Xia B, Hu G, Wang K, Zhuang Z. Effects of long-term low-dose formaldehyde exposure on global genomic hypomethylation in 16HBE cells. Toxicol Lett 2011; 205(3): 235–240
https://doi.org/10.1016/j.toxlet.2011.05.1039 pmid: 21745553
82 Bastide K, Guilly MN, Bernaudin JF, Joubert C, Lectard B, Levalois C, Malfoy B, Chevillard S. Molecular analysis of the Ink4a/Rb1-Arf/Tp53 pathways in radon-induced rat lung tumors. Lung Cancer 2009; 63(3): 348–353
https://doi.org/10.1016/j.lungcan.2008.06.007 pmid: 18656278
83 Su S, Jin Y, Zhang W, Yang L, Shen Y, Cao Y, Tong J. Aberrant promoter methylation of p16(INK4a) and O(6)-methylguanine-DNA methyltransferase genes in workers at a Chinese uranium mine. J Occup Health 2006; 48(4): 261–266
https://doi.org/10.1539/joh.48.261 pmid: 16902270
84 Scott BR, Belinsky SA, Leng S, Lin Y, Wilder JA, Damiani LA. Radiation-stimulated epigenetic reprogramming of adaptive-response genes in the lung: an evolutionary gift for mounting adaptive protection against lung cancer. Dose Response 2009; 7(2): 104–131
pmid: 19543479
85 Andujar P, Wang J, Descatha A, Galateau-Sallé F, Abd-Alsamad I, Billon-Galland MA, Blons H, Clin B, Danel C, Housset B, Laurent-Puig P, Le Pimpec-Barthes F, Letourneux M, Monnet I, Régnard JF, Renier A, Zucman-Rossi J, Pairon JC, Jaurand MC. p16INK4A inactivation mechanisms in non-small-cell lung cancer patients occupationally exposed to asbestos. Lung Cancer 2010; 67(1): 23–30
https://doi.org/10.1016/j.lungcan.2009.03.018 pmid: 19375815
86 Christensen BC, Houseman EA, Godleski JJ, Marsit CJ, Longacker JL, Roelofs CR, Karagas MR, Wrensch MR, Yeh RF, Nelson HH, Wiemels JL, Zheng S, Wiencke JK, Bueno R, Sugarbaker DJ, Kelsey KT. Epigenetic profiles distinguish pleural mesothelioma from normal pleura and predict lung asbestos burden and clinical outcome. Cancer Res 2009; 69(1): 227–234
https://doi.org/10.1158/0008-5472.CAN-08-2586 pmid: 19118007
87 Christensen BC, Godleski JJ, Marsit CJ, Houseman EA, Lopez-Fagundo CY, Longacker JL, Bueno R, Sugarbaker DJ, Nelson HH, Kelsey KT. Asbestos exposure predicts cell cycle control gene promoter methylation in pleural mesothelioma. Carcinogenesis 2008; 29(8): 1555–1559
https://doi.org/10.1093/carcin/bgn059 pmid: 18310086
88 Sha Y, Zhou W, Yang Z, Zhu X, Xiang Y, Li T, Zhu D, Yang X. Changes in poly(ADP-ribosyl)ation patterns in workers exposed to BTX. PLoS ONE 2014; 9(9): e106146
https://doi.org/10.1371/journal.pone.0106146 pmid: 25215535
89 Yang J, Bai W, Niu P, Tian L, Gao A. Aberrant hypomethylated STAT3 was identified as a biomarker of chronic benzene poisoning through integrating DNA methylation and mRNA expression data. Exp Mol Pathol 2014; 96(3): 346–353
https://doi.org/10.1016/j.yexmp.2014.02.013 pmid: 24613686
90 Bollati V, Baccarelli A, Hou L, Bonzini M, Fustinoni S, Cavallo D, Byun HM, Jiang J, Marinelli B, Pesatori AC, Bertazzi PA, Yang AS. Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res 2007; 67(3): 876–880
https://doi.org/10.1158/0008-5472.CAN-06-2995 pmid: 17283117
91 Chappell G, Kobets T, O’Brien B, Tretyakova N, Sangaraju D, Kosyk O, Sexton KG, Bodnar W, Pogribny IP, Rusyn I. Epigenetic events determine tissue-specific toxicity of inhalational exposure to the genotoxic chemical 1,3-butadiene in male C57BL/6J mice. Toxicol Sci 2014; 142(2): 375–384
https://doi.org/10.1093/toxsci/kfu191 pmid: 25237060
92 Koturbash I, Scherhag A, Sorrentino J, Sexton K, Bodnar W, Swenberg JA, Beland FA, Pardo-Manuel Devillena F, Rusyn I, Pogribny IP. Epigenetic mechanisms of mouse interstrain variability in genotoxicity of the environmental toxicant 1,3-butadiene. Toxicol Sci 2011; 122(2): 448–456
https://doi.org/10.1093/toxsci/kfr133 pmid: 21602187
93 Koturbash I, Scherhag A, Sorrentino J, Sexton K, Bodnar W, Tryndyak V, Latendresse JR, Swenberg JA, Beland FA, Pogribny IP, Rusyn I. Epigenetic alterations in liver of C57BL/6J mice after short-term inhalational exposure to 1,3-butadiene. Environ Health Perspect 2011; 119(5): 635–640
https://doi.org/10.1289/ehp.1002910 pmid: 21147608
94 Zhuang SM, Schippert A, Haugen-Strano A, Wiseman RW, S?derkvist P. Inactivations of p16INK4a-α, p16INK4a-β and p15INK4b genes in 2′,3′-dideoxycytidine- and 1,3-butadiene-induced murine lymphomas. Oncogene 1998; 16(6): 803–808
https://doi.org/10.1038/sj.onc.1201600 pmid: 9488045
95 Mathison BH, Frame SR, Bogdanffy MS. DNA methylation, cell proliferation, and histopathology in rats following repeated inhalation exposure to dimethyl sulfate. Inhal Toxicol 2004; 16(9): 581–592
https://doi.org/10.1080/08958370490464553 pmid: 16036751
96 Rusiecki JA, Baccarelli A, Bollati V, Tarantini L, Moore LE, Bonefeld-Jorgensen EC. Global DNA hypomethylation is associated with high serum-persistent organic pollutants in Greenlandic Inuit. Environ Health Perspect 2008; 116(11): 1547–1552
https://doi.org/10.1289/ehp.11338 pmid: 19057709
97 Kostka G, Urbanek-Olejnik K, Liszewska M, Winczura A. The effect of acute dichlorodiphenyltrichloroethane exposure on hypermethylation status and down-regulation of p53 and p16(INK4a) genes in rat liver. Environ Toxicol 2014 Nov 20. [Epub ahead of print] 25410620
https://doi.org/10.1002/tox.22071
98 Shutoh Y, Takeda M, Ohtsuka R, Haishima A, Yamaguchi S, Fujie H, Komatsu Y, Maita K, Harada T. Low dose effects of dichlorodiphenyltrichloroethane (DDT) on gene transcription and DNA methylation in the hypothalamus of young male rats: implication of hormesis-like effects. J Toxicol Sci 2009; 34(5): 469–482
https://doi.org/10.2131/jts.34.469 pmid: 19797855
99 Li C, Yang X, Xu M, Zhang J, Sun N. Epigenetic marker (LINE-1 promoter) methylation level was associated with occupational lead exposure. Clin Toxicol (Phila)2013; 51(4): 225–229
https://doi.org/10.3109/15563650.2013.782410 pmid: 23528182
100 Li YY, Chen T, Wan Y, Xu SQ. Lead exposure in pheochromocytoma cells induces persistent changes in amyloid precursor protein gene methylation patterns. Environ Toxicol 2012; 27(8): 495–502
https://doi.org/10.1002/tox.20666 pmid: 22764079
101 Hanna CW, Bloom MS, Robinson WP, Kim D, Parsons PJ, vom Saal FS, Taylor JA, Steuerwald AJ, Fujimoto VY. DNA methylation changes in whole blood is associated with exposure to the environmental contaminants, mercury, lead, cadmium and bisphenol A, in women undergoing ovarian stimulation for IVF. Hum Reprod 2012; 27(5): 1401–1410
https://doi.org/10.1093/humrep/des038 pmid: 22381621
102 Li C, Xu M, Wang S, Yang X, Zhou S, Zhang J, Liu Q, Sun Y. Lead exposure suppressed ALAD transcription by increasing methylation level of the promoter CpG islands. Toxicol Lett 2011; 203(1): 48–53
https://doi.org/10.1016/j.toxlet.2011.03.002 pmid: 21396434
103 Lou J, Wang Y, Yao C, Jin L, Wang X, Xiao Y, Wu N, Song P, Song Y, Tan Y, Gao M, Liu K, Zhang X. Role of DNA methylation in cell cycle arrest induced by Cr (VI) in two cell lines. PLoS ONE 2013; 8(8): e71031
https://doi.org/10.1371/journal.pone.0071031 pmid: 23940686
104 Wang TC, Song YS, Wang H, Zhang J, Yu SF, Gu YE, Chen T, Wang Y, Shen HQ, Jia G. Oxidative DNA damage and global DNA hypomethylation are related to folate deficiency in chromate manufacturing workers. J Hazard Mater 2012; 213-214: 440–446
https://doi.org/10.1016/j.jhazmat.2012.02.024 pmid: 22398029
105 Proctor DM, Suh M, Campleman SL, Thompson CM. Assessment of the mode of action for hexavalent chromium-induced lung cancer following inhalation exposures. Toxicology 2014; 325: 160–179
https://doi.org/10.1016/j.tox.2014.08.009 pmid: 25174529
106 Ali AH, Kondo K, Namura T, Senba Y, Takizawa H, Nakagawa Y, Toba H, Kenzaki K, Sakiyama S, Tangoku A. Aberrant DNA methylation of some tumor suppressor genes in lung cancers from workers with chromate exposure. Mol Carcinog 2011; 50(2): 89–99
https://doi.org/10.1002/mc.20697 pmid: 21229606
107 Tellez-Plaza M, Tang WY, Shang Y, Umans JG, Francesconi KA, Goessler W, Ledesma M, Leon M, Laclaustra M, Pollak J, Guallar E, Cole SA, Fallin MD, Navas-Acien A. Association of global DNA methylation and global DNA hydroxymethylation with metals and other exposures in human blood DNA samples. Environ Health Perspect 2014; 122(9): 946–954
pmid: 24769358
108 Weng S, Wang W, Li Y, Li H, Lu X, Xiao S, Wu T, Xie M, Zhang W. Continuous cadmium exposure from weaning to maturity induces downregulation of ovarian follicle development-related SCF/c-kit gene expression and the corresponding changes of DNA methylation/microRNA pattern. Toxicol Lett 2014; 225(3): 367–377
https://doi.org/10.1016/j.toxlet.2014.01.012 pmid: 24462979
109 Pierron F, Baillon L, Sow M, Gotreau S, Gonzalez P. Effect of low-dose cadmium exposure on DNA methylation in the endangered European eel. Environ Sci Technol 2014; 48(1): 797–803
https://doi.org/10.1021/es4048347 pmid: 24328039
110 Sanders AP, Smeester L, Rojas D, DeBussycher T, Wu MC, Wright FA, Zhou YH, Laine JE, Rager JE, Swamy GK, Ashley-Koch A, Lynn Miranda M, Fry RC. Cadmium exposure and the epigenome: Exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs. Epigenetics 2014; 9(2): 212–221
https://doi.org/10.4161/epi.26798 pmid: 24169490
111 Yuan D, Ye S, Pan Y, Bao Y, Chen H, Shao C. Long-term cadmium exposure leads to the enhancement of lymphocyte proliferation via down-regulating p16 by DNA hypermethylation. Mutat Res 2013; 757(2): 125–131
https://doi.org/10.1016/j.mrgentox.2013.07.007 pmid: 23948183
112 Turdi S, Sun W, Tan Y, Yang X, Cai L, Ren J. Inhibition of DNA methylation attenuates low-dose cadmium-induced cardiac contractile and intracellular Ca(2+) anomalies. Clin Exp Pharmacol Physiol 2013; 40(10): 706–712
pmid: 23902534
113 Zhang C, Liang Y, Lei L, Zhu G, Chen X, Jin T, Wu Q. Hypermethylations of RASAL1 and KLOTHO is associated with renal dysfunction in a Chinese population environmentally exposed to cadmium. Toxicol Appl Pharmacol 2013; 271(1): 78–85
https://doi.org/10.1016/j.taap.2013.04.025 pmid: 23665422
114 Kippler M, Engstr?m K, Mlakar SJ, Bottai M, Ahmed S, Hossain MB, Raqib R, Vahter M, Broberg K. Sex-specific effects of early life cadmium exposure on DNA methylation and implications for birth weight. Epigenetics 2013; 8(5): 494–503
https://doi.org/10.4161/epi.24401 pmid: 23644563
115 Yanez Barrientos E, Wrobel K, Lopez Torres A, Gutiérrez Corona F, Wrobel K. Application of reversed-phase high-performance liquid chromatography with fluorimetric detection for simultaneous assessment of global DNA and total RNA methylation in Lepidium sativum: effect of plant exposure to Cd(II) and Se(IV). Anal Bioanal Chem 2013; 405(7): 2397–2404
https://doi.org/10.1007/s00216-013-6703-x pmid: 23322354
116 Huang D, Zhang Y, Qi Y, Chen C, Ji W. Global DNA hypomethylation, rather than reactive oxygen species (ROS), a potential facilitator of cadmium-stimulated K562 cell proliferation. Toxicol Lett 2008; 179(1): 43–47
https://doi.org/10.1016/j.toxlet.2008.03.018 pmid: 18482805
117 Takiguchi M, Achanzar WE, Qu W, Li G, Waalkes MP. Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res 2003; 286(2): 355–365
https://doi.org/10.1016/S0014-4827(03)00062-4 pmid: 12749863
118 Benbrahim-Tallaa L, Waterland RA, Dill AL, Webber MM, Waalkes MP. Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. Environ Health Perspect 2007; 115(10): 1454–1459
pmid: 17938735
119 Zhou ZH, Lei YX, Wang CX. Analysis of aberrant methylation in DNA repair genes during malignant transformation of human bronchial epithelial cells induced by cadmium. Toxicol Sci 2012; 125(2): 412–417
https://doi.org/10.1093/toxsci/kfr320 pmid: 22112500
120 Ji W, Yang L, Yu L, Yuan J, Hu D, Zhang W, Yang J, Pang Y, Li W, Lu J, Fu J, Chen J, Lin Z, Chen W, Zhuang Z. Epigenetic silencing of O6-methylguanine DNA methyltransferase gene in NiS-transformed cells. Carcinogenesis 2008; 29(6): 1267–1275
https://doi.org/10.1093/carcin/bgn012 pmid: 18204074
121 Yang J, Chen W, Li X, Sun J, Guo Q, Wang Z. Relationship between urinary nickel and methylation of p15, p16 in workers exposed to nickel. J Occup Environ Med 2014; 56(5): 489–492
https://doi.org/10.1097/JOM.0000000000000168 pmid: 24806561
122 Zhang J, Zhou Y, Wu YJ, Li MJ, Wang RJ, Huang SQ, Gao RR, Ma L, Shi HJ, Zhang J. Hyper-methylated miR-203 dysregulates ABL1 and contributes to the nickel-induced tumorigenesis. Toxicol Lett 2013; 223(1): 42–51
https://doi.org/10.1016/j.toxlet.2013.08.007 pmid: 23968727
123 Tajuddin SM, Amaral AF, Fernández AF, Rodríguez-Rodero S, Rodríguez RM, Moore LE, Tardón A, Carrato A, García-Closas M, Silverman DT, Jackson BP, García-Closas R, Cook AL, Cantor KP, Chanock S, Kogevinas M, Rothman N, Real FX, Fraga MF, Malats N; Spanish Bladder Cancer/EPICURO Study Investigators. Genetic and non-genetic predictors of LINE-1 methylation in leukocyte DNA. Environ Health Perspect 2013; 121(6): 650–656
pmid: 23552396
124 Wu CH, Tang SC, Wang PH, Lee H, Ko JL. Nickel-induced epithelial-mesenchymal transition by reactive oxygen species generation and E-cadherin promoter hypermethylation. J Biol Chem 2012; 287(30): 25292–25302
https://doi.org/10.1074/jbc.M111.291195 pmid: 22648416
125 Zhang J, Zhang J, Li M, Wu Y, Fan Y, Zhou Y, Tan L, Shao Z, Shi H. Methylation of RAR-β2, RASSF1A, and CDKN2A genes induced by nickel subsulfide and nickel-carcinogenesis in rats. Biomed Environ Sci 2011; 24(2): 163–171
pmid: 21565688
126 Coulter JB, O’Driscoll CM, Bressler JP. Hydroquinone increases 5-hydroxymethylcytosine formation through ten eleven translocation 1 (TET1) 5-methylcytosine dioxygenase. J Biol Chem 2013; 288(40): 28792–28800
https://doi.org/10.1074/jbc.M113.491365 pmid: 23940045
127 Zhang Y, Yang R, Burwinkel B, Breitling LP, Brenner H. F2RL3 methylation as a biomarker of current and lifetime smoking exposures. Environ Health Perspect 2014; 122(2): 131–137
pmid: 24273234
128 Lima SC, Hernandez-Vargas H, Herceg Z. Epigenetic signatures in cancer: Implications for the control of cancer in the clinic. Curr Opin Mol Ther 2010; 12(3): 316–324
pmid: 20521220
129 Singh V, Sharma P, Capalash N. DNA methyltransferase-1 inhibitors as epigenetic therapy for cancer. Curr Cancer Drug Targets 2013; 13(4): 379–399
https://doi.org/10.2174/15680096113139990077 pmid: 23517596
130 Vizoso M, Esteller M. German-Catalan workshop on epigenetics and cancer. Epigenetics 2013; 8(9): 998–1003
https://doi.org/10.4161/epi.25856 pmid: 23884202
131 Vaissière T, Hung RJ, Zaridze D, Moukeria A, Cuenin C, Fasolo V, Ferro G, Paliwal A, Hainaut P, Brennan P, Tost J, Boffetta P, Herceg Z. Quantitative analysis of DNA methylation profiles in lung cancer identifies aberrant DNA methylation of specific genes and its association with gender and cancer risk factors. Cancer Res 2009; 69(1): 243–252
https://doi.org/10.1158/0008-5472.CAN-08-2489 pmid: 19118009
132 Belinsky SA, Grimes MJ, Casas E, Stidley CA, Franklin WA, Bocklage TJ, Johnson DH, Schiller JH. Predicting gene promoter methylation in non-small-cell lung cancer by evaluating sputum and serum. Br J Cancer 2007; 96(8): 1278–1283
https://doi.org/10.1038/sj.bjc.6603721 pmid: 17406356
133 Shenker NS, Polidoro S, van Veldhoven K, Sacerdote C, Ricceri F, Birrell MA, Belvisi MG, Brown R, Vineis P, Flanagan JM. Epigenome-wide association study in the European Prospective Investigation into Cancer and Nutrition (EPIC-Turin) identifies novel genetic loci associated with smoking. Hum Mol Genet 2013; 22(5): 843–851
https://doi.org/10.1093/hmg/dds488 pmid: 23175441
[1] Maura Massimino, Marta Podda, Lorenza Gandola, Emanuele Pignoli, Ettore Seregni, Carlo Morosi, Filippo Spreafico, Andrea Ferrari, Emilia Pecori, Monica Terenziani. Long-term results of suppressing thyroid-stimulating hormone during radiotherapy to prevent primary hypothyroidism in medulloblastoma/PNET and Hodgkin lymphoma: a prospective cohort study[J]. Front. Med., 2021, 15(1): 101-107.
[2] Yong Fan, Yan Geng, Lin Shen, Zhuoli Zhang. Advances on immune-related adverse events associated with immune checkpoint inhibitors[J]. Front. Med., 2021, 15(1): 33-42.
[3] Solmaz Ohadian Moghadam, Seyed Ali Momeni. Human microbiome and prostate cancer development: current insights into the prevention and treatment[J]. Front. Med., 2021, 15(1): 11-32.
[4] Hongnan Mo, Binghe Xu. Progress in systemic therapy for triple-negative breast cancer[J]. Front. Med., 2021, 15(1): 1-10.
[5] Ching-Hon Pui. Precision medicine in acute lymphoblastic leukemia[J]. Front. Med., 2020, 14(6): 689-700.
[6] Mian Peng, Xueyan Liu, Jinxiu Li, Di Ren, Yongfeng Liu, Xi Meng, Yansi Lyu, Ronglin Chen, Baojun Yu, Weixiong Zhong. Successful management of seven cases of critical COVID-19 with early noninvasive–invasive sequential ventilation algorithm and bundle pharmacotherapy[J]. Front. Med., 2020, 14(5): 674-680.
[7] Pengju Zhang, Tao Li, Xingyun Wu, Edouard C. Nice, Canhua Huang, Yuanyuan Zhang. Oxidative stress and diabetes: antioxidative strategies[J]. Front. Med., 2020, 14(5): 583-600.
[8] Cenyi Shao, Shijian Li, Feng Zhu, Dahai Zhao, Hui Shao, Haixiao Chen, Zhiruo Zhang. Taizhou’s COVID-19 prevention and control experience with telemedicine features[J]. Front. Med., 2020, 14(4): 506-510.
[9] Dongping Ning, Zhan Zhang, Kun Qiu, Lin Lu, Qin Zhang, Yan Zhu, Renzhi Wang. Efficacy of intelligent diagnosis with a dynamic uncertain causality graph model for rare disorders of sex development[J]. Front. Med., 2020, 14(4): 498-505.
[10] Yang Jiao, Zhan Zhang, Ting Zhang, Wen Shi, Yan Zhu, Jie Hu, Qin Zhang. Development of an artificial intelligence diagnostic model based on dynamic uncertain causality graph for the differential diagnosis of dyspnea[J]. Front. Med., 2020, 14(4): 488-497.
[11] Ke Sheng. Artificial intelligence in radiotherapy: a technological review[J]. Front. Med., 2020, 14(4): 431-449.
[12] Qiaoshuai Lan, Shuai Xia, Qian Wang, Wei Xu, Haiyan Huang, Shibo Jiang, Lu Lu. Development of oncolytic virotherapy: from genetic modification to combination therapy[J]. Front. Med., 2020, 14(2): 160-184.
[13] Jie Pan, Zhengchao Shi, Dingsai Lin, Ningmin Yang, Fei Meng, Lang Lin, Zhencheng Jin, Qingjie Zhou, Jiansheng Wu, Jianzhong Zhang, Youming Li. Is tailored therapy based on antibiotic susceptibility effective ? A multicenter, open-label, randomized trial[J]. Front. Med., 2020, 14(1): 43-50.
[14] Jiahui Xu, Qianqian Wang, Elaine Lai Han Leung, Ying Li, Xingxing Fan, Qibiao Wu, Xiaojun Yao, Liang Liu. Compound C620-0696, a new potent inhibitor targeting BPTF, the chromatin-remodeling factor in non-small-cell lung cancer[J]. Front. Med., 2020, 14(1): 60-67.
[15] Jiajia Hu, Wenbin Shen, Qian Qu, Xiaochun Fei, Ying Miao, Xinyun Huang, Jiajun Liu, Yingli Wu, Biao Li. NES1/KLK10 and hNIS gene therapy enhanced iodine-131 internal radiation in PC3 proliferation inhibition[J]. Front. Med., 2019, 13(6): 646-657.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed