Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2016, Vol. 10 Issue (1) : 41-51    https://doi.org/10.1007/s11684-016-0429-z
RESEARCH ARTICLE
Midline2 is overexpressed and a prognostic indicator in human breast cancer and promotes breast cancer cell proliferation in vitro and in vivo
Lan Wang1,Jueheng Wu3,Jie Yuan3,Xun Zhu2,3,Hongmei Wu1,Mengfeng Li2,3,*()
1. Department of Microbiology and Immunology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou 510006, China
2. Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
3. Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
 Download: PDF(1408 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Midline2 (MID2) is an ubiquitin-conjugating E2 enzyme linked to tumor progression and a novel interacting partner of breast cancer 1, early-onset (BRCA1). However, the role of MID2 in breast cancer remains unknown. This study investigated the expression, prognostic value, and role of MID2 in breast cancer. The expression of MID2 mRNA and protein was significantly upregulated in breast cancer tissue and established cell lines compared with that in normal breast epithelial cells and paired adjacent non-tumor tissue (P<0.001). Immunohistochemical analysis demonstrated that MID2 was overexpressed in 272 of 284 (95.8%) paraffin-embedded, archived breast cancer tissue. Moreover, MID2 expression increased with advanced clinical stage (P<0.001). High MID2 expression was significantly associated with advanced clinical stages and T, N, and M staging (all P<0.05). Univariate and multivariate analyses indicated that high MID2 expression was an independent prognostic factor for poor overall survival in the entire cohort (93.73 vs. 172.1 months; P<0.001, log-rank test) and in subgroups with stages Tis+ I+ II and III+ IV. Furthermore, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide colony formation, and anchorage-independent growth ability assays were conducted. Results showed that siRNA silencing of MID2 expression significantly reduced MCF-7 and MDA-MB-231 cell proliferation in vitro and blocked the growth of MDA-MB-231 cell xenograft tumors in vivo (P<0.05). This study indicated that MID2 may be a novel prognostic marker and interventional target in breast cancer.

Keywords breast cancer      MID2      proliferation      overall survival      xenograft     
Corresponding Author(s): Mengfeng Li   
Just Accepted Date: 25 December 2015   Online First Date: 20 January 2016    Issue Date: 31 March 2016
 Cite this article:   
Lan Wang,Jueheng Wu,Jie Yuan, et al. Midline2 is overexpressed and a prognostic indicator in human breast cancer and promotes breast cancer cell proliferation in vitro and in vivo[J]. Front. Med., 2016, 10(1): 41-51.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-016-0429-z
https://academic.hep.com.cn/fmd/EN/Y2016/V10/I1/41
Characteristics Number MID2 Chi-square test P-value
???Low ???High
Age <45 104 ???46 ???58 0.9
≥45 180 ???81 ???99
Clinical stage Tis 23 ???23 ???0 <0.001
I 25 ???22 ???3
II 126 ???65 ???61
III 79 ???13 ???66
IV 31 ???4 ???27
T classification T1 63 ???46 ???17 <0.001
T2 144 ???72 ???72
T3 49 ???7 ???42
T4 28 ???2 ???26
N classification N0 129 ???83 ???46 <0.001
N1 101 ???32 ???69
N2 43 ???10 ???33
N3 11 ???2 ???9
Metastasis No 269 ???125 ???144 0.032
Yes 15 ???2 ???13
Histologic grade Low 59 ???50 ???9 <0.001
Intermediate 110 ???63 ???47
High 115 ???14 ???101
ER Negative 130 ???54 ???76 0.34
Positive 154 ???73 ???81
PR Negative 111 ???45 ???66 0.268
Positive 167 ???80 ???87
ErbB-2 Negative 36 ???13 ???23 0.562
Positive 116 ???50 ???66
Tab.1  Correlation between MID2 expression and clinicopathological characteristics of breast cancer patients
Fig.1  Analysis of MID2 protein and mRNA expression in breast cancer cells. (A) Western blot analysis of MID2 protein expressed in two normal breast epithelial cell lines (NBECs) and breast cancer cell lines. (B) Real-time PCR analysis of MID2 mRNA expression in NBECs and breast cancer cell lines. Data are expressed relative to GAPDH levels. * P<0.05.
Fig.2  Analysis of MID2 protein and mRNA expression in freshly isolated human primary breast cancer tissue specimens (T) and paired adjacent non-tumor tissue (ANT). (A) Western blot analysis of MID2 protein expression; β-actin was used as loading control. (B) Real-time PCR analysis of MID2 expression in the indicated tissue specimens; GAPDH was used as loading control. *P<0.05. (C) IHC staining for the MID2 protein in the indicated tissue. The images were obtained at 200× magnification.
Fig.3  Immunohistochemical analysis of MID2 expression in archived, paraffin-embedded normal human breast and breast cancer tissue. (A) Representative images of MID2 expression in normal breast tissue and different clinical stages of breast cancer. (B) Quantification of the average mean optical density (MOD) for MID2 in normal breast tissue and different clinical stages of breast cancer. (C) Kaplan-Meier overall survival curve (left) and disease-free survival curves (right) for 284 patients with breast cancer stratified by high and low expression of MID2. (D) Kaplan-Meier overall survival curves for subgroups of patients with different stages (left: low clinical stage; right: high clinical stage) of breast cancer stratified by high and low MID2 expression.
Characteristics All cases Mean survival (month) Median survival (month) P value Mean disease-free survival (month) Median disease-free survival (month) P value
Age <45 104 120.33 128 0.094 114.3 110 0.042
≥45 180 140.64 138 141.41 132
Clinical stage Tis 23 139.07 143 <0.001 139.08 143 <0.001
I 25 156.83 149 154.66 154
II 126 144.19 142 148.99 138
III 79 97.64 106 88 96
IV 31 92.96 89 76.98 84
T classification T1 63 141.92 144 <0.001 139.22 143 <0.001
T2 144 144.13 138 147.99 138
T3 49 102.16 118 89.02 100
T4 28 66.27 50 47.34 24
N classification N0 129 159 143 <0.001 155.81 143 <0.001
N1 101 119.75 126 120.68 110
N2 43 79.69 82 69.57 67
N3 11 111.48 126 88.56 96
Metastasis No 269 134.76 134 <0.001 135.58 130 <0.001
Yes 15 56.33 40 44.8 24
Histologic grade Low 59 179.34 172 <0.001 176.12 176 <0.001
Intermediate 110 151.17 140 175.09 175
High 115 72.4 68 62.24 62
MID2 expression Low 127 172.1 168 <0.001 178.19 166 <0.001
High 157 93.73 100 84.77 89
Tab.2  Clinical pathological parameters and MID2 expression for prognosis of 284 patients with breast cancer by univariate survival ?????analysis (log-rank test)
Variable Overall survival Disease-free survival
Relative risk 95% confidence interval P value Relative risk 95% confidence interval P value
MID2 2.825 1.744–4.576 0.013 1.938 1.221–3.076 0.005
T classification 1.752 1.407–2.182 <0.001 1.702 1.359–2.131 <0.001
N classification 1.559 1.21–2.01 0.009 1.457 1.146–1.853 0.002
Metastasis 4.463 2.429–8.203 0.031 3.178 1.705–5.923 <0.001
Histologic grade 7.535 4.994–11.367 <0.001 4.763 3.312–6.849 <0.001
Tab.3  Multivariate analysis of overall and disease-free survival (Cox regression model)
Fig.4  Knockdown of endogenous MID2 inhibits MCF-7 and MDA-MB-231 cell proliferation in vitro. (A) Western blot analysis of MID2 and Ki67 expression. (B) MTT assays of cell proliferation. (C) Representative micrographs and quantification of cell colonies stained with crystal violet in the colony formation assay. (D) Representative micrographs (left) and colony numbers in the anchorage-independent growth assay. Each bar represents the mean SEM of three independent experiments. *P<0.05.
Fig.5  Knockdown of endogenous MID2 inhibits the growth of breast cancer tumor xenografts in vivo. Five NOD/SCID mice were injected with vector-transfected and MID2-RNAi1-transfected cells. (A) Images of the excised tumors 35 d after injection. (B) Tumor growth curves; tumor volume was measured every 5 days. (C) Average weight of the excised tumors. (D) Western blot of MID2 expression in the excised xenograft tumors. (E) Representative images of MID2 and Ki67 expression in tumors after immunohistochemical staining. *P<0.05. Images were obtained at 200× (left) and 400× (right) magnifications.
1 Abrams J, Kramer B, Doroshow JH, Varmus H. National Cancer Institute-supported clinical trials networks. J Clin Oncol 2015; 33(3): 293
https://doi.org/10.1200/JCO.2014.59.5421 pmid: 25452448
2 Kulkarni KP. In the realms of future: new frontiers of ‘techno-oncology’ as a platform for global improvement in the outcomes of childhood cancer. Expert Rev Hematol 2015; 8(1): 1–4
https://doi.org/10.1586/17474086.2015.995623 pmid: 25537882
3 Banday AH, Jeelani S, Hruby VJ. Cancer vaccine adjuvants—recent clinical progress and future perspectives. Immunopharmacol Immunotoxicol 2015; 37(1): 1–11
https://doi.org/10.3109/08923973.2014.971963 pmid: 25318595
4 Milanezi F, Carvalho S, Schmitt FC. EGFR/HER2 in breast cancer: a biological approach for molecular diagnosis and therapy. Expert Rev Mol Diagn 2008; 8(4): 417–434
https://doi.org/10.1586/14737159.8.4.417 pmid: 18598224
5 Pellisé M, Castells A, Ginès A, Solé M, Mora J, Castellví-Bel S, Rodríguez-Moranta F, Fernàndez-Esparrach G, Llach J, Bordas JM, Navarro S, Piqué JM. Clinical usefulness of KRAS mutational analysis in the diagnosis of pancreatic adenocarcinoma by means of endosonography-guided fine-needle aspiration biopsy. Aliment Pharmacol Ther 2003; 17(10): 1299–1307
https://doi.org/10.1046/j.1365-2036.2003.01579.x pmid: 12755843
6 Colombo M, Corsi F, Foschi D, Mazzantini E, Mazzucchelli S, Morasso C, Occhipinti E, Polito L, Prosperi D, Ronchi S, Verderio P. HER2 targeting as a two-sided strategy for breast cancer diagnosis and treatment: outlook and recent implications in nanomedical approaches. Pharmacol Res 2010; 62(2): 150–165
https://doi.org/10.1016/j.phrs.2010.01.013 pmid: 20117211
7 American College of Chest Physicians. Diagnosis and management of lung cancer: ACCP evidence-based guidelines. Chest 2003; 123: D-G, 1S–337S
8 Grabiec M, Nowicki P, Walentowicz M, Greźlikowska U, Mierzwa T, Chmielewska W. Role of Ca-125 in the differential diagnosis of adnexal mass in breast cancer patients. Ginekol Pol 2005; 76(5): 371–376 (in Polish)
pmid: 16145856
9 Katai H, Sano T. Early gastric cancer: concepts, diagnosis, and management. Int J Clin Oncol 2005; 10(6): 375–383
https://doi.org/10.1007/s10147-005-0534-5 pmid: 16369740
10 Li J, Yang L, Song L, Xiong H, Wang L, Yan X, Yuan J, Wu J, Li M. Astrocyte elevated gene-1 is a proliferation promoter in breast cancer via suppressing transcriptional factor FOXO1. Oncogene 2009; 28(36): 3188–3196
https://doi.org/10.1038/onc.2009.171 pmid: 19633686
11 Li J, Guan HY, Gong LY, Song LB, Zhang N, Wu J, Yuan J, Zheng YJ, Huang ZS, Li M. Clinical significance of sphingosine kinase-1 expression in human astrocytomas progression and overall patient survival. Clin Cancer Res 2008; 14(21): 6996–7003
https://doi.org/10.1158/1078-0432.CCR-08-0754 pmid: 18980995
12 Joseph P, Lei YX, Whong WZ, Ong TM. Oncogenic potential of mouse translation elongation factor-1 δ, a novel cadmium-responsive proto-oncogene. J Biol Chem 2002; 277(8): 6131–6136
https://doi.org/10.1074/jbc.M109373200 pmid: 11711542
13 Li LB, Louie MC, Chen HW, Zou JX. Proto-oncogene ACTR/AIB1 promotes cancer cell invasion by up-regulating specific matrix metalloproteinase expression. Cancer Lett 2008; 261(1): 64–73
https://doi.org/10.1016/j.canlet.2007.11.013 pmid: 18162290
14 Liu Z, Lu H, Shi H, Du Y, Yu J, Gu S, Chen X, Liu KJ, Hu CA. PUMA overexpression induces reactive oxygen species generation and proteasome-mediated stathmin degradation in colorectal cancer cells. Cancer Res 2005; 65(5): 1647–1654
https://doi.org/10.1158/0008-5472.CAN-04-1754 pmid: 15753358
15 Peng HM, Morishima Y, Jenkins GJ, Dunbar AY, Lau M, Patterson C, Pratt WB, Osawa Y. Ubiquitylation of neuronal nitric-oxide synthase by CHIP, a chaperone-dependent E3 ligase. J Biol Chem 2004; 279(51): 52970–52977
https://doi.org/10.1074/jbc.M406926200 pmid: 15466472
16 van Wijk SJ, de Vries SJ, Kemmeren P, Huang A, Boelens R, Bonvin AM, Timmers HT. A comprehensive framework of E2-RING E3 interactions of the human ubiquitin-proteasome system. Mol Syst Biol 2009; 5: 295
https://doi.org/10.1038/msb.2009.76 pmid: 19690564
17 Wang Y, Ren F, Wang Y, Feng Y, Wang D, Jia B, Qiu Y, Wang S, Yu J, Sung JJ, Xu J, Zeps N, Chang Z. CHIP/Stub1 functions as a tumor suppressor and represses NF-kB-mediated signaling in colorectal cancer. Carcinogenesis 2014; 35(5): 983–991
https://doi.org/10.1093/carcin/bgt393 pmid: 24302614
18 Wosnitzer MS, Mielnik A, Dabaja A, Robinson B, Schlegel PN, Paduch DA. Ubiquitin Specific Protease 26 (USP26) expression analysis in human testicular and extragonadal tissues indicates diverse action of USP26 in cell differentiation and tumorigenesis. PLoS ONE 2014; 9(6): e98638
https://doi.org/10.1371/journal.pone.0098638 pmid: 24922532
19 Perez EA, Dueck AC, McCullough AE, Chen B, Geiger XJ, Jenkins RB, Lingle WL, Davidson NE, Martino S, Kaufman PA, Kutteh LA, Sledge GW, Harris LN, Gralow JR, Reinholz MM. Impact of PTEN protein expression on benefit from adjuvant trastuzumab in early-stage human epidermal growth factor receptor 2-positive breast cancer in the North Central Cancer Treatment Group N9831 trial. J Clin Oncol 2013; 31(17): 2115–2122
https://doi.org/10.1200/JCO.2012.42.2642 pmid: 23650412
20 Napolitano LM, Jaffray EG, Hay RT, Meroni G. Functional interactions between ubiquitin E2 enzymes and TRIM proteins. Biochem J 2011; 434(2): 309–319
https://doi.org/10.1042/BJ20101487 pmid: 21143188
21 Vichi A, Payne DM, Pacheco-Rodriguez G, Moss J, Vaughan M. E3 ubiquitin ligase activity of the trifunctional ARD1 (ADP-ribosylation factor domain protein 1). Proc Natl Acad Sci USA 2005; 102(6): 1945–1950
https://doi.org/10.1073/pnas.0409800102 pmid: 15684077
22 Trockenbacher A, Suckow V, Foerster J, Winter J, Krauss S, Ropers HH, Schneider R, Schweiger S. MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation. Nat Genet 2001; 29(3): 287–294
https://doi.org/10.1038/ng762 pmid: 11685209
23 Urano T, Saito T, Tsukui T, Fujita M, Hosoi T, Muramatsu M, Ouchi Y, Inoue S. Efp targets 14-3-3 sigma for proteolysis and promotes breast tumour growth. Nature 2002; 417(6891): 871–875
https://doi.org/10.1038/nature00826 pmid: 12075357
24 Niikura T, Hashimoto Y, Tajima H, Ishizaka M, Yamagishi Y, Kawasumi M, Nawa M, Terashita K, Aiso S, Nishimoto I. A tripartite motif protein TRIM11 binds and destabilizes Humanin, a neuroprotective peptide against Alzheimer’s disease-relevant insults. Eur J Neurosci 2003; 17(6): 1150–1158
https://doi.org/10.1046/j.1460-9568.2003.02553.x pmid: 12670303
25 Horn EJ, Albor A, Liu Y, El-Hizawi S, Vanderbeek GE, Babcock M, Bowden GT, Hennings H, Lozano G, Weinberg WC, Kulesz-Martin M. RING protein Trim32 associated with skin carcinogenesis has anti-apoptotic and E3-ubiquitin ligase properties. Carcinogenesis 2004; 25(2): 157–167
https://doi.org/10.1093/carcin/bgh003 pmid: 14578165
26 Wada K, Kamitani T. Autoantigen Ro52 is an E3 ubiquitin ligase. Biochem Biophys Res Commun 2006; 339(1): 415–421
https://doi.org/10.1016/j.bbrc.2005.11.029 pmid: 16297862
27 Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L, Riganelli D, Zanaria E, Messali S, Cainarca S, Guffanti A, Minucci S, Pelicci PG, Ballabio A. The tripartite motif family identifies cell compartments. EMBO J 2001; 20(9): 2140–2151
https://doi.org/10.1093/emboj/20.9.2140 pmid: 11331580
28 Liu C, Huang X, Hou S, Hu B, Li H. Silencing of tripartite motif (TRIM) 29 inhibits proliferation and invasion and increases chemosensitivity to cisplatin in human lung squamous cancer NCI-H520 cells. Thorac Cancer 2015; 6(1): 31–37
https://doi.org/10.1111/1759-7714.12130 pmid: 26273332
29 Short KM, Cox TC. Subclassification of the RBCC/TRIM superfamily reveals a novel motif necessary for microtubule binding. J Biol Chem 2006; 281(13): 8970–8980
https://doi.org/10.1074/jbc.M512755200 pmid: 16434393
30 Yap MW, Nisole S, Lynch C, Stoye JP. Trim5α protein restricts both HIV-1 and murine leukemia virus. Proc Natl Acad Sci USA 2004; 101(29): 10786–10791
https://doi.org/10.1073/pnas.0402876101 pmid: 15249690
31 Jehee FS, Rosenberg C, Krepischi-Santos AC, Kok F, Knijnenburg J, Froyen G, Vianna-Morgante AM, Opitz JM, Passos-Bueno MR. An Xq22.3 duplication detected by comparative genomic hybridization microarray (Array-CGH) defines a new locus (FGS5) for FG syndrome. Am J Med Genet A 2005; 139(3): 221–226
https://doi.org/10.1002/ajmg.a.30991 pmid: 16283679
32 Uchil PD, Hinz A, Siegel S, Coenen-Stass A, Pertel T, Luban J, Mothes W. TRIM protein-mediated regulation of inflammatory and innate immune signaling and its association with antiretroviral activity. J Virol 2013; 87(1): 257–272
https://doi.org/10.1128/JVI.01804-12 pmid: 23077300
33 Corominas R, Yang X, Lin GN, Kang S, Shen Y, Ghamsari L, Broly M, Rodriguez M, Tam S, Trigg SA, Fan C, Yi S, Tasan M, Lemmens I, Kuang X, Zhao N, Malhotra D, Michaelson JJ, Vacic V, Calderwood MA, Roth FP, Tavernier J, Horvath S, Salehi-Ashtiani K, Korkin D, Sebat J, Hill DE, Hao T, Vidal M, Iakoucheva LM. Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism. Nat Commun 2014; 5: 3650
https://doi.org/10.1038/ncomms4650 pmid: 24722188
34 Song L, Wang L, Li Y, Xiong H, Wu J, Li J, Li M. Sam68 up-regulation correlates with, and its down-regulation inhibits, proliferation and tumourigenicity of breast cancer cells. J Pathol 2010; 222(3): 227–237
https://doi.org/10.1002/path.2751 pmid: 20662004
35 Li J, Zhang N, Song LB, Liao WT, Jiang LL, Gong LY, Wu J, Yuan J, Zhang HZ, Zeng MS, Li M. Astrocyte elevated gene-1 is a novel prognostic marker for breast cancer progression and overall patient survival. Clin Cancer Res 2008; 14(11): 3319–3326
https://doi.org/10.1158/1078-0432.CCR-07-4054 pmid: 18519759
36 Carey LA, Metzger R, Dees EC, Collichio F, Sartor CI, Ollila DW, Klauber-DeMore N, Halle J, Sawyer L, Moore DT, Graham ML. American Joint Committee on Cancer tumor-node-metastasis stage after neoadjuvant chemotherapy and breast cancer outcome. J Natl Cancer Inst 2005; 97(15): 1137–1142
https://doi.org/10.1093/jnci/dji206 pmid: 16077072
37 Zhang Z, Li J, Zheng H, Yu C, Chen J, Liu Z, Li M, Zeng M, Zhou F, Song L. Expression and cytoplasmic localization of SAM68 is a significant and independent prognostic marker for renal cell carcinoma. Cancer Epidemiol Biomarkers Prev 2009; 18(10): 2685–2693
https://doi.org/10.1158/1055-9965.EPI-09-0097 pmid: 19755649
38 Wei P, Zhang N, Xu Y, Li X, Shi D, Wang Y, Li D, Cai S. TPX2 is a novel prognostic marker for the growth and metastasis of colon cancer. J Transl Med 2013; 11(1): 313
https://doi.org/10.1186/1479-5876-11-313 pmid: 24341487
39 Takata M, Yamanaka N, Tanaka T, Yamanaka J, Maeda S, Okamoto E, Yasojima H, Uematsu K, Watanabe H, Uragari Y. What patients can survive disease free after complete resection for hepatocellular carcinoma? A multivariate analysis. Jpn J Clin Oncol 2000; 30(2): 75–81
https://doi.org/10.1093/jjco/hyd016 pmid: 10768870
40 Stuckey AR, Onstad MA. Hereditary breast cancer: an update on risk assessment and genetic testing in 2015. Am J Obstet Gynecol 2015; 213(2): 161–165
https://doi.org/10.1016/j.ajog.2015.03.003 pmid: 25747548
41 Cainarca S, Messali S, Ballabio A, Meroni G. Functional characterization of the Opitz syndrome gene product (midin): evidence for homodimerization and association with microtubules throughout the cell cycle. Hum Mol Genet 1999; 8(8): 1387–1396
https://doi.org/10.1093/hmg/8.8.1387 pmid: 10400985
42 Short KM, Hopwood B, Yi Z, Cox TC. MID1 and MID2 homo- and heterodimerise to tether the rapamycin-sensitive PP2A regulatory subunit, alpha 4, to microtubules: implications for the clinical variability of X-linked Opitz GBBB syndrome and other developmental disorders. BMC Cell Biol 2002; 3(1): 1
https://doi.org/10.1186/1471-2121-3-1 pmid: 11806752
43 Seshacharyulu P, Pandey P, Datta K, Batra SK. Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett 2013; 335(1): 9–18
https://doi.org/10.1016/j.canlet.2013.02.036 pmid: 23454242
44 Colella S, Ohgaki H, Ruediger R, Yang F, Nakamura M, Fujisawa H, Kleihues P, Walter G. Reduced expression of the α subunit of protein phosphatase 2A in human gliomas in the absence of mutations in the Aalpha and Abeta subunit genes. Int J Cancer 2001; 93(6): 798–804
https://doi.org/10.1002/ijc.1423 pmid: 11519040
45 Liu W, Bagaitkar J, Watabe K. Roles of AKT signal in breast cancer. Front Biosci 2007; 12(8-12): 4011–4019
https://doi.org/10.2741/2367 pmid: 17485354
46 Ostrakhovitch EA, Cherian MG. Role of p53 and reactive oxygen species in apoptotic response to copper and zinc in epithelial breast cancer cells. Apoptosis 2005; 10(1): 111–121
https://doi.org/10.1007/s10495-005-6066-7 pmid: 15711927
47 Dueck AC, Reinholz MM, Geiger XJ, Tenner K, Ballman K, Jenkins RB, Riehle D, Chen B, McCullough AE, Davidson NE, Martino S, Sledge GW, Kaufman PA, Kutteh LA, Gralow J, Harris LN, Ingle JN, Lingle WL, Perez EA. Impact of c-MYC protein expression on outcome of patients with early-stage HER2+ breast cancer treated with adjuvant trastuzumab NCCTG (alliance) N9831. Clin Cancer Res 2013; 19(20): 5798–5807
https://doi.org/10.1158/1078-0432.CCR-13-0558 pmid: 23965903
48 Jiang G, Xiao X, Zeng Y, Nagabhushanam K, Majeed M, Xiao D. Targeting beta-catenin signaling to induce apoptosis in human breast cancer cells by z-guggulsterone and Gugulipid extract of Ayurvedic medicine plant Commiphora mukul. BMC Complement Altern Med 2013; 13(1): 203
https://doi.org/10.1186/1472-6882-13-203 pmid: 23914993
49 Nakshatri H, Goulet RJ Jr. NF-κB and breast cancer. Curr Probl Cancer 2002; 26(5): 282–309
https://doi.org/10.1067/mcn.2002.129977 pmid: 12429950
50 Shyamsunder P, Verma RS, Lyakhovich A. ROMO1 regulates RedOx states and serves as an inducer of NF-kB-driven EMT factors in Fanconi anemia. Cancer Lett 2015; 361(1): 33–38
https://doi.org/10.1016/j.canlet.2015.02.020 pmid: 25687884
51 Hill SJ, Rolland T, Adelmant G, Xia X, Owen MS, Dricot A, Zack TI, Sahni N, Jacob Y, Hao T, McKinney KM, Clark AP, Reyon D, Tsai SQ, Joung JK, Beroukhim R, Marto JA, Vidal M, Gaudet S, Hill DE, Livingston DM. Systematic screening reveals a role for BRCA1 in the response to transcription-associated DNA damage. Genes Dev 2014; 28(17): 1957–1975
https://doi.org/10.1101/gad.241620.114 pmid: 25184681
52 Tu Z, Aird KM, Bitler BG, Nicodemus JP, Beeharry N, Xia B, Yen TJ, Zhang R. Oncogenic RAS regulates BRIP1 expression to induce dissociation of BRCA1 from chromatin, inhibit DNA repair, and promote senescence. Dev Cell 2011; 21(6): 1077–1091
https://doi.org/10.1016/j.devcel.2011.10.010 pmid: 22137763
53 Rytelewski M, Tong JG, Buensuceso A, Leong HS, Maleki Vareki S, Figueredo R, Di Cresce C, Wu SY, Herbrich SM, Baggerly KA, Romanow L, Shepherd T, Deroo BJ, Sood AK, Chambers AF, Vincent M, Ferguson PJ, Koropatnick J. BRCA2 inhibition enhances cisplatin-mediated alterations in tumor cell proliferation, metabolism, and metastasis. Mol Oncol 2014; 8(8): 1429–1440
https://doi.org/10.1016/j.molonc.2014.05.017 pmid: 24974076
54 Pathania R, Ramachandran S, Elangovan S, Padia R, Yang P, Cinghu S, Veeranan-Karmegam R, Arjunan P, Gnana-Prakasam JP, Sadanand F, Pei L, Chang CS, Choi JH, Shi H, Manicassamy S, Prasad PD, Sharma S, Ganapathy V, Jothi R, Thangaraju M. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis. Nat Commun 2015; 6: 6910
https://doi.org/10.1038/ncomms7910 pmid: 25908435
[1] Jing Ma, Shiyu Chen, Lili Hao, Wei Sheng, Weicheng Chen, Xiaojing Ma, Bowen Zhang, Duan Ma, Guoying Huang. Long non-coding RNA SAP30-2:1 is downregulated in congenital heart disease and regulates cell proliferation by targeting HAND2[J]. Front. Med., 2021, 15(1): 91-100.
[2] Hongnan Mo, Binghe Xu. Progress in systemic therapy for triple-negative breast cancer[J]. Front. Med., 2021, 15(1): 1-10.
[3] Jiajia Hu, Wenbin Shen, Qian Qu, Xiaochun Fei, Ying Miao, Xinyun Huang, Jiajun Liu, Yingli Wu, Biao Li. NES1/KLK10 and hNIS gene therapy enhanced iodine-131 internal radiation in PC3 proliferation inhibition[J]. Front. Med., 2019, 13(6): 646-657.
[4] Xiaodong Duan, Daizhi Peng, Yilan Zhang, Yalan Huang, Xiao Liu, Ruifu Li, Xin Zhou, Jing Liu. Sub-cytotoxic concentrations of ionic silver promote the proliferation of human keratinocytes by inducing the production of reactive oxygen species[J]. Front. Med., 2018, 12(3): 289-300.
[5] Shuyang Sun,Zhiyuan Zhang. Patient-derived xenograft platform of OSCC: a renewable human bio-bank for preclinical cancer research and a new co-clinical model for treatment optimization[J]. Front. Med., 2016, 10(1): 104-110.
[6] Aixiu Qiao,Feng Gu,Xiaojing Guo,Xinmin Zhang,Li Fu. Breast cancer-associated fibroblasts: their roles in tumor initiation, progression and clinical applications[J]. Front. Med., 2016, 10(1): 33-40.
[7] Runlin Shi,Haibing Xiao,Tao Yang,Lei Chang,Yuanfeng Tian,Bolin Wu,Hua Xu. Effects of miR-200c on the migration and invasion abilities of human prostate cancer Du145 cells and the corresponding mechanism[J]. Front. Med., 2014, 8(4): 456-463.
[8] Renling Pei, Ye Xu, Yan Wei, Tao Ouyang, Jinfeng Li, Tianfeng Wang, Zhaoqing Fan, Tie Fan, Benyao Lin, Yuntao Xie. Association of SIPA1 545 C>T polymorphism with survival in Chinese women with metastatic breast cancer[J]. Front Med, 2013, 7(1): 138-142.
[9] Suchinda Malaivijitnond. Medical applications of phytoestrogens from the Thai herb Pueraria mirifica[J]. Front Med, 2012, 6(1): 8-21.
[10] Ling XU. How to judge the association of postmenopausal hormone therapy and the risk of breast cancer[J]. Front Med Chin, 2010, 4(3): 290-293.
[11] Qiong DAI MD, Bei LIU MD, Yukai DU MM, . Meta-analysis of the risk factors of breast cancer concerning reproductive factors and oral contraceptive use[J]. Front. Med., 2009, 3(4): 452-458.
[12] Liu LIU MD, PhD, Yaogui NING MM, Chen CHEN MD, Daowen WANG MD, PhD, . Effect of atorvastatin on tumor growth and metastasis in a breast cancer cell xenograft model and its mechanism[J]. Front. Med., 2009, 3(4): 443-446.
[13] Xiaowei GONG MD, PhD, Xiaoyan MING MD, Xu WANG MM, Daan WANG MD, Peng DENG MM, Yong JIANG MD, PhD, Aihua LIU MD, PhD, . Effect of PRAK gene knockout on the proliferation of mouse embryonic fibroblasts[J]. Front. Med., 2009, 3(4): 379-383.
[14] Xue LI MM , Ping HE MM , Jie XIA MM , Shiwei SONG BS , Jinhai LU BM , Yunde LIU MM , . Effect of lanthanum chloride on growth of breast cancer cells and regulation of transcription[J]. Front. Med., 2009, 3(3): 336-340.
[15] Lihui WANG, Lianhong LI, Shen LV, Shujun FAN, Li ZHAN, Bo WANG, Zhong ZHANG. Lymphatic metastasis is related to the epithelial-mesenchymal transition and expressions of VEGF, MMP-9, and COX-2 in breast cancer[J]. Front Med Chin, 2009, 3(2): 164-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed