Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2016, Vol. 10 Issue (2) : 137-142    https://doi.org/10.1007/s11684-016-0449-8
REVIEW
Research progress in pathogenic genes of hereditary non-syndromic mid-frequency deafness
Wenjun Xia1,Fei Liu2,Duan Ma1,2,*()
1. Institute of Biomedical Sciences, Fudan University, Shanghai 200023, China
2. Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai 200023, China
 Download: PDF(127 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hearing impairment is considered as the most prevalent impairment worldwide. Almost 600 million people in the world suffer from mild or moderate hearing impairment, an estimated 10% of the human population. Genetic factors play an important role in the pathogenesis of this disorder. Hereditary hearing loss is divided into syndromic hearing loss (associated with other anomalies) and non-syndromic hearing loss (not associated with other anomalies). Approximately 80% of genetic deafness is non-syndromic. On the basis of the frequency of hearing loss, hereditary non-syndromic hearing loss can be divided into high-, mid-, low-, and total-frequency hearing loss. An audiometric finding of mid-frequency sensorineural hearing loss, or a “bowl-shaped” audiogram, is uncommon. Up to now, merely 7 loci have been linked to mid-frequency hearing loss. Only four genetic mid-frequency deafness genes, namely, DFNA10 (EYA4), DFNA8/12 (TECTA), DFNA13 (COL11A2), DFNA44 (CCDC50), have been reported to date. This review summarizes the research progress of the four genes to draw attention to mid-frequency deafness genes.

Keywords hereditary non-syndromic hearing loss      mid-frequency hearing loss      deafness genes     
Corresponding Author(s): Duan Ma   
Just Accepted Date: 14 April 2016   Online First Date: 03 May 2016    Issue Date: 27 May 2016
 Cite this article:   
Wenjun Xia,Fei Liu,Duan Ma. Research progress in pathogenic genes of hereditary non-syndromic mid-frequency deafness[J]. Front. Med., 2016, 10(2): 137-142.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-016-0449-8
https://academic.hep.com.cn/fmd/EN/Y2016/V10/I2/137
Gene Location Length Protein location in Corti Function Nucleotide mutation Phenotype References
TECTA 11q22–24 90 321 bp Tectorial membrane Components of the tectorial membrane c.950T>A, c.2657A>G, c.3169T>A, c.3293C>T, c.3406G>C, c.3743C>T, c.3995G>T, c.4525T>G, c.4549T>C, c.4856G>C, c.5383+ 5delGTGA, c.6026T>C High frequency hearing loss [13,14,16,21,22,41]
c.1084A>T, c.1124delT, c.1395T>G, c.1685C>T, c.2444C>T, c.3107G>A, c.5331G>A, c.5372C>G, c.5383+ 2T>G, c.5458C>T, c.5471G>A, c.5509T>G, c.5509T>C, c.5597C>T, c.5600A>G, c.5609A>G, c.5618C>T, c.5668C>T, c.5692T>C, c.5839C>T, c.6062G>A Mid frequency hearing loss [11,14,16,18,4245]
EYA4 6q23 291 523 bp Unknown Associated with composition of Corti c.1759C>T, c.1114_1117dupTTTG, c.1048_1049dupAA, c.T1301A, c.724_8047dupAA DFNA10 hearing loss plus dilated cardiomyopathy [4648]
C.1026_1027dupAA, c.511G>C DFNA10 hearing loss [49]
COL11A2 6p21.32 29 819 bp Tectorial membrane Maintaining the interfibrillar spacing and fibril diameter of type II collagen 732delC, 2492C>A, 2406_2409del, 2405_2410ins9bp, 3991C>T, 4821_4843del, 1636C>T and IVS22-2A>G, 3032_3033insC and 4750G>T, 1982G>A Oto-spondylo-megaepiphyseal dysplasia [5053]
? 3991C>T and IVS53+ 5G>A Non-syndromic cleft palate [53]
? 529C>CT, 2775_2801del 4135C>CT, IVS60-1G>GA Non-ocular Stickler [52,54,55]
? 1861C>A, 2423G>GA, 3100C>CT Non-syndromic hearing loss [30,52]
? 4322G>GA WZS/non-ocular Stickler [56]
CCDC50 69 594 bp Unknown Expressed in inner ear c.1394_1401dup CACGGCAT Non-syndromic hearing loss [40]
Tab.1  Summary of functions and mutations in TECTA, EYA4, COL11A2, and CCDC50
1 Sang Q, Mei H, Kuermanhan A, Feng R, Guo L, Qu R, Xu Y, Li H, Jin L, He L, Wang L. Identification of a novel compound heterozygous mutation in PTPRQ in a DFNB84 family with prelingual sensorineural hearing impairment. Mol Genet Genomics 2015; 290(3): 1135–1139
https://doi.org/10.1007/s00438-014-0979-1 pmid: 25557914
2 Wu W, Lü J, Li Y, Kam AC, Fai Tong MC, Huang Z, Wu H. A new hearing screening system for preschool children. Int J Pediatr Otorhinolaryngol 2014; 78(2): 290–295
https://doi.org/10.1016/j.ijporl.2013.11.026 pmid: 24360950
3 Sun XB, Wei ZY, Yu LM, Wang Q, Liang W. Prevalence and etiology of people with hearing impairment in China. Chin J Epidemiol (Zhonghua Liu Xing Bing Xue Za Zhi) 2008;29:643–646(in Chinese)
4 Rosenberg C, Freitas EL, Uehara DT, Auricchio MT, Costa SS, Oiticica J, Silva AG, Krepischi AC, Mingroni-Netto RC. Clinical genetics genomic copy number alterations in non-syndromic hearing loss. Clin Genet2015 Oct12. [Epub ahead of print] doi: 10.1111/cge.12683
pmid: 26456090
5 Atik T, Onay H, Aykut A, Bademci G, Kirazli T, Tekin M, Ozkinay F. Comprehensive analysis of deafness genes in families with autosomal recessive nonsyndromic hearing loss. PLoS ONE 2015; 10(11): e0142154
https://doi.org/10.1371/journal.pone.0142154 pmid: 26561413
6 Catelani AL, Krepischi AC, Kim CA, Kok F, Otto PA, Auricchio MT, Mazzeu JF, Uehara DT, Costa SS, Knijnenburg J, Tabith A Jr, Vianna-Morgante AM, Mingroni-Netto RC, Rosenberg C. Chromosome imbalances in syndromic hearing loss. Clin Genet 2009; 76(5): 458–464
https://doi.org/10.1111/j.1399-0004.2009.01276.x pmid: 19807740
7 Shearer AE, Kolbe DL, Azaiez H, Sloan CM, Frees KL, Weaver AE, Clark ET, Nishimura CJ, Black-Ziegelbein EA, Smith RJ. Copy number variants are a common cause of non-syndromic hearing loss. Genome Med 2014; 6(5): 37
https://doi.org/10.1186/gm554 pmid: 24963352
8 Bahmad F, O'Malley J, Tranebjaerg L, Merchant SN. Histopathology of nonsyndromic autosomal dominant midfrequency sensorineural hearing loss. Otol Neurotol 2008; 29(5): 601–606
https://doi.org/10.1097/MAO.0b013e3181778245
9 Mustapha M, Weil D, Chardenoux S, Elias S, El-Zir E, Beckmann JS, Loiselet J, Petit C. An α-tectorin gene defect causes a newly identified autosomal recessive form of sensorineural pre-lingual non-syndromic deafness, DFNB21. Hum Mol Genet 1999; 8(3): 409–412
https://doi.org/10.1093/hmg/8.3.409 pmid: 9949200
10 Verhoeven K, Van Laer L, Kirschhofer K, Legan PK, Hughes DC, Schatteman I, Verstreken M, Van Hauwe P, Coucke P, Chen A, Smith RJ, Somers T, Offeciers FE, Van de Heyning P, Richardson GP, Wachtler F, Kimberling WJ, Willems PJ, Govaerts PJ, Van Camp G. Mutations in the human α-tectorin gene cause autosomal dominant non-syndromic hearing impairment. Nat Genet 1998; 19(1): 60–62
https://doi.org/10.1038/ng0598-60 pmid: 9590290
11 Legan PK, Goodyear RJ, Morín M, Mencia A, Pollard H, Olavarrieta L, Korchagina J, Modamio-Hoybjor S, Mayo F, Moreno F, Moreno-Pelayo MA, Richardson GP. Three deaf mice: mouse models for TECTA-based human hereditary deafness reveal domain-specific structural phenotypes in the tectorial membrane. Hum Mol Genet 2014; 23(10): 2551–2568
https://doi.org/10.1093/hmg/ddt646 pmid: 24363064
12 Hughes DC, Legan PK, Steel KP, Richardson GP. Mapping of the α-tectorin gene (TECTA) to mouse chromosome 9 and human chromosome 11: a candidate for human autosomal dominant nonsyndromic deafness. Genomics 1998; 48(1): 46–51
https://doi.org/10.1006/geno.1997.5159 pmid: 9503015
13 Balciuniene J, Dahl N, Jalonen P, Verhoeven K, Van Camp G, Borg E, Pettersson U, Jazin EE. α-tectorin involvement in hearing disabilities: one gene‒two phenotypes. Hum Genet 1999; 105(3): 211–216
https://doi.org/10.1007/s004390051091 pmid: 10987647
14 Sagong B, Park R, Kim YH, Lee KY, Baek JI, Cho HJ, Cho IJ, Kim UK, Lee SH. Two novel missense mutations in the TECTA gene in Korean families with autosomal dominant nonsyndromic hearing loss. Ann Clin Lab Sci 2010; 40(4): 380–385
pmid: 20947814
15 Choi BY, Kim J, Chung J, Kim AR, Mun SJ, Kang SI, Lee SH, Kim N, Oh SH. Whole-exome sequencing identifies a novel genotype-phenotype correlation in the entactin domain of the known deafness gene TECTA. PLoS ONE 2014; 9(5): e97040
https://doi.org/10.1371/journal.pone.0097040 pmid: 24816743
16 Hildebrand MS, Morín M, Meyer NC, Mayo F, Modamio-Hoybjor S, Mencía A, Olavarrieta L, Morales-Angulo C, Nishimura CJ, Workman H, DeLuca AP, del Castillo I, Taylor KR, Tompkins B, Goodman CW, Schrauwen I, Wesemael MV, Lachlan K, Shearer AE, Braun TA, Huygen PL, Kremer H, Van Camp G, Moreno F, Casavant TL, Smith RJ, Moreno-Pelayo MA. DFNA8/12 caused by TECTA mutations is the most identified subtype of nonsyndromic autosomal dominant hearing loss. Hum Mutat 2011; 32(7): 825–834
https://doi.org/10.1002/humu.21512 pmid: 21520338
17 Alasti F, Sanati MH, Behrouzifard AH, Sadeghi A, de Brouwer AP, Kremer H, Smith RJ, Van Camp G. A novel TECTA mutation confirms the recognizable phenotype among autosomal recessive hearing impairment families. Int J Pediatr Otorhinolaryngol 2008; 72(2): 249–255
https://doi.org/10.1016/j.ijporl.2007.09.023 pmid: 18022253
18 Meyer NC, Alasti F, Nishimura CJ, Imanirad P, Kahrizi K, Riazalhosseini Y, Malekpour M, Kochakian N, Jamali P, Van Camp G, Smith RJ, Najmabadi H. Identification of three novel TECTA mutations in Iranian families with autosomal recessive nonsyndromic hearing impairment at the DFNB21 locus. Am J Med Genet A 2007; 143A(14): 1623–1629
https://doi.org/10.1002/ajmg.a.31718 pmid: 17431902
19 Fukushima K, Ramesh A, Srisailapathy CR, Ni L, Wayne S, O’Neill ME, Van Camp G, Coucke P, Jain P, Wilcox ER, Smith SD, Kenyon JB, Zbar RI, Smith RJ. An autosomal recessive nonsyndromic form of sensorineural hearing loss maps to 3p-DFNB6. Genome Res 1995; 5(3): 305–308
https://doi.org/10.1101/gr.5.3.305 pmid: 8593615
20 Naz S, Alasti F, Mowjoodi A, Riazuddin S, Sanati MH, Friedman TB, Griffith AJ, Wilcox ER, Riazuddin S. Distinctive audiometric profile associated with DFNB21 alleles of TECTA. J Med Genet 2003; 40(5): 360–363
https://doi.org/10.1136/jmg.40.5.360 pmid: 12746400
21 Alloisio N, Morlé L, Bozon M, Godet J, Verhoeven K, Van Camp G, Plauchu H, Muller P, Collet L, Lina-Granade G. Mutation in the zonadhesin-like domain of α-tectorin associated with autosomal dominant non-syndromic hearing loss. Eur J Hum Genet 1999; 7(2): 255–258
https://doi.org/10.1038/sj.ejhg.5200273 pmid: 10196713
22 Kim AR, Chang MY, Koo JW, Oh SH, Choi BY. Novel TECTA mutations identified in stable sensorineural hearing loss and their clinical implications. Audiol Neurootol 2015; 20(1): 17–25
https://doi.org/10.1159/000366514 pmid: 25413827
23 Lu J, Cheng X, Li Y, Zeng L, Zhao Y. Evaluation of individual susceptibility to noise-induced hearing loss in textile workers in China. Arch Environ Occup Health 2005; 60(6): 287–294
https://doi.org/10.3200/AEOH.60.6.287-294 pmid: 17447571
24 Zhang X, Liu Y, Zhang L, Yang Z, Yang L, Wang X, Jiang C, Wang Q, Xia Y, Chen Y, Wu O, Zhu Y. Associations of genetic variations in EYA4, GRHL2 and DFNA5 with noise-induced hearing loss in Chinese population: a case-control study. Environ Health 2015;14:77
https://doi.org/10.1186/s12940-015-0063-2
25 Schönberger J, Wang L, Shin JT, Kim SD, Depreux FF, Zhu H, Zon L, Pizard A, Kim JB, Macrae CA, Mungall AJ, Seidman JG, Seidman CE. Mutation in the transcriptional coactivator EYA4 causes dilated cardiomyopathy and sensorineural hearing loss. Nat Genet 2005; 37(4): 418–422
https://doi.org/10.1038/ng1527 pmid: 15735644
26 Hildebrand MS, Coman D, Yang T, Gardner RJ, Rose E, Smith RJ, Bahlo M, Dahl HH. A novel splice site mutation in EYA4 causes DFNA10 hearing loss. Am J Med Genet A 2007; 143A(14): 1599–1604
https://doi.org/10.1002/ajmg.a.31860 pmid: 17568404
27 Choi HS, Kim AR, Kim SH, Choi BY. Identification of a novel truncation mutation of EYA4 in moderate degree hearing loss by targeted exome sequencing. Eur Arch Otorhinolaryngol 2016; 273(5):1123–1129
https://doi.org/10.1007/s00405-015-3661-2
28 Kozlowski DJ, Whitfield TT, Hukriede NA, Lam WK, Weinberg ES. The zebrafish dog-eared mutation disrupts eya1, a gene required for cell survival and differentiation in the inner ear and lateral line. Dev Biol 2005; 277(1): 27–41
https://doi.org/10.1016/j.ydbio.2004.08.033 pmid: 15572137
29 Wang L, Sewell WF, Kim SD, Shin JT, MacRae CA, Zon LI, Seidman JG, Seidman CE. Eya4 regulation of Na+/K+-ATPase is required for sensory system development in zebrafish. Development 2008; 135(20): 3425–3434
https://doi.org/10.1242/dev.012237 pmid: 18799547
30 McGuirt WT, Prasad SD, Griffith AJ, Kunst HP, Green GE, Shpargel KB, Runge C, Huybrechts C, Mueller RF, Lynch E, King MC, Brunner HG, Cremers CW, Takanosu M, Li SW, Arita M, Mayne R, Prockop DJ, Van Camp G, Smith RJ. Mutations in COL11A2 cause non-syndromic hearing loss (DFNA13). Nat Genet 1999; 23(4): 413–419
https://doi.org/10.1038/70516 pmid: 10581026
31 Zhidkova NI, Justice SK, Mayne R. Alternative mRNA processing occurs in the variable region of the pro-α1(XI) and pro-α2(XI) collagen chains. J Biol Chem 1995; 270(16): 9486–9493
https://doi.org/10.1074/jbc.270.16.9486 pmid: 7721876
32 Vuoristo MM, Pihlajamaa T, Vandenberg P, Körkkö J, Prockop DJ, Ala-Kokko L. Complete structure of the human COL11A2 gene: the exon sizes and other features indicate the gene has not evolved with genes for other fibriller collagens. Ann N Y Acad Sci 1996; 785(1): 343–344
https://doi.org/10.1111/j.1749-6632.1996.tb56304.x pmid: 8702176
33 Kuivaniemi H, Tromp G, Prockop DJ. Mutations in fibrillar collagens (types I, II, III, and XI), fibril-associated collagen (type IX), and network-forming collagen (type X) cause a spectrum of diseases of bone, cartilage, and blood vessels. Hum Mutat 1997; 9(4): 300–315
https://doi.org/10.1002/(SICI)1098-1004(1997)9:4<300::AID-HUMU2>3.0.CO;2-9 pmid: 9101290
34 Prockop DJ. Mutations that alter the primary structure of type I collagen. The perils of a system for generating large structures by the principle of nucleated growth. J Biol Chem 1990; 265(26): 15349–15352
pmid: 2203776
35 Li Y, Lacerda DA, Warman ML, Beier DR, Yoshioka H, Ninomiya Y, Oxford JT, Morris NP, Andrikopoulos K, Ramirez F, Wardell BB, Lifferth GD, Teuscher C, Woodward SR, Taylor BA, Seegmiller RE, Olsen BR. A fibrillar collagen gene, Col11a1, is essential for skeletal morphogenesis. Cell 1995; 80(3): 423–430
https://doi.org/10.1016/0092-8674(95)90492-1 pmid: 7859283
36 Iwasa Y, Moteki H, Hattori M, Sato R, Nishio SY, Takumi Y, Usami S. Non-ocular Stickler syndrome with a novel mutation in COL11A2 diagnosed by massively parallel sequencing in Japanese hearing loss patients. Ann Otol Rhinol Laryngol 2015; 124(Suppl 1): 111S–117S
https://doi.org/10.1177/0003489415575044 pmid: 25780254
37 Chakchouk I, Grati M, Bademci G, Bensaid M, Ma Q, Chakroun A, Foster J 2nd, Yan D, Duman D, Diaz-Horta O, Ghorbel A, Mittal R, Farooq A, Tekin M, Masmoudi S, Liu XZ. Novel mutations confirm that COL11A2 is responsible for autosomal recessive non-syndromic hearing loss DFNB53. Mol Genet Genomics 2015; 290(4): 1327–1334
https://doi.org/10.1007/s00438-015-0995-9 pmid: 25633957
38 Majava M, Hoornaert KP, Bartholdi D, Bouma MC, Bouman K, Carrera M, Devriendt K, Hurst J, Kitsos G, Niedrist D, Petersen MB, Shears D, Stolte-Dijkstra I, Van Hagen JM, Ala-Kokko L, Männikkö M, Mortier GR. A report on 10 new patients with heterozygous mutations in the COL11A1 gene and a review of genotype-phenotype correlations in type XI collagenopathies. Am J Med Genet A 2007; 143A(3): 258–264
https://doi.org/10.1002/ajmg.a.31586 pmid: 17236192
39 Vazza G, Picelli S, Bozzato A, Mostacciuolo ML. Identification and characterization of C3orf6, a new conserved human gene mapping to chromosome 3q28. Gene 2003; 314: 113–120
https://doi.org/10.1016/S0378-1119(03)00710-8 pmid: 14527723
40 Modamio-Høybjør S, Mencia A, Goodyear R, del Castillo I, Richardson G, Moreno F, Moreno-Pelayo MA. A mutation in CCDC50, a gene encoding an effector of epidermal growth factor-mediated cell signaling, causes progressive hearing loss. Am J Hum Genet 2007; 80(6): 1076–1089
https://doi.org/10.1086/518311 pmid: 17503326
41 Pfister M, Thiele H, Van Camp G, Fransen E, Apaydin F, Aydin O, Leistenschneider P, Devoto M, Zenner HP, Blin N, Nurnberg P, Ozkarakas H, Kupka S. A genotype-phenotype correlation with gender-effect for hearing impairment caused by TECTA mutations. Cell Physiol Biochem 2004;14:369–376
42 Collin RW, de Heer AM, Oostrik J, Pauw RJ, Plantinga RF, Huygen PL, Admiraal R, de Brouwer AP, Strom TM, Cremers CW, Kremer H. Mid-frequency DFNA8/12 hearing loss caused by a synonymous TECTA mutation that affects an exonic splice enhancer. Eur J Hum Genet 2008; 16(12): 1430–1436
https://doi.org/10.1038/ejhg.2008.110 pmid: 18575463
43 Verhoeven K, Van Camp G, Govaerts PJ, Balemans W, Schatteman I, Verstreken M, Van Laer L, Smith RJ, Brown MR, Van de Heyning PH, Somers T, Offeciers FE, Willems PJ. A gene for autosomal dominant nonsyndromic hearing loss (DFNA12) maps to chromosome 11q22–24. Am J Hum Genet 1997; 60(5): 1168–1173
pmid: 9150164
44 Plantinga RF, de Brouwer AP, Huygen PL, Kunst HP, Kremer H, Cremers CW. A novel TECTA mutation in a Dutch DFNA8/12 family confirms genotype-phenotype correlation. J Assoc Res Otolaryngol 2006; 7(2): 173–181
https://doi.org/10.1007/s10162-006-0033-z pmid: 16718611
45 Iwasaki S, Harada D, Usami S, Nagura M, Takeshita T, Hoshino T. Association of clinical features with mutation of TECTA in a family with autosomal dominant hearing loss. Arch Otolaryngol Head Neck Surg 2002; 128(8): 913–917
https://doi.org/10.1001/archotol.128.8.913 pmid: 12162770
46 Wayne S, Robertson NG, DeClau F, Chen N, Verhoeven K, Prasad S, Tranebjärg L, Morton CC, Ryan AF, Van Camp G, Smith RJ. Mutations in the transcriptional activator EYA4 cause late-onset deafness at the DFNA10 locus. Hum Mol Genet 2001; 10(3): 195–200
https://doi.org/10.1093/hmg/10.3.195 pmid: 11159937
47 Makishima T, Madeo AC, Brewer CC, Zalewski CK, Butman JA, Sachdev V, Arai AE, Holbrook BM, Rosing DR, Griffith AJ. Nonsyndromic hearing loss DFNA10 and a novel mutation of EYA4: evidence for correlation of normal cardiac phenotype with truncating mutations of the Eya domain. Am J Med Genet A 2007; 143A(14): 1592–1598
https://doi.org/10.1002/ajmg.a.31793 pmid: 17567890
48 Baek JI, Oh SK, Kim DB, Choi SY, Kim UK, Lee KY, Lee SH. Targeted massive parallel sequencing: the effective detection of novel causative mutations associated with hearing loss in small families. Orphanet J Rare Dis 2012; 7(1): 60
https://doi.org/10.1186/1750-1172-7-60 pmid: 22938506
49 Liu F, Hu J, Xia W, Hao L, Ma J, Ma D, Ma Z. Exome sequencing identifies a mutation in EYA4 as a novel cause of autosomal dominant non-syndromic hearing loss. PLoS ONE 2015; 10(5): e0126602
https://doi.org/10.1371/journal.pone.0126602 pmid: 25961296
50 Harel T, Rabinowitz R, Hendler N, Galil A, Flusser H, Chemke J, Gradstein L, Lifshitz T, Ofir R, Elbedour K, Birk OS. COL11A2 mutation associated with autosomal recessive Weissenbacher-Zweymuller syndrome: molecular and clinical overlap with otospondylomegaepiphyseal dysplasia (OSMED). Am J Med Genet A 2005; 132A(1): 33–35
https://doi.org/10.1002/ajmg.a.30371 pmid: 15558753
51 Melkoniemi M, Brunner HG, Manouvrier S, Hennekam R, Superti-Furga A, Kääriäinen H, Pauli RM, van Essen T, Warman ML, Bonaventure J, Miny P, Ala-Kokko L. Autosomal recessive disorder otospondylomegaepiphyseal dysplasia is associated with loss-of-function mutations in the COL11A2 gene. Am J Hum Genet 2000; 66(2): 368–377
https://doi.org/10.1086/302750 pmid: 10677296
52 Vikkula M, Mariman EC, Lui VC, Zhidkova NI, Tiller GE, Goldring MB, van Beersum SE, de Waal Malefijt MC, van den Hoogen FH, Ropers HH, Miikka Vikkula, R, Cheah KSE, Olsen BR ,Warman ML, Brunner HG.Autosomal dominant and recessive osteochondrodysplasias associated with the COL11A2 locus. Cell 1995; 80(3): 431–437
https://doi.org/10.1016/0092-8674(95)90493-X pmid: 7859284
53 Melkoniemi M, Koillinen H, Männikkö M, Warman ML, Pihlajamaa T, Kääriäinen H, Rautio J, Hukki J, Stofko JA, Cisneros GJ, Krakow D, Cohn DH, Kere J, Ala-Kokko L. Collagen XI sequence variations in nonsyndromic cleft palate, Robin sequence and micrognathia. Eur J Hum Genet 2003; 11(3): 265–270
https://doi.org/10.1038/sj.ejhg.5200950 pmid: 12673280
54 Vuoristo MM, Pappas JG, Jansen V, Ala-Kokko L. A stop codon mutation in COL11A2 induces exon skipping and leads to non-ocular Stickler syndrome. Am J Med Genet A 2004; 130A(2): 160–164
https://doi.org/10.1002/ajmg.a.30111 pmid: 15372529
55 Sirko-Osadsa DA, Murray MA, Scott JA, Lavery MA, Warman ML, Robin NH. Stickler syndrome without eye involvement is caused by mutations in COL11A2, the gene encoding the α2(XI) chain of type XI collagen. J Pediatr 1998; 132(2): 368–371
https://doi.org/10.1016/S0022-3476(98)70466-4 pmid: 9506662
56 Pihlajamaa T, Prockop DJ, Faber J, Winterpacht A, Zabel B, Giedion A, Wiesbauer P, Spranger J, Ala-Kokko L. Heterozygous glycine substitution in the COL11A2 gene in the original patient with the Weissenbacher-Zweymüller syndrome demonstrates its identity with heterozygous OSMED (nonocular Stickler syndrome). Am J Med Genet 1998; 80(2): 115–120
https://doi.org/10.1002/(SICI)1096-8628(19981102)80:2<115::AID-AJMG5>3.0.CO;2-O pmid: 9805126
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed