Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2017, Vol. 11 Issue (4) : 536-547    https://doi.org/10.1007/s11684-017-0592-x
RESEARCH ARTICLE
Irreversible phenotypic perturbation and functional impairment of B cells during HIV-1 infection
Jingjing Yan, Shuye Zhang, Jun Sun, Jianqing Xu(), Xiaoyang Zhang()
Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Fudan University, Shanghai 201508, China
 Download: PDF(621 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Human immunodeficiency virus type 1 (HIV-1) infection can damage humoral immunity. The knowledge of B cell perturbations during chronic HIV-1 infection and their recovery after combined antiretroviral therapy (cART) is not complete yet, and thus attempts to further improve humoral immunity are impeded. In this study, an HIV-1 chronically infected cohort with similar demographics, infection history, genetic background, and HIV-1 genotype was established to probe B cell perturbations. Results showed that the B cells from this cohort were highly activated and prone to cell death, and B cell compartments were altered significantly. Notably, although cART partially reversed the hyperactivation and reduced tissue-like memory B cells, other B cell perturbations, including impaired expression of survival factor Bcl-2, costimulatory molecules, and shrunken resting memory B cells, were irreversible. Further functional characterization revealed that the influenza HA-specific antibody-secreting cells were significantly lower during HIV-1 infection, whereas the recalled antibody response to HIV-1-specific antigens was decreased after cART. Finally, CpG plus R848 treatment increased the survival of B cells and memory B cells in vitro from HIV-1-infected patients. In conclusion, this study identified irreversible B cell immune perturbations in chronic HIV-1 infections regardless of cART and proposed the potential strategy to enhance B cell functions through the improvement of cell survival.

Keywords B cell      HIV-1      phenotype      functionality      antiretroviral therapy     
Corresponding Author(s): Jianqing Xu,Xiaoyang Zhang   
Just Accepted Date: 30 October 2017   Issue Date: 04 December 2017
 Cite this article:   
Jingjing Yan,Shuye Zhang,Jun Sun, et al. Irreversible phenotypic perturbation and functional impairment of B cells during HIV-1 infection[J]. Front. Med., 2017, 11(4): 536-547.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-017-0592-x
https://academic.hep.com.cn/fmd/EN/Y2017/V11/I4/536
HIV negativeHIV-1 infected
ART naive ART treated
Number of participants123234
Age, year a25 (21–32)47.5 (34–66)50.5 (33–70)
Male sex, n (%)6 (50)17 (53)23 (68)
CD4+ T cell count (cell/mL) a756 (508–1181)390 (128–950) c390 (73–1020) c
CD8+ T cell count (cell/mLa)624 (289–913)1112 (306–3154) c855 (377–2516) b
B cell count (cell/mL) a190 (98–508)125 (26–428) b180 (40–794)
Duration of infection (month) aN/A89 (60–178)89 (13–166)
Duration of treatment (month) aN/AN/A29.5 (6–94)
HIV RNA (copy/mL) aN/A5600 (60–110 000)<50
Tab.1  Baseline characteristics of study participants
Fig.1  Peripheral lymphocyte counts in HIV-1-infected ART-naive and ART-treated individuals and HIV-negative individuals. (A) Peripheral CD4+ T cell counts (cell/mL) from three groups: HIV-negative, HIV-1-infected ART-naive, and ART-treated individuals. (B) Peripheral CD19+ B cell counts (cell/mL) from the three groups. (C) Spearman rank correlation of CD4+ T cell counts and B cell counts in the HIV-1-infected ART-naive group. Symbols represent individuals samples, horizontal bars represent means, and error bars show SEM. Differences were evaluated using the Mann–Whitney U test for intergroup comparisons and were considered significant at P<0.05(*) or P<0.01(**).
Fig.2  Altered phenotype of B cells during HIV-1 infection. (A) Representative gating strategy for molecule expression on CD19+CD20+ B cell. The scatter plots showed the percentage of activated molecules CD38 (B), cell turnover marker Ki-67 (C), apoptosis-associated molecules CD95 (D), Bcl-2 (E), PD-1 (F), and costimulatory molecules CD40 (G) and CD70 (H) among the HIV-negative, HIV-1-infected ART-naive, and HIV-1-infected ART-treated individuals. Symbols represent individual samples, horizontal bars represent means, and error bars show SEM. Differences were evaluated using the Mann–Whitney U test for intergroup comparisons and were considered significant at P<0.05(*) or P<0.01(**).
Fig.3  Perturbations of peripheral blood B cell subpopulations in chronic HIV-1 infection. HIV-1-infected ART-naive and ART-treated and HIV-negative individuals were investigated. (A) CD19+ B cells were gated from forward scatters and side scatters. B cell subpopulations were determined using flow cytometry as CD10CD27+ immature B cells, CD10CD21+CD27 naive B cells, CD10CD21+CD27+ resting memory B cells, CD10CD21CD27+ activated memory B cells, CD10CD21CD27 tissue-like memory B cells, and CD10CD21CD27++CD20 plasmablasts. The distribution of B cell subpopulations was shown in the representative HIV-negative individual. (B) The percentage of B cell subpopulations were shown among the three groups. Boxes represent the 25th–75th percentiles with medians, and whiskers represent min to max. Differences were evaluated using the Mann–Whitney U test for intergroup comparisons and were considered significant at P<0.05(*) or P<0.01(**).
Fig.4  Expression of activated, apoptosis-associated, and costimulatory molecules on B cell subpopulations in chronic HIV-1 infection. The bar plots represent the expression of activated molecule CD38 (A); cell turnover marker Ki-67 (B); apoptosis-associated molecules CD95 (C), Bcl-2 (D), and PD-1 (E); and costimulatory molecules CD40 (F) and CD70 (G) among the HIV-negative, HIV-1-infected ART-naive, and HIV-1-infected ART-treated individuals. The data were shown as mean with SEM. Differences were evaluated using the Mann–Whitney U test for intergroup comparisons and were considered significant at P<0.05(*) or P<0.01(**).
Fig.5  Impaired responses of B cells to polyclonal stimulation in chronic HIV-1 infection. (A) Strategy for evaluating functional responses of B cells from the HIV-negative, HIV-1-infected ART-naive, and HIV-1-infected ART-treated individuals. (B) Stimulated B cells were used for ELISpot to measure the frequencies of ASCs for total IgG and against soluble forms of monomeric HIV-1 gp120 envelopes and H1N1 influenza HA proteins. Spearman rank correlation was employed to analyze the correlation of CD95 expression and HA-specific ASCs among the three groups. (C) Culture supernatants were collected and assayed by CBA. The columns in the graphical chart represented the mean concentrations of each cytokine from B cells. Responses were measured in 12 HIV-negative, 12 ART-naive, and 12 ART-treated individuals. Symbols represent individuals samples, horizontal bars represent means, and error bars show SEM. Differences were evaluated using the Mann–Whitney U test for intergroup comparisons and were considered significant at P<0.05(*) or P<0.01(**).
Fig.6  CpG plus R848 increased the survival of B cells. B cells from 6 HIV-1-infected ART-naive and 6 ART-treated individuals were cultured in the absence (unsti) or presence (sti) of CpG (5mg/mL) and R848 (1mg/mL) for 24 h, followed by Annexin V staining. Of the 12 individuals, CD27+ B cells from 8 individuals were enriched and cultured in the absence or presence of CpG and R848 for 24 h, followed by Annexin V staining. Representative flow cytometric dot plots of Annexin V staining and means and interquartile ranges of the percentages of Annexin V-expressing cells are shown.
1 Lane HC, Masur H, Edgar LC, Whalen G, Rook AH, Fauci AS. Abnormalities of B-cell activation and immunoregulation in patients with the acquired immunodeficiency syndrome. N Engl J Med 1983; 309(8): 453–458
https://doi.org/10.1056/NEJM198308253090803 pmid: 6224088
5 Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, Salazar-Gonzalez JF, Salazar MG, Kilby JM, Saag MS, Komarova NL, Nowak MA, Hahn BH, Kwong PD, Shaw GM. Antibody neutralization and escape by HIV-1. Nature 2003; 422(6929): 307–312
https://doi.org/10.1038/nature01470 pmid: 12646921
2 Shirai A, Cosentino M, Leitman-Klinman SF, Klinman DM. Human immunodeficiency virus infection induces both polyclonal and virus-specific B cell activation. J Clin Invest 1992; 89(2): 561–566
https://doi.org/10.1172/JCI115621 pmid: 1737846
6 Moir S, Malaspina A, Pickeral OK, Donoghue ET, Vasquez J, Miller NJ, Krishnan SR, Planta MA, Turney JF, Justement JS, Kottilil S, Dybul M, Mican JM, Kovacs C, Chun TW, Birse CE, Fauci AS. Decreased survival of B cells of HIV-viremic patients mediated by altered expression of receptors of the TNF superfamily. J Exp Med 2004; 200(7): 587–599
https://doi.org/10.1084/jem.20032236 pmid: 15508184
3 Moir S, Malaspina A, Ogwaro KM, Donoghue ET, Hallahan CW, Ehler LA, Liu S, Adelsberger J, Lapointe R, Hwu P, Baseler M, Orenstein JM, Chun TW, Mican JA, Fauci AS. HIV-1 induces phenotypic and functional perturbations of B cells in chronically infected individuals. Proc Natl Acad Sci USA 2001; 98(18): 10362–10367
https://doi.org/10.1073/pnas.181347898 pmid: 11504927
7 Moir S, Ho J, Malaspina A, Wang W, DiPoto AC, O’Shea MA, Roby G, Kottilil S, Arthos J, Proschan MA, Chun TW, Fauci AS. Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J Exp Med 2008; 205(8): 1797–1805
https://doi.org/10.1084/jem.20072683 pmid: 18625747
8 Kim ES, Ackermann C, Tóth I, Dierks P, Eberhard JM, Wroblewski R, Scherg F, Geyer M, Schmidt RE, Beisel C, Bockhorn M, Haag F, van Lunzen J, Schulze Zur Wiesch J. Down-regulation of CD73 on B cells of patients with viremic HIV correlates with B cell activation and disease progression. J Leukoc Biol 2017; 101(5): 1263–1271
https://doi.org/10.1189/jlb.5A0816-346R pmid: 28193736
4 Richman DD, Wrin T, Little SJ, Petropoulos CJ. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc Natl Acad Sci USA 2003; 100(7): 4144–4149
https://doi.org/10.1073/pnas.0630530100 pmid: 12644702
9 Malaspina A, Moir S, Chaitt DG, Rehm CA, Kottilil S, Falloon J, Fauci AS. Idiopathic CD4+ T lymphocytopenia is associated with increases in immature/transitional B cells and serum levels of IL-7. Blood 2007; 109(5): 2086–2088
https://doi.org/10.1182/blood-2006-06-031385 pmid: 17053062
10 Malaspina A, Moir S, Ho J, Wang W, Howell ML, O’Shea MA, Roby GA, Rehm CA, Mican JM, Chun TW, Fauci AS. Appearance of immature/transitional B cells in HIV-infected individuals with advanced disease: correlation with increased IL-7. Proc Natl Acad Sci USA 2006; 103(7): 2262–2267
https://doi.org/10.1073/pnas.0511094103 pmid: 16461915
11 De Milito A, Mörch C, Sönnerborg A, Chiodi F. Loss of memory (CD27) B lymphocytes in HIV-1 infection. AIDS 2001; 15(8): 957–964
https://doi.org/10.1097/00002030-200105250-00003 pmid: 11399977
12 Moir S, Buckner CM, Ho J, Wang W, Chen J, Waldner AJ, Posada JG, Kardava L, O’Shea MA, Kottilil S, Chun TW, Proschan MA, Fauci AS. B cells in early and chronic HIV infection: evidence for preservation of immune function associated with early initiation of antiretroviral therapy. Blood 2010; 116(25): 5571–5579
https://doi.org/10.1182/blood-2010-05-285528 pmid: 20837780
13 Hart M, Steel A, Clark SA, Moyle G, Nelson M, Henderson DC, Wilson R, Gotch F, Gazzard B, Kelleher P. Loss of discrete memory B cell subsets is associated with impaired immunization responses in HIV-1 infection and may be a risk factor for invasive pneumococcal disease. J Immunol 2007; 178(12): 8212–8220
https://doi.org/10.4049/jimmunol.178.12.8212 pmid: 17548660
14 Moir S, Fauci AS. B-cell responses to HIV infection. Immunol Rev 2017; 275(1): 33–48
https://doi.org/10.1111/imr.12502 pmid: 28133792
15 Noto A, Pantaleo G. B-cell abnormalities and impact on antibody response in HIV infection. Curr Opin HIV AIDS 2017; 12(3): 203–208
https://doi.org/10.1097/COH.0000000000000359 pmid: 28422784
16 Ho J, Moir S, Malaspina A, Howell ML, Wang W, DiPoto AC, O’Shea MA, Roby GA, Kwan R, Mican JM, Chun TW, Fauci AS. Two overrepresented B cell populations in HIV-infected individuals undergo apoptosis by different mechanisms. Proc Natl Acad Sci USA 2006; 103(51): 19436–19441
https://doi.org/10.1073/pnas.0609515103 pmid: 17158796
17 Xu X, Qiu C, Zhu L, Huang J, Li L, Fu W, Zhang L, Wei J, Wang Y, Geng Y, Zhang X, Qiao W, Xu J. IFN-stimulated gene LY6E in monocytes regulates the CD14/TLR4 pathway but inadequately restrains the hyperactivation of monocytes during chronic HIV-1 infection. J Immunol 2014; 193(8): 4125–4136
https://doi.org/10.4049/jimmunol.1401249 pmid: 25225669
18 Shan H, Wang JX, Ren FR, Zhang YZ, Zhao HY, Gao GJ, Ji Y, Ness PM. Blood banking in China. Lancet 2002; 360(9347): 1770–1775
https://doi.org/10.1016/S0140-6736(02)11669-2 pmid: 12480443
19 Tian X, Zhang A, Qiu C, Wang W, Yang Y, Qiu C, Liu A, Zhu L, Yuan S, Hu H, Wang W, Wei Q, Zhang X, Xu J. The upregulation of LAG-3 on T cells defines a subpopulation with functional exhaustion and correlates with disease progression in HIV-infected subjects. J Immunol 2015; 194(8): 3873–3882
https://doi.org/10.4049/jimmunol.1402176 pmid: 25780040
20 Bernasconi NL, Traggiai E, Lanzavecchia A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 2002; 298(5601): 2199–2202
https://doi.org/10.1126/science.1076071 pmid: 12481138
21 Malaspina A, Moir S, DiPoto AC, Ho J, Wang W, Roby G, O’Shea MA, Fauci AS. CpG oligonucleotides enhance proliferative and effector responses of B Cells in HIV-infected individuals. J Immunol 2008; 181(2): 1199–1206
https://doi.org/10.4049/jimmunol.181.2.1199 pmid: 18606673
22 Dosenovic P, Chakrabarti B, Soldemo M, Douagi I, Forsell MN, Li Y, Phogat A, Paulie S, Hoxie J, Wyatt RT, Karlsson Hedestam GB. Selective expansion of HIV-1 envelope glycoprotein-specific B cell subsets recognizing distinct structural elements following immunization. J Immunol 2009; 183(5): 3373–3382
https://doi.org/10.4049/jimmunol.0900407 pmid: 19696434
23 Knight A, Nemec P, Bretzova S, Valkova L, Kolmanova M, Vytopilova R, Havelka M, Vsianska P, Rihova L, Krejci M, Piskacek M. Do human B-lymphocytes avoid aging until 60 years? Oncotarget 2016; 7(28): 42873–42880
https://doi.org/10.18632/oncotarget.10146 pmid: 27344181
24 Qin L, Jing X, Qiu Z, Cao W, Jiao Y, Routy JP, Li T. Aging of immune system: Immune signature from peripheral blood lymphocyte subsets in 1068 healthy adults. Aging (Albany NY) 2016; 8(5): 848–859
https://doi.org/10.18632/aging.100894 pmid: 26886066
25 Moir S, Fauci AS. B cells in HIV infection and disease. Nat Rev Immunol 2009; 9(4): 235–245
https://doi.org/10.1038/nri2524 pmid: 19319142
26 De Milito A, Nilsson A, Titanji K, Thorstensson R, Reizenstein E, Narita M, Grutzmeier S, Sönnerborg A, Chiodi F. Mechanisms of hypergammaglobulinemia and impaired antigen-specific humoral immunity in HIV-1 infection. Blood 2004; 103(6): 2180–2186
https://doi.org/10.1182/blood-2003-07-2375 pmid: 14604962
27 Wolthers KC, Otto SA, Lens SM, Van Lier RA, Miedema F, Meyaard L. Functional B cell abnormalities in HIV type 1 infection: role of CD40L and CD70. AIDS Res Hum Retroviruses 1997; 13(12): 1023–1029
https://doi.org/10.1089/aid.1997.13.1023 pmid: 9264289
28 Fogli M, Torti C, Malacarne F, Fiorentini S, Albani M, Izzo I, Giagulli C, Maggi F, Carosi G, Caruso A.Emergence of exhausted B cells in asymptomatic HIV-1-infected patients naive for HAART is related to reduced immune surveillance. Clin Dev Immunol  2012;2012:829584
29 Whittall T, Peters B, Rahman D, Kingsley CI, Vaughan R, Lehner T. Immunogenic and tolerogenic signatures in human immunodeficiency virus (HIV)-infected controllers compared with progressors and a conversion strategy of virus control. Clin Exp Immunol 2011; 166(2): 208–217
https://doi.org/10.1111/j.1365-2249.2011.04463.x pmid: 21985367
30 Morris L, Binley JM, Clas BA, Bonhoeffer S, Astill TP, Kost R, Hurley A, Cao Y, Markowitz M, Ho DD, Moore JP. HIV-1 antigen-specific and-nonspecific B cell responses are sensitive to combination antiretroviral therapy. J Exp Med 1998; 188(2): 233–245
https://doi.org/10.1084/jem.188.2.233 pmid: 9670036
31 Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002; 20(1): 709–760
https://doi.org/10.1146/annurev.immunol.20.100301.064842 pmid: 11861616
32 Bofill M, Borthwick NJ. CD38 in health and diease. Chem 2000; 75: 218–234
https://doi.org/10.1038/ni.1679 pmid: 19043418
33 Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, Betts MR, Freeman GJ, Vignali DA, Wherry EJ. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 2009; 10(1): 29–37
https://doi.org/10.1038/ni.1679 pmid: 19043418
34 Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, Mackey EW, Miller JD, Leslie AJ, DePierres C, Mncube Z, Duraiswamy J, Zhu B, Eichbaum Q, Altfeld M, Wherry EJ, Coovadia HM, Goulder PJ, Klenerman P, Ahmed R, Freeman GJ, Walker BD. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 2006; 443(7109): 350–354
https://doi.org/10.1038/nature05115 pmid: 16921384
35 Kaufmann DE, Kavanagh DG, Pereyra F, Zaunders JJ, Mackey EW, Miura T, Palmer S, Brockman M, Rathod A, Piechocka-Trocha A, Baker B, Zhu B, Le Gall S, Waring MT, Ahern R, Moss K, Kelleher AD, Coffin JM, Freeman GJ, Rosenberg ES, Walker BD. Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat Immunol 2007; 8(11): 1246–1254
https://doi.org/10.1038/ni1515 pmid: 17906628
36 Titanji K, Velu V, Chennareddi L, Vijay-Kumar M, Gewirtz AT, Freeman GJ, Amara RR. Acute depletion of activated memory B cells involves the PD-1 pathway in rapidly progressing SIV-infected macaques. J Clin Invest 2010; 120(11): 3878–3890
https://doi.org/10.1172/JCI43271 pmid: 20972331
37 Wolthers KC, Otto SA, Lens SM, Van Lier RA, Miedema F, Meyaard L. Functional B cell abnormalities in HIV type 1 infection: role of CD40L and CD70. AIDS Res Hum Retroviruses 1997; 13(12): 1023–1029
https://doi.org/10.1089/aid.1997.13.1023 pmid: 9264289
38 Pensieroso S, Galli L, Nozza S, Ruffin N, Castagna A, Tambussi G, Hejdeman B, Misciagna D, Riva A, Malnati M, Chiodi F, Scarlatti G. B-cell subset alterations and correlated factors in HIV-1 infection. AIDS 2013; 27(8): 1209–1217
https://doi.org/10.1097/QAD.0b013e32835edc47 pmid: 23343911
39 Fink K. Origin and function of circulating plasmablasts during acute viral infections. Front Immunol 2012; 3(78): 1-5
https://doi.org/10.3389/fimmu.2012.00078 pmid: 22566959
40 Bussmann BM, Reiche S, Bieniek B, Krznaric I, Ackermann F, Jassoy C. Loss of HIV-specific memory B-cells as a potential mechanism for the dysfunction of the humoral immune response against HIV. Virology 2010; 397(1): 7–13
https://doi.org/10.1016/j.virol.2009.11.003 pmid: 19962720
41 Bonsignori M, Moody MA, Parks RJ, Holl TM, Kelsoe G, Hicks CB, Vandergrift N, Tomaras GD, Haynes BF. HIV-1 envelope induces memory B cell responses that correlate with plasma antibody levels after envelope gp120 protein vaccination or HIV-1 infection. J Immunol 2009; 183(4): 2708–2717
https://doi.org/10.4049/jimmunol.0901068 pmid: 19625640
42 Markowitz M, Vesanen M, Tenner-Racz K, Cao Y, Binley JM, Talal A, Hurley A, Jin X, Chaudhry MR, Yaman M, Frankel S, Heath-Chiozzi M, Leonard JM, Moore JP, Racz P, Nixon DF, Ho DD. The effect of commencing combination antiretroviral therapy soon after human immunodeficiency virus type 1 infection on viral replication and antiviral immune responses. J Infect Dis 1999; 179(3): 527–537
https://doi.org/10.1086/314628 pmid: 9952358
43 Fu YX, Chaplin DD. Development and maturation of secondary lymphoid tissues. Annu Rev Immunol 1999; 17(1): 399–433
https://doi.org/10.1146/annurev.immunol.17.1.399 pmid: 10358764
[1] Qian Wang, Linqi Zhang. Broadly neutralizing antibodies and vaccine design against HIV-1 infection[J]. Front. Med., 2020, 14(1): 30-42.
[2] Sumedha Roy, Yuan Zhuang. Paradoxical role of Id proteins in regulating tumorigenic potential of lymphoid cells[J]. Front. Med., 2018, 12(4): 374-386.
[3] Meijuan Zheng, Haoyu Sun, Zhigang Tian. Natural killer cells in liver diseases[J]. Front. Med., 2018, 12(3): 269-279.
[4] Xuezhong Zhou,Yubing Li,Yonghong Peng,Jingqing Hu,Runshun Zhang,Liyun He,Yinghui Wang,Lijie Jiang,Shiyan Yan,Peng Li,Qi Xie,Baoyan Liu. Clinical phenotype network: the underlying mechanism for personalized diagnosis and treatment of traditional Chinese medicine[J]. Front. Med., 2014, 8(3): 337-346.
[5] Xu Chen, Xiaomao Xu, Fei Xiao. Heterogeneity of chronic obstructive pulmonary disease: from phenotype to genotype[J]. Front Med, 2013, 7(4): 425-432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed