Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2018, Vol. 12 Issue (4) : 490-495    https://doi.org/10.1007/s11684-018-0647-7
COMMENTARY
Taking advantage of drug resistance, a new approach in the war on cancer
Liqin Wang, Rene Bernards()
Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
 Download: PDF(224 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Identification of the driver mutations in cancer has resulted in the development of a new category of molecularly targeted anti-cancer drugs. However, as was the case with conventional chemotherapies, the effectiveness of these drugs is limited by the emergence of drug-resistant variants. While most cancer therapies are given in combinations that are designed to avoid drug resistance, we discuss here therapeutic approaches that take advantage of the changes in cancer cells that arise upon development of drug resistance. This approach is based on notion that drug resistance comes at a fitness cost to the cancer cell that can be exploited for therapeutic benefit. We discuss the development of sequential drug therapies in which the first therapy is not given with curative intent, but to induce a major new sensitivity that can be targeted with a second drug that selectively targets the acquired vulnerability. This concept of collateral sensitivity has hitherto not been used on a large scale in the clinic and holds great promise for future cancer therapy.

Keywords cancer      drug resistance      genetic screens      senescence      targeted therapy     
Corresponding Author(s): Rene Bernards   
Just Accepted Date: 21 June 2018   Online First Date: 19 July 2018    Issue Date: 03 September 2018
 Cite this article:   
Liqin Wang,Rene Bernards. Taking advantage of drug resistance, a new approach in the war on cancer[J]. Front. Med., 2018, 12(4): 490-495.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-018-0647-7
https://academic.hep.com.cn/fmd/EN/Y2018/V12/I4/490
Fig.1  Schematic outline of the concept of synthetic lethality. Synthetic lethality refers to a genetic principle in which the combination of two genetic perturbations is lethal, whereas each individually is not. In the example shown here, only the combination of drug A and drug B is lethal to the cell, making the combination of A and B synthetic lethal.
Fig.2  Alternative drug administration schedules. Intermittent dosing uses regular “drug holidays” in which the patient is not exposed to drug. Cancer cells that have developed resistance to a cancer drug may be at a selective disadvantage in the absence of drug, leading to a decline in the fraction of drug resistant cells in this drug holiday. This should result in increased response when the drug is given again, as the fraction of drug sensitive cells should have increased during the drug holiday.
Fig.3  A one-two punch model for cancer therapy. Pro-senescence drugs can be used to induce a stable proliferation arrest associated with the onset of senescence in cancer cells. A subsequent therapy with agents that kill senescent cells (senolytic drugs) can then be applied to selectively eradicate the senescent cancer cells. Note that the proliferating cancer cells are not sensitive to the senolytic agents, which makes a sequential (or concomitant) treatment schedule necessary.
1 Weinstein IB. Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science 2002; 297(5578): 63–64
https://doi.org/10.1126/science.1073096 pmid: 12098689
2 Sun C, Bernards R. Feedback and redundancy in receptor tyrosine kinase signaling: relevance to cancer therapies. Trends Biochem Sci 2014; 39(10): 465–474
https://doi.org/10.1016/j.tibs.2014.08.010 pmid: 25239057
3 Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O’Dwyer PJ, Lee RJ, Grippo JF, Nolop K, Chapman PB. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 2010; 363(9): 809–819
https://doi.org/10.1056/NEJMoa1002011 pmid: 20818844
4 Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, Demidov LV, Hassel JC, Rutkowski P, Mohr P, Dummer R, Trefzer U, Larkin JM, Utikal J, Dreno B, Nyakas M, Middleton MR, Becker JC, Casey M, Sherman LJ, Wu FS, Ouellet D, Martin AM, Patel K, Schadendorf D; the METRIC Study Group. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med 2012; 367(2): 107–114
https://doi.org/10.1056/NEJMoa1203421 pmid: 22663011
5 Long GV, Fung C, Menzies AM, Pupo GM, Carlino MS, Hyman J, Shahheydari H, Tembe V, Thompson JF, Saw RP, Howle J, Hayward NK, Johansson P, Scolyer RA, Kefford RF, Rizos H. Increased MAPK reactivation in early resistance to dabrafenib/trametinib combination therapy of BRAF-mutant metastatic melanoma. Nat Commun 2014; 5(1): 5694
https://doi.org/10.1038/ncomms6694 pmid: 25452114
6 Kopetz S, Desai J, Chan E, Hecht JR, O’Dwyer PJ, Maru D, Morris V, Janku F, Dasari A, Chung W, Issa JP, Gibbs P, James B, Powis G, Nolop KB, Bhattacharya S, Saltz L. Phase II pilot study of vemurafenib in patients with metastatic BRAF-mutated colorectal cancer. J Clin Oncol 2015; 33(34): 4032–4038
https://doi.org/10.1200/JCO.2015.63.2497 pmid: 26460303
7 Beijersbergen RL, Wessels LFA, Bernards R. Synthetic lethality in cancer therapeutics. Annu Rev Cancer Biol 2017; 1(1): 141–161
https://doi.org/10.1146/annurev-cancerbio-042016-073434
8 Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, Beijersbergen RL, Bardelli A, Bernards R. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 2012; 483(7387): 100–103
https://doi.org/10.1038/nature10868 pmid: 22281684
9 van Geel RMJM, Tabernero J, Elez E, Bendell JC, Spreafico A, Schuler M, Yoshino T, Delord JP, Yamada Y, Lolkema MP, Faris JE, Eskens FALM, Sharma S, Yaeger R, Lenz HJ, Wainberg ZA, Avsar E, Chatterjee A, Jaeger S, Tan E, Maharry K, Demuth T, Schellens JHM. A phase Ib dose-escalation study of encorafenib and cetuximab with or without alpelisib in metastatic BRAF-mutant colorectal cancer. Cancer Discov 2017; 7(6): 610–619
https://doi.org/10.1158/2159-8290.CD-16-0795 pmid: 28363909
10 Hutchison DJ. Cross resistance and collateral sensitivity studies in cancer chemotherapy. In: Haddow A, Weinhouse S, editors. Advances in Cancer Research. 7: Academic Press; 1963. 235–350
11 Szakács G, Hall MD, Gottesman MM, Boumendjel A, Kachadourian R, Day BJ, Baubichon-Cortay H, Di Pietro A. Targeting the Achilles heel of multidrug-resistant cancer by exploiting the fitness cost of resistance. Chem Rev 2014; 114(11): 5753–5774
https://doi.org/10.1021/cr4006236 pmid: 24758331
12 Imamovic L, Sommer MOA. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci Transl Med 2013; 5(204):204ra132
https://doi.org/10.1126/scitranslmed.3006609
13 Seghers AC, Wilgenhof S, Lebbé C, Neyns B. Successful rechallenge in two patients with BRAF-V600-mutant melanoma who experienced previous progression during treatment with a selective BRAF inhibitor. Melanoma Res 2012; 22(6): 466–472
https://doi.org/10.1097/CMR.0b013e3283541541 pmid: 22584957
14 McMahon M. Intermittent dosing in melanoma. Clin Adv Hematol Oncol 2015; 13(6): 348–350 PMID:26352888
15 Treiber N, Huber MA, Schneider LA, Scharffetter-Kochanek K, Schultz E, Debus D. Intermittent vemurafenib therapy in malignant melanoma. J Dtsch Dermatol Ges 2017; 15(4): 451–454
https://doi.org/10.1111/ddg.13034 pmid: 28294514
16 Sun C, Wang L, Huang S, Heynen GJJE, Prahallad A, Robert C, Haanen J, Blank C, Wesseling J, Willems SM, Zecchin D, Hobor S, Bajpe PK, Lieftink C, Mateus C, Vagner S, Grernrum W, Hofland I, Schlicker A, Wessels LF, Beijersbergen RL, Bardelli A, Di Nicolantonio F, Eggermont AM, Bernards R. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature 2014; 508(7494): 118–122
https://doi.org/10.1038/nature13121 pmid: 24670642
17 Das Thakur M, Salangsang F, Landman AS, Sellers WR, Pryer NK, Levesque MP, Dummer R, McMahon M, Stuart DD. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 2013; 494(7436): 251–255
https://doi.org/10.1038/nature11814 pmid: 23302800
18 Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol 2017; 14(8): 463–482
https://doi.org/10.1038/nrclinonc.2017.43 pmid: 28374786
19 Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, Matov A, Galeas J, Dhruv HD, Berens ME, Schreiber SL, McCormick F, McManus MT. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 2017; 551(7679): 247–250
pmid: 29088702
20 Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, Kaffenberger SD, Eaton JK, Shimada K, Aguirre AJ, Viswanathan SR, Chattopadhyay S, Tamayo P, Yang WS, Rees MG, Chen S, Boskovic ZV, Javaid S, Huang C, Wu X, Tseng YY, Roider EM, Gao D, Cleary JM, Wolpin BM, Mesirov JP, Haber DA, Engelman JA, Boehm JS, Kotz JD, Hon CS, Chen Y, Hahn WC, Levesque MP, Doench JG, Berens ME, Shamji AF, Clemons PA, Stockwell BR, Schreiber SL. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 2017; 547(7664): 453–457
https://doi.org/10.1038/nature23007 pmid: 28678785
21 Zhao B, Sedlak JC, Srinivas R, Creixell P, Pritchard JR, Tidor B, Lauffenburger DA, Hemann MT. Exploiting temporal collateral sensitivity in tumor clonal evolution. Cell 2016; 165(1): 234–246
https://doi.org/10.1016/j.cell.2016.01.045 pmid: 26924578
22 Wang L, Leite de Oliveira R, Huijberts S, Bosdriesz E, Pencheva N, Brunen D, Bosma A, Song JY, Zevenhoven J, Los-de Vries GT, Horlings H, Nuijen B, Beijnen JH, Schellens JHM, Bernards R. An acquired vulnerability of drug resistant melanoma with therapeutic potential. Cell 2018; 173(6): 1413–1425.e14
https://doi.org/10.1016/j.cell.2018.04.012 pmid: 29754815
23 Wang L, Leite de Oliveira R, Wang C, Fernandes Neto JM, Mainardi S, Evers B, Lieftink C, Morris B, Jochems F, Willemsen L, Beijersbergen RL, Bernards R. High-throughput functional genetic and compound screens identify targets for senescence induction in cancer. Cell Reports 2017; 21(3): 773–783
https://doi.org/10.1016/j.celrep.2017.09.085 pmid: 29045843
24 Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 2014; 15(7): 482–496
https://doi.org/10.1038/nrm3823 pmid: 24954210
25 Fridman AL, Tainsky MA. Critical pathways in cellular senescence and immortalization revealed by gene expression profiling. Oncogene 2008; 27(46): 5975–5987
https://doi.org/10.1038/onc.2008.213 pmid: 18711403
26 Narita M, Nũnez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 2003; 113(6): 703–716
https://doi.org/10.1016/S0092-8674(03)00401-X pmid: 12809602
27 Jiang P, Du W, Mancuso A, Wellen KE, Yang X. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 2013; 493(7434): 689–693 PMID:23334421
https://doi.org/10.1038/nature11776
28 Wiley CD, Campisi J. From ancient pathways to aging cells-connecting metabolism and cellular senescence. Cell Metab 2016; 23(6): 1013–1021
https://doi.org/10.1016/j.cmet.2016.05.010 pmid: 27304503
29 Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, Janakiraman K, Sharpless NE, Ding S, Feng W, Luo Y, Wang X, Aykin-Burns N, Krager K, Ponnappan U, Hauer-Jensen M, Meng A, Zhou D. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 2016; 22(1): 78–83
https://doi.org/10.1038/nm.4010 pmid: 26657143
30 Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, Pirtskhalava T, Giorgadze N, Johnson KO, Giles CB, Wren JD, Niedernhofer LJ, Robbins PD, Kirkland JL. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 2016; 15(3): 428–435
https://doi.org/10.1111/acel.12445 pmid: 26711051
[1] Yong Fan, Yan Geng, Lin Shen, Zhuoli Zhang. Advances on immune-related adverse events associated with immune checkpoint inhibitors[J]. Front. Med., 2021, 15(1): 33-42.
[2] Solmaz Ohadian Moghadam, Seyed Ali Momeni. Human microbiome and prostate cancer development: current insights into the prevention and treatment[J]. Front. Med., 2021, 15(1): 11-32.
[3] Hongnan Mo, Binghe Xu. Progress in systemic therapy for triple-negative breast cancer[J]. Front. Med., 2021, 15(1): 1-10.
[4] Ching-Hon Pui. Precision medicine in acute lymphoblastic leukemia[J]. Front. Med., 2020, 14(6): 689-700.
[5] Shengfen Wang, Yang Zhou, Bing Zhao, Xichao Ou, Hui Xia, Yang Zheng, Yuanyuan Song, Qian Cheng, Xinyang Wang, Yanlin Zhao. Characteristics of compensatory mutations in the rpoC gene and their association with compensated transmission of Mycobacterium tuberculosis[J]. Front. Med., 2020, 14(1): 51-59.
[6] Jiahui Xu, Qianqian Wang, Elaine Lai Han Leung, Ying Li, Xingxing Fan, Qibiao Wu, Xiaojun Yao, Liang Liu. Compound C620-0696, a new potent inhibitor targeting BPTF, the chromatin-remodeling factor in non-small-cell lung cancer[J]. Front. Med., 2020, 14(1): 60-67.
[7] Jiajia Hu, Wenbin Shen, Qian Qu, Xiaochun Fei, Ying Miao, Xinyun Huang, Jiajun Liu, Yingli Wu, Biao Li. NES1/KLK10 and hNIS gene therapy enhanced iodine-131 internal radiation in PC3 proliferation inhibition[J]. Front. Med., 2019, 13(6): 646-657.
[8] Rui Zhou, Yuanshu Liu, Wenjun Huang, Xitong Dang. Potential functions of esophageal cancer-related gene-4 in the cardiovascular system[J]. Front. Med., 2019, 13(6): 639-645.
[9] Xin Qin, Ping Zhang. ECRG4: a new potential target in precision medicine[J]. Front. Med., 2019, 13(5): 540-546.
[10] Hong Zhang, Ying Chang, Qingqing Zheng, Rong Zhang, Cheng Hu, Weiping Jia. Altered intestinal microbiota associated with colorectal cancer[J]. Front. Med., 2019, 13(4): 461-470.
[11] Yumeng Wang, Guiling Li. PD-1/PD-L1 blockade in cervical cancer: current studies and perspectives[J]. Front. Med., 2019, 13(4): 438-450.
[12] Zhen Wang, Jianhui Wu, Xiuyun Tian, Chunyi Hao. Targeted therapy of desmoid-type fibromatosis: mechanism, current situation, and future prospects[J]. Front. Med., 2019, 13(4): 427-437.
[13] Tao Wang, Florent Chuffart, Ekaterina Bourova-Flin, Jin Wang, Jianqing Mi, Sophie Rousseaux, Saadi Khochbin. Histone variants: critical determinants in tumour heterogeneity[J]. Front. Med., 2019, 13(3): 289-297.
[14] Biqiong Fu, Jie Yang, Jia Chen, Lirong Lin, Kehong Chen, Weiwei Zhang, Jianguo Zhang, Yani He. Preventive effect of Shenkang injection against high glucose-induced senescence of renal tubular cells[J]. Front. Med., 2019, 13(2): 267-276.
[15] Qiongna Dong, Bizhi Shi, Min Zhou, Huiping Gao, Xiaoying Luo, Zonghai Li, Hua Jiang. Growth suppression of colorectal cancer expressing S492R EGFR by monoclonal antibody CH12[J]. Front. Med., 2019, 13(1): 83-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed