Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2018, Vol. 12 Issue (6) : 634-644    https://doi.org/10.1007/s11684-018-0670-8
REVIEW
Calorie restriction and its impact on gut microbial composition and global metabolism
Xiaojiao Zheng1, Shouli Wang1, Wei Jia1,2()
1. Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
2. University of Hawaii Cancer Center, Honolulu, HI 96813, USA
 Download: PDF(257 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Calorie restriction (CR) is a dietary regimen that reduces calorie intake without incurring malnutrition or a reduction in essential nutrients. It has long been recognized as a natural strategy for promoting health, extending longevity, and prevents the development of metabolic and age-related diseases. In the present review, we focus on the general effect of CR on gut microbiota composition and global metabolism. We also propose mechanisms for its beneficial effect. Results showed that probiotic and butyrate-producing microbes increased their relative abundance, whereas proinflammatory strains exhibited suppressed relative abundance following CR. Analyses of the gut microbial and host metabolisms revealed that most host microbial co-metabolites were changed due to CR. Examples of dramatic CR-induced changes in host metabolism included a decrease in the rate of lipid biosynthesis and an increase in the rates of fatty acid catabolism, β-oxidation, glycogenolysis, and gluconeogenesis. The observed phenotypes and the further verification of the direct link between gut microbiota and metabolome may benefit patients that are at risk for developing metabolic disease. Thus, improved gut microbiota composition and metabolome are potential biomarkers for determining the effectiveness of dietary interventions for age-related and metabolic diseases.

Keywords caloric restriction      gut microbiota      metabolome     
Corresponding Author(s): Wei Jia   
Just Accepted Date: 24 October 2018   Online First Date: 16 November 2018    Issue Date: 03 December 2018
 Cite this article:   
Xiaojiao Zheng,Shouli Wang,Wei Jia. Calorie restriction and its impact on gut microbial composition and global metabolism[J]. Front. Med., 2018, 12(6): 634-644.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-018-0670-8
https://academic.hep.com.cn/fmd/EN/Y2018/V12/I6/634
Fig.1  Phylogenetic tree of all reported taxa. The abundance of taxa in red indicates increased abundance, blue indicates decreased abundance, and black indicates controversial alteration after CR intervention. The taxa in gray have not been reported in CR-related studies.
Metabolite types Increased after CR Decreased after CR Inconsistent in the reports
Host-microbial co-metabolites Trimethylamine-N-oxide (TMAO) Hippurate, dimethylgycine, trimethylamine (TMA) p-Cresol, phenylacetylglycine, 4-hydroxyphenylacetic acid
Lipoprotein High density lipoprotein (HDL) Low density lipoprotein (LDL), very low-density lipoprotein (VLDL)
Glyceryl derivatives of lipids and phospholipid choline   Choline, glycerophosphocholine, phosphatidylcholine (PC) (18:0/20:4), sphingomyelin (SM) (d18:0/16:1), lysoPCs (C16:1, C16:0, C17:0, C18:2, C18:1, C18:0, C20:4, C20:3, and C22:6), diacylglycerol lipids, triacylglycerol lipids  
Free fatty acids n-6 polyunsaturated fatty acids, palmitoleic acid (C16:1 n7), heptadecenoic acid (C17:1 n7), γ-linolenic acid (C18:3 n6), dihomo-γ-linolenic acid n-3 polyunsaturated fatty acids, monounsaturated fatty acids, saturated fatty acids
Ketone bodies Acetoacetate, 3-hydroxybutyrate    
Bile acids Taurocholic acid, taurodeoxycholic acid, deoxycholic acid, lithocholic acid, w-muricholic acid, hyodeoxycholic acid
Amino acids Glutamate, methionine, glutamine, alanine Branched-chain amino acids, aromatic amino acids  
Others Carnitine, gluconate Pyruvate  
Tab.1  CR related metabolites
1 Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009; 325(5937): 201–204
https://doi.org/10.1126/science.1173635 pmid: 19590001
2 Fontana L, Klein S. Aging, adiposity, and calorie restriction. JAMA 2007; 297(9): 986–994
https://doi.org/10.1001/jama.297.9.986 pmid: 17341713
3 Zhang C, Li S, Yang L, Huang P, Li W, Wang S, Zhao G, Zhang M, Pang X, Yan Z, Liu Y, Zhao L. Structural modulation of gut microbiota in life-long calorie-restricted mice. Nat Commun 2013; 4(1): 2163
https://doi.org/10.1038/ncomms3163 pmid: 23860099
4 Kim KE, Jung Y, Min S, Nam M, Heo RW, Jeon BT, Song DH, Yi CO, Jeong EA, Kim H, Kim J, Jeong SY, Kwak W, Ryu H, Horvath TL, Roh GS, Hwang GS. Caloric restriction of db/db mice reverts hepatic steatosis and body weight with divergent hepatic metabolism. Sci Rep 2016; 6(1): 30111
https://doi.org/10.1038/srep30111 pmid: 27439777
5 Qu B, Halliwell B, Ong CN, Lee BL, Li QT. Caloric restriction prevents oxidative damage induced by the carcinogen clofibrate in mouse liver. FEBS Lett 2000; 473(1): 85–88
https://doi.org/10.1016/S0014-5793(00)01506-4 pmid: 10802065
6 Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell Metab 2014; 19(2): 181–192
https://doi.org/10.1016/j.cmet.2013.12.008 pmid: 24440038
7 Koubova J, Guarente L. How does calorie restriction work? Genes Dev 2003; 17(3): 313–321
https://doi.org/10.1101/gad.1052903 pmid: 12569120
8 Wang Y, Lawler D, Larson B, Ramadan Z, Kochhar S, Holmes E, Nicholson JK. Metabonomic investigations of aging and caloric restriction in a life-long dog study. J Proteome Res 2007; 6(5): 1846–1854
https://doi.org/10.1021/pr060685n pmid: 17411081
9 Kealy RD, Lawler DF, Ballam JM, Mantz SL, Biery DN, Greeley EH, Lust G, Segre M, Smith GK, Stowe HD. Effects of diet restriction on life span and age-related changes in dogs. J Am Vet Med Assoc 2002; 220(9): 1315–1320
https://doi.org/10.2460/javma.2002.220.1315 pmid: 11991408
10 Masoro EJ. Food restriction in rodents: an evaluation of its role in the study of aging. J Gerontol 1988; 43(3): B59–B64
https://doi.org/10.1093/geronj/43.3.B59 pmid: 3283209
11 Smilowitz JT, Wiest MM, Watkins SM, Teegarden D, Zemel MB, German JB, Van Loan MD. Lipid metabolism predicts changes in body composition during energy restriction in overweight humans. J Nutr 2009; 139(2): 222–229
https://doi.org/10.3945/jn.108.095364 pmid: 19106317
12 López-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S, Cascajo MV, Allard J, Ingram DK, Navas P, de Cabo R. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci USA 2006; 103(6): 1768–1773
https://doi.org/10.1073/pnas.0510452103 pmid: 16446459
13 Rezzi S, Martin FP, Shanmuganayagam D, Colman RJ, Nicholson JK, Weindruch R. Metabolic shifts due to long-term caloric restriction revealed in nonhuman primates. Exp Gerontol 2009; 44(5): 356–362
https://doi.org/10.1016/j.exger.2009.02.008 pmid: 19264119
14 Su HY, Lee HC, Cheng WY, Huang SY. A calorie-restriction diet supplemented with fish oil and high-protein powder is associated with reduced severity of metabolic syndrome in obese women. Eur J Clin Nutr 2015; 69(3): 322–328
https://doi.org/10.1038/ejcn.2014.196 pmid: 25248358
15 Schmedes MS, Yde CC, Svensson U, Håkansson J, Baby S, Bertram HC. Impact of a 6-week very low-calorie diet and weight reduction on the serum and fecal metabolome of overweight subjects. Eur Food Res Technol 2015; 240(3): 583–594
https://doi.org/10.1007/s00217-014-2359-9
16 Kim M, Lee SH, Lee JH. Global metabolic profiling of plasma shows that three-year mild-caloric restriction lessens an age-related increase in sphingomyelin and reduces L-leucine and L-phenylalanine in overweight and obese subjects. Aging Dis 2016; 7(6): 721–733
https://doi.org/10.14336/AD.2016.0330 pmid: 28053823
17 Guarente L. Mitochondria—a nexus for aging, calorie restriction, and sirtuins? Cell 2008; 132(2): 171–176
https://doi.org/10.1016/j.cell.2008.01.007 pmid: 18243090
18 Zheng X, Zhao A, Xie G, Chi Y, Zhao L, Li H, Wang C, Bao Y, Jia W, Luther M, Su M, Nicholson JK, Jia W. Melamine-induced renal toxicity is mediated by the gut microbiota. Sci Transl Med 2013; 5(172): 172ra22
https://doi.org/10.1126/scitranslmed.3005114 pmid: 23408055
19 Goodman AL, Gordon JI. Our unindicted coconspirators: human metabolism from a microbial perspective. Cell Metab 2010; 12(2): 111–116
https://doi.org/10.1016/j.cmet.2010.07.001 pmid: 20674856
20 David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505(7484): 559–563
https://doi.org/10.1038/nature12820 pmid: 24336217
21 Fraumene C, Manghina V, Cadoni E, Marongiu F, Abbondio M, Serra M, Palomba A, Tanca A, Laconi E, Uzzau S. Caloric restriction promotes rapid expansion and long-lasting increase of Lactobacillus in the rat fecal microbiota. Gut Microbes 2018; 9(2): 104–114
pmid: 28891744
22 Wu J, Yang L, Li S, Huang P, Liu Y, Wang Y, Tang H. Metabolomics insights into the modulatory effects of long-term low calorie intake in mice. J Proteome Res 2016; 15(7): 2299–2308
https://doi.org/10.1021/acs.jproteome.6b00336 pmid: 27267303
23 Zheng X, Chen T, Zhao A, Wang X, Xie G, Huang F, Liu J, Zhao Q, Wang S, Wang C, Zhou M, Panee J, He Z, Jia W. The brain metabolome of male rats across the lifespan. Sci Rep 2016; 6(1): 24125
https://doi.org/10.1038/srep24125 pmid: 27063670
24 Xie G, Zheng X, Qi X, Cao Y, Chi Y, Su M, Ni Y, Qiu Y, Liu Y, Li H, Zhao A, Jia W. Metabonomic evaluation of melamine-induced acute renal toxicity in rats. J Proteome Res 2010; 9(1): 125–133
https://doi.org/10.1021/pr900333h pmid: 19476335
25 Zheng X, Xie G, Jia W. Metabolomic profiling in colorectal cancer: opportunities for personalized medicine. Per Med 2013; 10(7): 741–755
https://doi.org/10.2217/pme.13.73 pmid: 29768755
26 Xu H, Zheng X, Jia W, Yin S. Chromatography/mass spectrometry-based biomarkers in the field of obstructive sleep apnea. Medicine (Baltimore) 2015; 94(40): e1541
https://doi.org/10.1097/MD.0000000000001541 pmid: 26448002
27 Ott B, Skurk T, Hastreiter L, Lagkouvardos I, Fischer S, Büttner J, Kellerer T, Clavel T, Rychlik M, Haller D, Hauner H. Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women. Sci Rep 2017; 7(1): 11955
https://doi.org/10.1038/s41598-017-12109-9 pmid: 28931850
28 Pataky Z, Genton L, Spahr L, Lazarevic V, Terraz S, Gaïa N, Rubbia-Brandt L, Golay A, Schrenzel J, Pichard C. Impact of hypocaloric hyperproteic diet on gut microbiota in overweight or obese patients with nonalcoholic fatty liver disease: a pilot study. Dig Dis Sci 2016; 61(9): 2721–2731
https://doi.org/10.1007/s10620-016-4179-1 pmid: 27142672
29 Ruiz A, Cerdó T, Jáuregui R, Pieper DH, Marcos A, Clemente A, García F, Margolles A, Ferrer M, Campoy C, Suárez A. One-year calorie restriction impacts gut microbial composition but not its metabolic performance in obese adolescents. Environ Microbiol 2017; 19(4): 1536–1551
https://doi.org/10.1111/1462-2920.13713 pmid: 28251782
30 Bartley JM, Zhou X, Kuchel GA, Weinstock GM, Haynes L. Impact of age, caloric restriction, and influenza infection on mouse gut microbiome: an exploratory study of the role of age-related microbiome changes on influenza responses. Front Immunol 2017; 8: 1164
https://doi.org/10.3389/fimmu.2017.01164 pmid: 28979265
31 Henderson AL, Cao WW, Wang RF, Lu MH, Cerniglia CE. The effect of food restriction on the composition of intestinal microflora in rats. Exp Gerontol 1998; 33(3): 239–247
https://doi.org/10.1016/S0531-5565(97)00091-0 pmid: 9615922
32 Mai V, Colbert LH, Perkins SN, Schatzkin A, Hursting SD. Intestinal microbiota: a potential diet-responsive prevention target in ApcMin mice. Mol Carcinog 2007; 46(1): 42–48
https://doi.org/10.1002/mc.20233 pmid: 16929480
33 Santacruz A, Marcos A, Wärnberg J, Martí A, Martin-Matillas M, Campoy C, Moreno LA, Veiga O, Redondo-Figuero C, Garagorri JM, Azcona C, Delgado M, García-Fuentes M, Collado MC, Sanz Y; EVASYON Study Group. Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity (Silver Spring) 2009; 17(10): 1906–1915
https://doi.org/10.1038/oby.2009.112 pmid: 19390523
34 Damms-Machado A, Mitra S, Schollenberger AE, Kramer KM, Meile T, Königsrainer A, Huson DH, Bischoff SC. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. BioMed Res Int 2015; 2015: 806248
https://doi.org/10.1155/2015/806248 pmid: 25710027
35 Russo M, Fabersani E, Abeijón-Mukdsi MC, Ross R, Fontana C, Benítez-Páez A, Gauffin-Cano P, Medina RB. Lactobacillus fermentum CRL1446 ameliorates oxidative and metabolic parameters by increasing intestinal feruloyl esterase activity and modulating microbiota in caloric-restricted mice. Nutrients 2016; 8(7): E415
https://doi.org/10.3390/nu8070415 pmid: 27399766
36 Bernardeau M, Guguen M, Vernoux JP. Beneficial lactobacilli in food and feed: long-term use, biodiversity and proposals for specific and realistic safety assessments. FEMS Microbiol Rev 2006; 30(4): 487–513
https://doi.org/10.1111/j.1574-6976.2006.00020.x pmid: 16774584
37 Zareie M, Johnson-Henry K, Jury J, Yang PC, Ngan BY, McKay DM, Soderholm JD, Perdue MH, Sherman PM. Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress. Gut 2006; 55(11): 1553–1560
https://doi.org/10.1136/gut.2005.080739 pmid: 16638791
38 Sun J, Buys N. Effects of probiotics consumption on lowering lipids and CVD risk factors: a systematic review and meta-analysis of randomized controlled trials. Ann Med 2015; 47(6): 430–440
https://doi.org/10.3109/07853890.2015.1071872 pmid: 26340330
39 Zhang C, Zhang M, Wang S, Han R, Cao Y, Hua W, Mao Y, Zhang X, Pang X, Wei C, Zhao G, Chen Y, Zhao L. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J 2010; 4(2): 232–241
https://doi.org/10.1038/ismej.2009.112 pmid: 19865183
40 Price LB, Liu CM, Melendez JH, Frankel YM, Engelthaler D, Aziz M, Bowers J, Rattray R, Ravel J, Kingsley C, Keim PS, Lazarus GS, Zenilman JM. Community analysis of chronic wound bacteria using 16S rRNA gene-based pyrosequencing: impact of diabetes and antibiotics on chronic wound microbiota. PLoS One 2009; 4(7): e6462
https://doi.org/10.1371/journal.pone.0006462 pmid: 19649281
41 Kuehbacher T, Rehman A, Lepage P, Hellmig S, Fölsch UR, Schreiber S, Ott SJ. Intestinal TM7 bacterial phylogenies in active inflammatory bowel disease. J Med Microbiol 2008; 57(Pt 12): 1569–1576
https://doi.org/10.1099/jmm.0.47719-0 pmid: 19018031
42 Zweigner J, Schumann RR, Weber JR. The role of lipopolysaccharide-binding protein in modulating the innate immune response. Microbes Infect 2006; 8(3): 946–952
https://doi.org/10.1016/j.micinf.2005.10.006 pmid: 16483818
43 Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56(7): 1761–1772
https://doi.org/10.2337/db06-1491 pmid: 17456850
44 Brahe LK, Astrup A, Larsen LH. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes Rev 2013; 14(12): 950–959
https://doi.org/10.1111/obr.12068 pmid: 23947604
45 Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 2015; 11(10): 577–591
https://doi.org/10.1038/nrendo.2015.128 pmid: 26260141
46 Endo H, Niioka M, Kobayashi N, Tanaka M, Watanabe T. Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis. PLoS One 2013; 8(5): e63388
https://doi.org/10.1371/journal.pone.0063388 pmid: 23696823
47 Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, Hardt PD. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 2010; 18(1): 190–195
https://doi.org/10.1038/oby.2009.167 pmid: 19498350
48 Selman C, Kerrison ND, Cooray A, Piper MD, Lingard SJ, Barton RH, Schuster EF, Blanc E, Gems D, Nicholson JK, Thornton JM, Partridge L, Withers DJ. Coordinated multitissue transcriptional and plasma metabonomic profiles following acute caloric restriction in mice. Physiol Genomics 2006; 27(3): 187–200
https://doi.org/10.1152/physiolgenomics.00084.2006 pmid: 16882887
49 Richards SE, Wang Y, Lawler D, Kochhar S, Holmes E, Lindon JC, Nicholson JK. Self-modeling curve resolution recovery of temporal metabolite signal modulation in NMR spectroscopic data sets: application to a life-long caloric restriction study in dogs. Anal Chem 2008; 80(13): 4876–4885
https://doi.org/10.1021/ac702584g pmid: 18510345
50 Margolis LM, Rivas DA, Ezzyat Y, Gaffney-Stomberg E, Young AJ, McClung JP, Fielding RA, Pasiakos SM. Calorie restricted high protein diets downregulate lipogenesis and lower intrahepatic triglyceride concentrations in male rats. Nutrients 2016; 8(9): E571
https://doi.org/10.3390/nu8090571 pmid: 27649241
51 Krebs M, Krssak M, Bernroider E, Anderwald C, Brehm A, Meyerspeer M, Nowotny P, Roth E, Waldhäusl W, Roden M. Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes 2002; 51(3): 599–605
https://doi.org/10.2337/diabetes.51.3.599 pmid: 11872656
52 Solon-Biet SM, Mitchell SJ, Coogan SC, Cogger VC, Gokarn R, McMahon AC, Raubenheimer D, de Cabo R, Simpson SJ, Le Couteur DG. Dietary protein to carbohydrate ratio and caloric restriction: comparing metabolic outcomes in mice. Cell Reports 2015; 11(10): 1529–1534
https://doi.org/10.1016/j.celrep.2015.05.007 pmid: 26027933
53 Huffman KM, Shah SH, Stevens RD, Bain JR, Muehlbauer M, Slentz CA, Tanner CJ, Kuchibhatla M, Houmard JA, Newgard CB, Kraus WE. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care 2009; 32(9): 1678–1683
https://doi.org/10.2337/dc08-2075 pmid: 19502541
54 Shaham O, Wei R, Wang TJ, Ricciardi C, Lewis GD, Vasan RS, Carr SA, Thadhani R, Gerszten RE, Mootha VK. Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol Syst Biol 2008; 4: 214
https://doi.org/10.1038/msb.2008.50 pmid: 18682704
55 Walsh MC, Brennan L, Malthouse JP, Roche HM, Gibney MJ. Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. Am J Clin Nutr 2006; 84(3): 531–539
https://doi.org/10.1093/ajcn/84.3.531 pmid: 16960166
56 Mellert W, Kapp M, Strauss V, Wiemer J, Kamp H, Walk T, Looser R, Prokoudine A, Fabian E, Krennrich G, Herold M, van Ravenzwaay B. Nutritional impact on the plasma metabolome of rats. Toxicol Lett 2011; 207(2): 173–181
https://doi.org/10.1016/j.toxlet.2011.08.013 pmid: 21907771
57 Simón E, Portillo MP, Fernández-Quintela A, Zulet MA, Martínez JA, Del Barrio AS. Responses to dietary macronutrient distribution of overweight rats under restricted feeding. Ann Nutr Metab 2002; 46(1): 24–31
https://doi.org/10.1159/000046749 pmid: 11914512
58 Selmer T, Andrei PI. p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol. Eur J Biochem 2001; 268(5): 1363–1372
https://doi.org/10.1046/j.1432-1327.2001.02001.x pmid: 11231288
59 Lees HJ, Swann JR, Wilson ID, Nicholson JK, Holmes E. Hippurate: the natural history of a mammalian-microbial cometabolite. J Proteome Res 2013; 12(4): 1527–1546
https://doi.org/10.1021/pr300900b pmid: 23342949
60 Jové M, Naudí A, Ramírez-Núñez O, Portero-Otín M, Selman C, Withers DJ, Pamplona R. Caloric restriction reveals a metabolomic and lipidomic signature in liver of male mice. Aging Cell 2014; 13(5): 828–837
https://doi.org/10.1111/acel.12241 pmid: 25052291
61 Zheng H, Lorenzen JK, Astrup A, Larsen LH, Yde CC, Clausen MR, Bertram HC. Metabolic effects of a 24-week energy-restricted intervention combined with low or high dairy intake in overweight women: an NMR-based metabolomics investigation. Nutrients 2016; 8(3): 108
https://doi.org/10.3390/nu8030108 pmid: 26907339
62 Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science 2012; 336(6086): 1262–1267
https://doi.org/10.1126/science.1223813 pmid: 22674330
63 Zheng X, Xie G, Zhao A, Zhao L, Yao C, Chiu NH, Zhou Z, Bao Y, Jia W, Nicholson JK, Jia W. The footprints of gut microbial-mammalian co-metabolism. J Proteome Res 2011; 10(12): 5512–5522
https://doi.org/10.1021/pr2007945 pmid: 21970572
64 Williams RE, Lenz EM, Lowden JS, Rantalainen M, Wilson ID. The metabonomics of aging and development in the rat: an investigation into the effect of age on the profile of endogenous metabolites in the urine of male rats using 1H NMR and HPLC-TOF MS. Mol Biosyst 2005; 1(2): 166–175
https://doi.org/10.1039/b500852b pmid: 16880980
65 Schnackenberg LK, Sun J, Espandiari P, Holland RD, Hanig J, Beger RD. Metabonomics evaluations of age-related changes in the urinary compositions of male Sprague Dawley rats and effects of data normalization methods on statistical and quantitative analysis. BMC Bioinformatics 2007; 8(Suppl 7): S3
https://doi.org/10.1186/1471-2105-8-S7-S3 pmid: 18047726
66 Hennebelle M, Roy M, St-Pierre V, Courchesne-Loyer A, Fortier M, Bouzier-Sore AK, Gallis JL, Beauvieux MC, Cunnane SC. Energy restriction does not prevent insulin resistance but does prevent liver steatosis in aging rats on a Western-style diet. Nutrition 2015; 31(3): 523–530
https://doi.org/10.1016/j.nut.2014.09.009 pmid: 25701344
67 Nestor G, Eriksson J, Sandström C, Malmlöf K. Nuclear magnetic resonance-based blood metabolic profiles of rats exposed to short-term caloric restriction. Anal Lett 2015; 48(16): 2613–2625
https://doi.org/10.1080/00032719.2015.1041028
68 al-Waiz M, Mikov M, Mitchell SC, Smith RL. The exogenous origin of trimethylamine in the mouse. Metabolism 1992; 41(2): 135–136
https://doi.org/10.1016/0026-0495(92)90140-6 pmid: 1736035
69 De Guzman JM, Ku G, Fahey R, Youm YH, Kass I, Ingram DK, Dixit VD, Kheterpal I. Chronic caloric restriction partially protects against age-related alteration in serum metabolome. Age (Dordr) 2013; 35(4): 1091–1104
https://doi.org/10.1007/s11357-012-9430-x pmid: 22661299
70 Zhang Y, Yan S, Gao X, Dai W, Liu S, Jin H, Zhang W, Mei C. Metabonomic investigation on the protective effects of rosiglitazone and caloric restriction for renal senescence in a rat model. Aging Clin Exp Res 2012; 24(5): 430–438
pmid: 22572705
71 Meidenbauer JJ, Ta N, Seyfried TN. Influence of a ketogenic diet, fish-oil, and calorie restriction on plasma metabolites and lipids in C57BL/6J mice. Nutr Metab (Lond) 2014; 11(1): 23
https://doi.org/10.1186/1743-7075-11-23 pmid: 24910707
72 Malandrucco I, Pasqualetti P, Giordani I, Manfellotto D, De Marco F, Alegiani F, Sidoti AM, Picconi F, Di Flaviani A, Frajese G, Bonadonna RC, Frontoni S. Very-low-calorie diet: a quick therapeutic tool to improve β cell function in morbidly obese patients with type 2 diabetes. Am J Clin Nutr 2012; 95(3): 609–613
https://doi.org/10.3945/ajcn.111.023697 pmid: 22318758
73 Szapary PO, Rader DJ. The triglyceride-high-density lipoprotein axis: an important target of therapy? Am Heart J 2004; 148(2): 211–221
https://doi.org/10.1016/j.ahj.2004.03.037 pmid: 15308990
74 Cazzola R, Rondanelli M, Trotti R, Cestaro B. Effects of weight loss on erythrocyte membrane composition and fluidity in overweight and moderately obese women. J Nutr Biochem 2011; 22(4): 388–392
https://doi.org/10.1016/j.jnutbio.2010.03.007 pmid: 20619626
75 Samad F, Hester KD, Yang G, Hannun YA, Bielawski J. Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes 2006; 55(9): 2579–2587
https://doi.org/10.2337/db06-0330 pmid: 16936207
76 Weir JM, Wong G, Barlow CK, Greeve MA, Kowalczyk A, Almasy L, Comuzzie AG, Mahaney MC, Jowett JB, Shaw J, Curran JE, Blangero J, Meikle PJ. Plasma lipid profiling in a large population-based cohort. J Lipid Res 2013; 54(10): 2898–2908
https://doi.org/10.1194/jlr.P035808 pmid: 23868910
77 Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ. Autophagy regulates lipid metabolism. Nature 2009; 458(7242): 1131–1135
https://doi.org/10.1038/nature07976 pmid: 19339967
78 Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2005; 365(9468): 1415–1428
https://doi.org/10.1016/S0140-6736(05)66378-7 pmid: 15836891
79 Ni Y, Zhao L, Yu H, Ma X, Bao Y, Rajani C, Loo LW, Shvetsov YB, Yu H, Chen T, Zhang Y, Wang C, Hu C, Su M, Xie G, Zhao A, Jia W, Jia W. Circulating unsaturated fatty acids delineate the metabolic status of obese individuals. EBioMedicine 2015; 2(10): 1513–1522
https://doi.org/10.1016/j.ebiom.2015.09.004 pmid: 26629547
80 Wijeyesekera A, Selman C, Barton RH, Holmes E, Nicholson JK, Withers DJ. Metabotyping of long-lived mice using 1H NMR spectroscopy. J Proteome Res 2012; 11(4): 2224–2235
https://doi.org/10.1021/pr2010154 pmid: 22225495
81 Javitt NB. Bile acid synthesis from cholesterol: regulatory and auxiliary pathways. FASEB J 1994; 8(15): 1308–1311
https://doi.org/10.1096/fasebj.8.15.8001744 pmid: 8001744
82 Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol 2017; 15(2): 111–128
https://doi.org/10.1038/nrgastro.2017.119 pmid: 29018272
83 Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 2008; 7(8): 678–693
https://doi.org/10.1038/nrd2619 pmid: 18670431
84 Fu ZD, Klaassen CD. Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice. Toxicol Appl Pharmacol 2013; 273(3): 680–690
https://doi.org/10.1016/j.taap.2013.10.020 pmid: 24183703
85 Straniero S, Rosqvist F, Edholm D, Ahlström H, Kullberg J, Sundbom M, Risérus U, Rudling M. Acute caloric restriction counteracts hepatic bile acid and cholesterol deficiency in morbid obesity. J Intern Med 2017; 281(5): 507–517
https://doi.org/10.1111/joim.12599 pmid: 28261926
86 Green CL, Mitchell SE, Derous D, Wang Y, Chen L, Han JJ, Promislow DEL, Lusseau D, Douglas A, Speakman JR. The effects of graded levels of calorie restriction: IX. Global metabolomic screen reveals modulation of carnitines, sphingolipids and bile acids in the liver of C57BL/6 mice. Aging Cell 2017; 16(3): 529–540
https://doi.org/10.1111/acel.12570 pmid: 28139067
87 Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick JA, Ellisman MH, Panda S. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 2012; 15(6): 848–860
https://doi.org/10.1016/j.cmet.2012.04.019 pmid: 22608008
88 Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans K, Bianco AC, Auwerx J. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006; 439(7075): 484–489
https://doi.org/10.1038/nature04330 pmid: 16400329
89 Ferbeyre G. Bile acids in the fountain of youth. Aging (Albany NY) 2010; 2(7): 383–384
https://doi.org/10.18632/aging.100169 pmid: 20622264
90 MacDonald M, Neufeldt N, Park BN, Berger M, Ruderman N. Alanine metabolism and gluconeogenesis in the rat. Am J Physiol 1976; 231(2): 619–626
https://doi.org/10.1152/ajplegacy.1976.231.2.619 pmid: 961915
91 Lee CK, Klopp RG, Weindruch R, Prolla TA. Gene expression profile of aging and its retardation by caloric restriction. Science 1999; 285(5432): 1390–1393
https://doi.org/10.1126/science.285.5432.1390 pmid: 10464095
92 Lee CK, Weindruch R, Prolla TA. Gene-expression profile of the ageing brain in mice. Nat Genet 2000; 25(3): 294–297
https://doi.org/10.1038/77046 pmid: 10888876
93 Wu C, Kang JE, Peng LJ, Li H, Khan SA, Hillard CJ, Okar DA, Lange AJ. Enhancing hepatic glycolysis reduces obesity: differential effects on lipogenesis depend on site of glycolytic modulation. Cell Metab 2005; 2(2): 131–140
https://doi.org/10.1016/j.cmet.2005.07.003 pmid: 16098830
94 Lee CH, Olson P, Hevener A, Mehl I, Chong LW, Olefsky JM, Gonzalez FJ, Ham J, Kang H, Peters JM, Evans RM. PPARδ regulates glucose metabolism and insulin sensitivity. Proc Natl Acad Sci USA 2006; 103(9): 3444–3449
https://doi.org/10.1073/pnas.0511253103 pmid: 16492734
95 Gu Y, Zhao A, Huang F, Zhang Y, Liu J, Wang C, Jia W, Xie G, Jia W. Very low carbohydrate diet significantly alters the serum metabolic profiles in obese subjects. J Proteome Res 2013; 12(12): 5801–5811
https://doi.org/10.1021/pr4008199 pmid: 24224694
96 Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 2009; 9(4): 311–326
https://doi.org/10.1016/j.cmet.2009.02.002 pmid: 19356713
97 Shah SH, Crosslin DR, Haynes CS, Nelson S, Turer CB, Stevens RD, Muehlbauer MJ, Wenner BR, Bain JR, Laferrère B, Gorroochurn P, Teixeira J, Brantley PJ, Stevens VJ, Hollis JF, Appel LJ, Lien LF, Batch B, Newgard CB, Svetkey LP. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia 2012; 55(2): 321–330
https://doi.org/10.1007/s00125-011-2356-5 pmid: 22065088
98 Nilsson M, Holst JJ, Björck IM. Metabolic effects of amino acid mixtures and whey protein in healthy subjects: studies using glucose-equivalent drinks. Am J Clin Nutr 2007; 85(4): 996–1004
https://doi.org/10.1093/ajcn/85.4.996 pmid: 17413098
99 Tavernarakis N, Driscoll M. Caloric restriction and lifespan: a role for protein turnover? Mech Ageing Dev 2002; 123(2-3): 215–229
https://doi.org/10.1016/S0047-6374(01)00341-4 pmid: 11718814
100 Ingram DK, Young J, Mattison JA. Calorie restriction in nonhuman primates: assessing effects on brain and behavioral aging. Neuroscience 2007; 145(4): 1359–1364
https://doi.org/10.1016/j.neuroscience.2006.10.031 pmid: 17223278
101 Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L; MICRO-Obes Consortium, Dumas ME, Rizkalla SW, Doré J, Cani PD, Clément K. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 2016; 65(3): 426–436
https://doi.org/10.1136/gutjnl-2014-308778 pmid: 26100928
102 Griffin NW, Ahern PP, Cheng J, Heath AC, Ilkayeva O, Newgard CB, Fontana L, Gordon JI. Prior dietary practices and connections to a human gut microbial metacommunity alter responses to diet interventions. Cell Host Microbe 2017; 21(1): 84–96
https://doi.org/10.1016/j.chom.2016.12.006 pmid: 28041931
103 Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T; MetaHIT consortium, Bork P, Wang J, Ehrlich SD, Pedersen O. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500(7464): 541–546
https://doi.org/10.1038/nature12506 pmid: 23985870
104 Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, Gougis S, Rizkalla S, Batto JM, Renault P; ANR MicroObes consortium,Doré J, Zucker JD, Clément K, Ehrlich SD. Dietary intervention impact on gut microbial gene richness. Nature 2013; 500(7464): 585–588
https://doi.org/10.1038/nature12480 pmid: 23985875
105 Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK, Tjota MY, Seo GY, Cao S, Theriault BR, Antonopoulos DA, Zhou L, Chang EB, Fu YX, Nagler CR. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA 2014; 111(36): 13145–13150
https://doi.org/10.1073/pnas.1412008111 pmid: 25157157
106 Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M, Suez J, Mahdi JA, Matot E, Malka G, Kosower N, Rein M, Zilberman-Schapira G, Dohnalová L, Pevsner-Fischer M, Bikovsky R, Halpern Z, Elinav E, Segal E. Personalized nutrition by prediction of glycemic responses. Cell 2015; 163(5): 1079–1094
https://doi.org/10.1016/j.cell.2015.11.001 pmid: 26590418
[1] Hong Zhang, Ying Chang, Qingqing Zheng, Rong Zhang, Cheng Hu, Weiping Jia. Altered intestinal microbiota associated with colorectal cancer[J]. Front. Med., 2019, 13(4): 461-470.
[2] Ruiting Han, Junli Ma, Houkai Li. Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota[J]. Front. Med., 2018, 12(6): 645-657.
[3] Chenyang Wang, Qiurong Li, Jieshou Li. Gut microbiota and its implications in small bowel transplantation[J]. Front. Med., 2018, 12(3): 239-248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed